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Abstract
In this paper, it is shown how a combination of approximate symmetries of a nonlinear
wave equation with small dissipations and singularity analysis provides exact analytic
solutions. We perform the analysis using the Lie symmetry algebra of this equation
and identify the conjugacy classes of the one-dimensional subalgebras of this Lie
algebra. We show that the subalgebra classification of the integro-differential form of
the nonlinear wave equation is much larger than the one obtained from the original
wave equation. A systematic use of the symmetry reduction method allows us to find
new invariant solutions of this wave equation.

Keywords Symmetry reduction method · Approximate symmetries · Wave equation ·
Small dissipation

Mathematics Subject Classification 35L60 · 20F40

1 Introduction

A systematic computational method for constructing an approximate symmetry group
for a given system of partial differential equations (PDEs) has been extensively devel-
oped by many authors, see e.g. [1–3]. A broad review of recent developments in this
subject can be found in such books as Bluman and Kumei [4], Olver [5], Sattinger
and Weaver [6], Rozdestvenskii and Janenko [7] and Baikov et al. [8,9]. Recently,
Ruggieri and Speciale [10] determined the Lie algebras of approximate symmetries of
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nonlinear wave equations admitting a small perturbative dissipation. They discussed
the generators of four different versions of the system of equations associated with the
nonlinear wave equation

utt = [ f (u)ux ]x , (1)

where u(t, x) is a function of t and x . They considered the following second-order
PDE with a small dissipative term:

utt = [ f (u)ux ]x + ε [λ(u)ut ]xx , (2)

where ε << 1 is a small parameter and f and λ are smooth functions of u. If we
suppose that the function u(t, x) can be written as

u(t, x, ε) = u0(t, x) + εu1(t, x) + O(ε2), (3)

where u0 and u1 are smooth functions of t and x , then Eq. (2) becomes the following
two equations:

u0,t t − f (u0)u0,xx − f ′(u0)(u0,x )2 = 0, (4)

and

u1,t t − f (u0)u1,xx − f ′(u0)u0,xxu1 − 2 f ′(u0)u0,xu1,x − f ′′(u0)(u0,x )2u1
−λ′′(u0)(u0,x )2u0,t − λ′(u0)u0,xxu0,t − 2λ′(u0)u0,xu0,xt − λ(u0)u0,xxt = 0. (5)

The Lie symmetry algebra of Eqs. (4) and (5) was identified for three separate cases
[10]:

(I ) : f (u0) = f0e
1
p u0 , λ(u0) = λ0e

1+s
p u0

(I I ) : f (u0) = f0(u0 + q)
1
p , λ(u0) = λ0(u0 + q)

1+s
p −1

(I I I ) : f (u0) = f0(u0 + q)−
4
3 , λ(u0) = λ0(u0 + q)−

4
3

(6)

In addition, Eq. (1) is equivalent to the following integro-differential system of equa-
tions:

ut − vx = 0,

vt −
( ∫ u

f (s)ds + ελ(u)vx

)
x

= 0. (7)

In the paper [10], two different cases of Eq. (7) were considered:

(I V ) : f (u0) = f0e
1
p u0 , λ(u0) = λ0e

1+s
p u0

(V ) : f (u0) = f0(u0 + q)
1
p , λ(u0) = λ0(u0 + q)

1+s
p −1

(8)

and their Lie symmetry algebras were identified. The objectives of this work are
the following. For each of the five cases listed in Eqs. (6) and (8), we identify the
classification of the one-dimensional subalgebras of the Lie symmetry algebra into
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conjugacy classes under the action of the associated Lie group. That is, we obtain
a list of representative subalgebras of each Lie symmetry algebra L such that each
one-dimensional subalgebra of L is conjugate to one and only one element of the
list. In order to obtain these classifications, we make use of the results obtained by J.
Patera and P. Winternitz in [11]. For cases (I ) and (I I ), we identify the Lie symmetry
subalgebra as 2A2 from the list of Lie algebras of dimension 4 found in [11]. For
case (I I I ), we first express the Lie symmetry subalgebra as a direct sum of two
algebras, one of which is the three-dimensional algebra A3,8 = su(1, 1) found in [11].
The Goursat method of twisted and non-twisted subalgebras is used to complete the
classification [12]. Next, we make a systematic use of the symmetry reduction method
to generate invariant solutions corresponding to the above-mentioned subalgebras.We
then performa subalgebra classification for the integro-differential Eq. (7) and give two
examples of symmetry reductions for this case. We provide a physical interpretation
of the obtained results.

2 Subalgebra classification and invariant solutions

2.1 The case where f(u0) = f0e
1
p u0 and �(u0) = �0e

1+s
p u0

We first consider the case where f (u0) = f0e
1
p u0 and λ(u0) = λ0e

1+s
p u0 , where f0,

λ0, p and s are constants and p �= 0. For this case, Eqs. (4) and (5) become

u0,t t − f0e
1
p u0u0,xx − f0

p
e

1
p u0(u0,x )

2 = 0, (9)

and

u1,t t − f0e
1
p u0u1,xx − f0

p
e

1
p u0u0,xxu1 − 2 f0

p
e

1
p u0u0,xu1,x − f0

p2
e

1
p u0(u0,x )

2u1

− λ0

(
1 + s

p

)2

e
1+s
p u0(u0,x )

2u0,t − λ0

(
1 + s

p

)
e
1+s
p u0u0,xxu0,t

− 2λ0

(
1 + s

p

)
e
1+s
p u0u0,xu0,xt − λ0e

1+s
p u0u0,xxt = 0. (10)

The Lie algebra of infinitesimal symmetries of Eqs. (9) and (10) is spanned by the
four generators [10]

X1 = ∂t , X2 = ∂x , X3 = t∂t + x∂x − u1∂u1 ,

X4 = x∂x + 2p∂u0 + 2su1∂u1 .
(11)

This Lie algebra is isomorphic to the algebra 2A2 given in Table II of [11]. The list of
conjugacy classes includes the following one-dimensional subalgebras:

123



512 A. M. Grundland, A. J. Hariton

{X1}, {X4}, {X2}, {X3 + aX4}, {X4 − X3 + εX2},
{X1 + εX2}, {X1 + εX4}, (12)

where a ∈ R, a �= 0 and ε = ±1. We proceed to use the symmetry reduction method
to reduce the system of equations using each subalgebra given in the list (12).

1. For the subalgebra {X1}, we obtain the stationary solution

u0(x) = p ln |x + C1| + C2, u1(x) = C3

x + C1
+ C4, (13)

where C1, C2, C3 and C4 are constants. This is a singular logarithmic solution with
one simple pole.

2. For the subalgebra {X4}, we obtain a dissipative solution of the form

u0(t, x) = F(t) + 2p ln x, u1(t, x) = x2sG(t), (14)

where the functions F(t) and G(t) are given by the quadratures

∫
dF

ε(4p2 f0e
1
p F + K0)1/2

= t − t0, (15)

for F and

G = μ

∫ √
4b(s + 1)(2s + 1)

∫
e

1
p F [ f0(bF + c) + λ0εe

s
p F (4p2 f0e

1
p F + K0)1/2]dFdt,

(16)
where K0, b and c are constants and μ = ±1. Therefore,

u1(t, x) = x2sμ
∫ √

4b(s + 1)(2s + 1)
∫

e
1
p F [ f0(bF + c) + λ0εe

s
p F (4p2 f0e

1
p F + K0)1/2]dFdt .

(17)
The gradient catastrophe occurs for the derivatives of the solution (17) when F =
p ln

(
− K0

4p2 f0

)
. In this case, shock waves may occur.

3. For the subalgebra {X2}, we obtain the trivial linear (in t) solution

u0(t) = C1t + C2, u1(t) = C3t + C4 (18)

where C1, C2, C3 and C4 are constants.
4. For the subalgebra {X3 + aX4}, Eqs. (9) and (10) reduce to the system of third-

order ordinary differential equations (ODE)

(a + 1)(a + 2)ξFξ + (a + 1)2ξ2Fξξ − 2ap − f0e
1
p F Fξξ − f0

p
e

1
p F (Fξ )

2 = 0, (19)
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and

(2as − 1)(2as − 2)G − (a + 1)(4as − a − 4)ξGξ + (a + 1)2ξ2Gξξ

− f0e
1
p F

[
Gξξ + 1

p
FξξG + 2

p
FξGξ + 1

p2
(Fξ )

2G

]

+ λ0(1 + s)

p
e
1+s
p F

[
(a + 1)(1 + s)

p
ξ(Fξ )

3 − 2ap(1 + s)

p
(Fξ )

2 + (a + 1)ξFξ Fξξ

− 2apFξξ + 2(a + 1)(Fξ )
2 + 2(a + 1)ξFξ Fξξ

]

+ λ0e
1+s
p F [

2(a + 1)Fξξ + (a + 1)ξFξξξ

] = 0, (20)

where we have the self-similar symmetry variable ξ = xt−a−1, and the functions

u0 = F(ξ) + 2ap ln t and u1 = t2as−1G(ξ). (21)

Equations (19) and (20) do not possess the Painlevé property. For the special case of
the subalgebra where a = −1, we obtain the singular logarithmic solution:

F(ξ) = 2p ln

(
1√
f0

ξ + C0

)
, (22)

where C0 is a constant. The function G satisfies the single second-order linear differ-
ential equation

− f0�
2Gξξ − 4

√
f0�Gξ − 2G + (2s + 1)(2s + 2)G

+ λ0(1 + s)�2(1+s)

p

[
4p2

�2

(
2(1 + s)

f 20
− 1

f0

)]
= 0, (23)

where � = 1√
f0

ξ + C0. In the specific case where λ0 = 0, we obtain the explicit
solutions

G = ξ−3/4(C1 + C2 ln ξ) (24)

in the case where s = −3/4 and

G = C1ξ
r+ + C2ξ

r− (25)

where

r± = −3 ± √
9 − 4[2 − (2s + 1)(2s + 2)]

2
(26)

in the case where s �= −3/4. The functions G in Eqs. (24) and (25) correspond
respectively to the solutions
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u0 = 2p ln

(
1√
f0
xt−a−1 + C0

)
+ 2ap ln t,

u1 = t2as−1(xt−a−1)−3/4(C1 + C2 ln (xt−a−1))

(27)

and

u0 = 2p ln

(
1√
f0
xt−a−1 + C0

)
+ 2ap ln t,

u1 = t2as−1(C1(xt
−a−1)r+ + C2(xt

−a−1)r−).

(28)

Solutions (27) and (28) involve damping.
5. For the subalgebra {X4 − X3 + εX2}, we get

u0 = F(ξ) − 2p ln t, u1 = t−2s−1G(ξ), (29)

where we have the symmetry variable ξ = x + ε ln t . Here, F satisfies the nonlinear
equation

Fξξ = 1

1 − f0e
1
p F

[
f0
p
e

1
p F (Fξ )

2 + εFξ − 2p

]
, (30)

and G satisfies

(
1 − f0e

1
p F

)
Gξξ −

(
ε(4s + 3) + 2 f0

p
e

1
p F Fξ

)
Gξ

+
(

(2s + 1)(2s + 2) − f0
p
e

1
p F Fξξ − f0

p2
e

1
p F (Fξ )

2
)
G

− λ0

[ (
1 + s

p

)2

e
1+s
p F

(Fξ )
2 (

εFξ − 2p
) +

(
1 + s

p

)
e
1+s
p F Fξξ

(
εFξ − 2p

)

+ 2ε

(
1 + s

p

)
e
1+s
p F Fξ Fξξ + εe

1+s
p F Fξξξ

]
= 0. (31)

In the specific case where λ0 = 0 and f0 = 0, we obtain the explicit solution

u0 = K1te
εx + 2εpx + K2,

u1 = K3e
(2s+1)x t (2s+1)(ε−1) + K4e

(2s+2)x t (2s+1)(ε−1)tε.
(32)

Solution (32) involves damping terms in the case when ε = −1. Otherwise, for ε = 1,
this solution may contain unbounded terms.

6. For the subalgebra {X1 + εX2}, we have the travelling wave solution

u0 = u0(ξ), u1 = u1(ξ), (33)

where ξ = x−εt . Here, u0 can be determined implicitly by the transcendental equation

u0 − f0
p
e

1
p u0 = K0ξ + K1. (34)
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In the case where λ0 = 0, u1 satisfies the second-order ODE

(
1 − f0e

1
p u0

)
u1,ξξ − 2 f0

p
e

1
p u0

K0

1 − f0e
1
p u0

u1,ξ

− f0
p
e

1
p u0

⎡
⎢⎣ K0 f0e

1
p u0 + K 2

0

p
(
1 − f0e

1
p u0

)2

⎤
⎥⎦ u1 = 0

(35)

which is linear in u1 if u0 �= −p ln ( f0).
7. For the subalgebra {X1 + εX4}, we obtain the center wave solution

u0 = F(ξ) + 2εpt, u1 = e2εstG(ξ), (36)

where the symmetry variable is ξ = xe−εt , F satisfies the ODE

ξFξ + ξ2Fξξ − f0e
1
p F Fξξ − f0

p
e

1
p F (Fξ )

2 = 0, (37)

which does not possess the Painlevé property, while G satisfies the ODE

(
ξ2 − f0e

1
p F

)
Gξξ +

(
(1 − 4s)ξ − 2 f0

p
e

1
p F Fξ

)
Gξ

+
(
4s2 − f0

p
e

1
p F Fξξ − f0

p2
e

1
p F (Fξ )

2
)
G

+ λ0εe
1+s
p F

[(
1 + s

p

)2

ξ(Fξ )
3 − 2s(1 + s)

p
(Fξ )

2 + 3

(
1 + s

p

)
ξFξ Fξξ

− 2sFFξξ + ξFξξξ

]
= 0. (38)

In the case where λ0 = 0 and s = 1±√
2

2 , we obtain the periodic damping solution

u0 = p ln x + εpt − p

2
ln f0,

u1 = e2εst+
1
2 xe

−εt

[
C1 cos

(√
7

2
xe−εt

)
+ C2 sin

(√
7

2
xe−εt

)]
.

(39)

2.2 The case where f(u0) = f0(u0 + q)
1
p and �(u0) = �0(u0 + q)

1+s
p −1

Next, we consider the casewhere f (u0) = f0(u0+q)
1
p and λ(u0) = λ0(u0+q)

1+s
p −1,

where f0, λ0, p, q and s are constants with p �= 0. For this case, Eqs. (4) and (5)
become

u0,t t − f0(u0 + q)
1
p u0,xx − f0

p
(u0 + q)

1
p −1

(u0,x )
2 = 0, (40)
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and

u1,t t − f0(u0 + q)
1
p u1,xx − f0

p
(u0 + q)

1
p −1u0,xxu1 − 2 f0

p
(u0 + q)

1
p −1u0,xu1,x

− f0
p

(
1

p
− 1

)
(u0 + q)

1
p−2

(u0,x )
2u1

− λ0

(
1 + s

p
− 1

) (
1 + s

p
− 2

)
(u0 + q)

1+s
p −3

(u0,x )
2u0,t

−λ0

(
1 + s

p
− 1

)
(u0 + q)

1+s
p −2u0,xxu0,t

− 2λ0

(
1 + s

p
− 1

)
(u0 + q)

1+s
p −2u0,xu0,xt

− λ0(u0 + q)
1+s
p −1u0,xxt = 0. (41)

The Lie algebra of infinitesimal symmetries of Eqs. (40) and (41) is spanned by the
four generators [10]

X1 = ∂t , X2 = ∂x , X3 = t∂t + x∂x − u1∂u1 ,

X4 = x∂x + 2p(u0 + q)∂u0 + 2su1∂u1 .
(42)

This Lie algebra is isomorphic to the algebra 2A2 given in Table II of [11]. The list of
conjugacy classes includes the one-dimensional subalgebras:

{X1}, {X4}, {X2}, {X3 + aX4}, {X4 − X3 + εX2},
{X1 + εX2}, {X1 + εX4}, (43)

where a ∈ R, a �= 0 and ε = ±1. We obtain solutions of the equations by symmetry
reduction using the different subalgebras in the list (43).

8. For the subalgebra {X1}, we obtain the explicit stationary solution

u0 =
(

(p + 1)(Kx + C)

p

) p
p+1 − q,

u1 = B1(Kx + C)

√
pλ1
p+1 + B2(Kx + C)

√
pλ2
p+1 ,

(44)

where

λ =
p − 1√

p
±

√
(1 − p)2

p
+ 4

2
, (45)

and B1, B2, K and C are constants. This solution involves a combination of powers
of x and is unbounded.

9. For the subalgebra {X2}, we obtain the trivial linear (in t) solution
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u0 = C1t + C2, u1 = C3t + C4, (46)

where C1, C2, C3 and C4 are constants. 10.
For the subalgebra {X4}, we obtain

u0 = x2pF(t) − q, u1 = x2sG(t), (47)

where

F =
(
ε
√

f0(t − t0)
)−2p

, (48)

and G satisfies the linear second-order ODE

Gtt − f0(4s
2 + 6s + 2)(ε

√
f0(t − t0))

−2G

+ 2λ0ε
√

f0 p(4s
2 + 6s + 2)(ε

√
f0(t − t0))

−2s−3 = 0. (49)

The function F involves damping if p > 0. In the specific case where λ0 = 0, t0 = 0
and either s = −2 or s = 1

2 , we obtain G = C1t3 + C2t−2, so the solution is

u0 = x2p
(
ε
√

f0(t − t0)
)−2p − q, u1 = x2s

(
C1t

3 + C2t
−2

)
. (50)

In the specific case where λ0 = 0, t0 = 0 and either s = 1 or s = − 5
2 , we obtain

G = C1t4 + C2t−3, so the solution is

u0 = x2p
(
ε
√

f0(t − t0)
)−2p − q, u1 = x2s

(
C1t

4 + C2t
−3

)
. (51)

These solutions involve combinations of powers of x and t , and each solution admits
a pole and is unbounded for large values of x .

11. For the subalgebra {X3 + aX4}, we get

u0 = t2apF(ξ) − q, u1 = t2as−1G(ξ), (52)

where the self-similar invariant has the form ξ = xt−a−1, with F = (a + 1)2p

f p0
ξ2p

and G = Rξ2s , where R is a constant. Here, the following conditions have to be
satisfied:

(1) a(a + 2)(2p + 1) = 0

(2) − 2a(2as2 + 4s2 + 3as + 6s + a + 2) + 4λ0 p(1 + 3s + 2s2) = 0
(53)

Equation (52) leads to the following two solutions. In the case where a = −2 and
s = − 1

2 , we have the solution

u0 = (−1)2p

f p0

( x
t

)2p − q, u1 = R

x
. (54)
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In the case where a = −2 and s = −1, we have the solution

u0 = (−1)2p

f p0

( x
t

)2p − q, u1 = Rt

x2
. (55)

Both solutions admit poles at t = 0 and at x = 0. Also, for large values of x , the
solutions become unbounded.

12. For the subalgebra {X4 − X3 + εX2}, we get

u0 = t−2pF(ξ) − q, u1 = t−2s−1G(ξ), (56)

with symmetry variable ξ = x + ε ln t . Here, F satisfies the ODE

(
1 − f0F

1
p

)
Fξξ − f0

p
F

1
p −1

(Fξ )
2 − ε(4p + 1)Fξ + 2p(2p + 1)F = 0, (57)

which does not possess the Painlevé property. In the case where p = − 1
2 , we obtain

the implicitly-defined function

− ε ln (A − εF) + f0
A2

(
A − εF

F
+ ε ln

(
A − εF

F

))
= ξ − ξ0. (58)

The equation for G(ξ) in this case becomes

(
1 − f0F

−2
)
Gξξ +

(
−4sε − 3ε + 4 f0F

−3Fξ

)
Gξ

+
(
(2s + 1)(2s + 2) + 2 f0F

−3Fξξ − 6 f0F
−4(Fξ )

2
)
G

− λ0(2s + 3)(2s + 4)F−2s−5(Fξ )
2 [

F + εFξ

] + λ0(2s + 3)F−2s−4Fξξ

[
F + εFξ

]

+ 2λ0(2s + 3)F−2s−4Fξ

[
Fξ + εFξξ

] − λ0F
−2s−3 [

Fξξ + εFξξξ

] = 0. (59)

If we further suppose that λ0 = 0 and f0 = 0, we obtain the explicit solution

u0 = εAt−2p −εt−2p−1e−εx eεξ0 −q, u1 = C1e
λ1x tελ1−2s−1+C2e

λ2x tελ2−2s−1,

(60)
where

λ1 = 4εs + 3ε + 1

2
, λ2 = 4εs + 3ε − 1

2
. (61)

In the case where p > 0, we obtain a damping solution.
13. For the subalgebra {X1 + εX2}, we have the travelling wave solution

u0 = u0(ξ), u1 = u1(ξ), (62)

where ξ = x − εt is the symmetry variable. Here, u0 satisfies

(
1 − f0(u0 + q)

1
p

)
u0,ξξ = f0

p
(u0 + q)

1
p−1

(u0,ξ )
2, (63)
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and u1 satisfies

(
1 − f0(u0 + q)

1
p

)
u1,ξξ − 2 f0

p
(u0 + q)

1
p −1u0,ξu1,ξ

− f0
p

[
(u0 + q)

1
p −1u0,ξξ +

(
1

p
− 1

)
(u0 + q)

1
p −2

(u0,ξ )
2
]
u1

+ ελ0

[ (
1 + s

p
− 1

) (
1 + s

p
− 2

)
(u0 + q)

1+s
p −3

(u0,ξ )
3

+ 3

(
1 + s

p
− 1

)
(u0 + q)

1+s
p −2u0,ξu0,ξξ + (u0 + q)

1+s
p −1u0,ξξξ

]
= 0. (64)

In the case where λ0 = 0, we obtain the explicit solution

u0 = 1

( f0)p
− q, (65)

while u1 = u1(ξ) is an arbitrary function of ξ . Since u1(ξ) is arbitrary, we can choose,
for example, the Jacobi elliptic function

u1(t, x) = cn
(
(1 + cosh (arctan (c(x − εt))))−1 , k

)
, 0 < k2 < 1. (66)

It should be noted that if the modulus k of the elliptic function is such that 0 < k2 < 1,
then it has one real and one purely imaginary period. If the argument of the cn function
is real, then −1 ≤ u1 ≤ 1. This represents a travelling bump solution.

14. For the subalgebra {X1 + εX4}, we obtain

u0 = x2pF(ξ) − q, u1 = x2sG(ξ), (67)

where the symmetry variable is ξ = ln x − εt and F satisfies the ODE

(
1 − f0F

1
p

)
Fξξ − f0

p
F

1
p −1

(Fξ )
2 − f0F

1
p (4p + 3)Fξ − 2p(2p + 1) f0F

1
p +1 = 0,

(68)
which does not possess the Painlevé property, and G satisfies the coupled ODE

(
1 − f0F

1
p

)
Gξξ −

(
f0(4s − 1)F

1
p + 2 f0

p
F

1
p −1 (

2pF + Fξ

))
Gξ

−
(
2s(2s − 1) f0F

1
p + 4s f0

p
F

1
p −1 (

2pF + Fξ

)

+ f0
p
F

1
p −1 [

2p(2p − 1)F + (4p − 1)Fξ + Fξξ

]

+ f0
p

(
1

p
− 1

)
F

1
p −2

[
4p2F2 + 4pFFξ + (Fξ )

2
] )

G
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+ ελ0

[(
1 + s

p
− 1

) (
1 + s

p
− 2

)
F

1+s
p −3Fξ

(
4p2F2 + 4pFFξ + (Fξ )

2
)

+
(
1 + s

p
− 1

)
F

1+s
p −2Fξ

(
2p(2p − 1)F + (4p − 1)Fξ + Fξξ

)

+ 2

(
1 + s

p
− 1

)
F

1+s
p −2 (

2pF + Fξ

) (
2pFξ + Fξξ

)

+ F
1+s
p −1 (

2p(2p − 1)Fξ + (4p − 1)Fξξ + Fξξξ

) ]
= 0. (69)

In the case where p = − 1
2 and λ0 = 0, we obtain the explicit solution

u0 = x2p
√

f0 − q, u1 = K0x
2s−r eεr t , where r = 4s2 + 6s + 2

4s + 3
. (70)

In the case where εr < 0, this is a damping solution.

2.3 The case where f(u0) = f0(u0 + q)− 4
3 and �(u0) = �0(u0 + q)− 4

3

We now consider the case where f (u0) = f0(u0 + q)− 4
3 and λ(u0) = λ0(u0 + q)− 4

3 ,
where f0, λ0 and q are constants. This corresponds to the special instance of the
previous case (in Sect. 2.2) in which p = − 3

4 and s = − 3
4 . For this case, Eqs. (4) and

(5) become

u0,t t − f0(u0 + q)−
4
3 u0,xx + 4

3
f0(u0 + q)−

7
3 (u0,x )

2 = 0, (71)

and

u1,t t − f0(u0 + q)−
4
3 u1,xx + 4

3
f0(u0 + q)−

7
3 u0,xxu1 + 8

3
f0(u0 + q)−

7
3 u0,xu1,x

− 28

9
f0(u0 + q)−

10
3 (u0,x )

2u1 − 28

9
λ0(u0 + q)−

10
3 (u0,x )

2u0,t

+ 4

3
λ0(u0 + q)−

7
3 u0,xxu0,t + 8

3
λ0(u0 + q)−

7
3 u0,xu0,xt

− λ0(u0 + q)−
4
3 u0,xxt = 0. (72)

The Lie algebra of infinitesimal symmetries of Eqs. (71) and (72) is spanned by the
five generators [10]

X1 = ∂t , X2 = ∂x , X3 = t∂t + x∂x − u1∂u1 ,

X4 = x∂x − 3

2
(u0 + q)∂u0 − 3

2
u1∂u1 , X5 = x2∂x − 3x(u0 + q)∂u0 − 3xu1∂u1 .

(73)
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This Lie algebra is the direct sum

{X3 − X4, X1} ⊕ {X4, X2, X5}, (74)

where {X4, X2, X5} is isomorphic to the three-dimensional algebra A3,8 = su(1, 1)
given in Table I of [11]. The classification of A3,8 was found in [11] and, in this paper,
the Goursat method of twisted and non-twisted subalgebras is used to obtain the list
of conjugacy classes for the complete Lie symmetry algebra. The one-dimensional
subalgebras of the Lie algebra can be classified as follows:

{X3 − X4}, {X1}, {X2}, {X4}, {X2 − X5},
{X3 − X4 + εX2}, {X3 + aX4}, {X3 − X4 + a(X2 − X5)},
{X1 + εX2}, {X1 + εX4}, {X1 + ε(X2 − X5)},

(75)

where a ∈ R, a �= 0 and ε = ±1.We obtain the following solutions through symmetry
reduction.

15. For the subalgebra {X3 − X4}, we obtain the power function solution

u0 =
(
t

x

) 3
2 − q, u1 = t

1
2

x
3
2

, (76)

for the case where f0 = 1 and λ0 = 0. For small values of x , the function becomes
unbounded. A second solution, obtained by making the hypothesis F = C0xa , is

u0 = f
3
4
0

(
t

x

) 3
2 − q, u1 = t

1
2

⎡
⎣C1x

−3+
√

140
3

2 + C2x
−3−

√
140
3

2 − 69

280 f
1
4
0

x− 3
2

⎤
⎦ ,

(77)
which constitutes a combination of monomial power functions. For both large and
small values of x , the solution (77) becomes unbounded.

16. For the subalgebra {X4}, we get the solution

u0 = f
3
4
0

(
t

x

) 3
2 − q,

u1 = C1t
1
2

x
3
2

+ C2t
1
2 ln t

x
3
2

+ 3λ0

32 f
1
4
0

t
5
2

x
3
2

(2 ln t − 1) − 3λ0

16 f
1
4
0

t
1
2

x
3
2

ln t, (78)

where u0 is a center wave in the sense given in [7, p. 101] and u1 is singular in t when
t = 0.

17. For the subalgebra {X2}, we obtain the linear trivial solution in t

u0 = C1t + C2, u1 = C3t + C4, (79)

where C1, C2, C3 and C4 are constants.
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18. For the subalgebra {X1}, we have the stationary solution u0 = u0(x) and
u1 = u1(x) (i.e. u0 and u1 are functions of x only), where u0 satisfies the equation

u0,xx = 4(u0,x )2

3(u0 + q)
, (80)

and u1 satisfies the equation

u1,xx = 4

3(u0 + q)
u0,xxu1 + 8

3(u0 + q)
u0,xu1,x − 28

9(u0 + q)2
(u0,x )

2u1. (81)

For the specific case when q = 0, the solution of Eq. (80) is expressed in terms of the
Gaussian quadrature ∫

e− 2
3 u

2
0du0 = k(x − x0), (82)

and Eq. (81) becomes the second-order ODE

u1,xx = 4k

3u0
e
2
3 u

2
0

(
2u1,x − 1

u0
ke

2
3 u

2
0u1

)
, (83)

where k is a constant.
19. For the subalgebra {X2 − X5}, we get

u0 = (1 − x2)−
3
2 F(t) − q, u1 = (1 − x2)−

3
2G(t), (84)

where the functions F and G of t satisfy the equations

Ftt − 3 f0F
− 1

3 = 0, (85)

and
Gtt + f0F

− 4
3G + λ0F

− 4
3 Ft = 0. (86)

In the case where λ0 = 0, looking for solutions of the type F = Ata , G = Btb, we
obtain the solution

u0 = (1−x2)−
3
2 (4 f0)

3/4t3/2−q, u1 = (1−x2)−
3
2 Bt1/2, where B ∈ R. (87)

This solution involves a separation of the variables x and t . The solution becomes
unbounded when x tends to 1.

20. For the subalgebra {X3 − X4 + εX2}, we get

u0 = t
3
2 F(ξ) − q, u1 = t

1
2G(ξ), (88)

where the functions F and G of the symmetry variable ξ = x − ε ln t satisfy the
equations (

1 − f0F
− 4

3

)
Fξξ + 4

3
f0F

− 7
3 (Fξ )

2 − 2εFξ + 3

4
F = 0, (89)
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and

(
1 − f0F

− 4
3

)
Gξξ + 8

3
f0F

− 7
3 FξGξ

+
(
4

3
f0F

− 7
3 Fξξ − 28

9
f0F

− 10
3 (Fξ )

2 − 1

4

)
G

+ λ0F
− 10

3

(
− 2

3
F(Fξ )

2 + 28

9
ε(Fξ )

3 + 1

2
F2Fξξ − 4εFFξ Fξξ + εF2Fξξξ

)
= 0.

(90)

Here, F(ξ) is the function which satisfies Abel’s equation of the second kind

(η + 2εF) η′ = 1, (91)

where F and η obey the constraints

η = η(ζ ) = Fξ

(
1 − f0F

−4/3
)

− 2εF, and ζ = −3

8
F2 + 9

8
f0F

2/3. (92)

Solution (88) is given in the composed form (92) where G is determined by the ODE
(90).

21. For the subalgebra {X3 + aX4}, we obtain

u0 = t−
3a
2 F(ξ) − q, u1 = t−

3a+2
2 G(ξ), (93)

where F and G are functions of the self-similar symmetry variable ξ = xt−a−1. Here,
F satisfies the equation

(
(a + 1)2ξ2 − f0F

− 4
3

)
Fξξ + 4

3
f0F

− 7
3 (Fξ )

2 + 2(a + 1)(2a + 1)ξFξ

+ 3a(3a + 2)

4
F = 0. (94)

In the case where λ0 = 0 and either a = 0 or a = −2, the function

F = f
3
4
0 (a + 1)−

3
2 ξ− 3

2 (95)

is a solution with damping of Eq. (94). Substituting the function (95) and any arbitrary
function G(ξ) of the symmetry variable ξ = xt−a−1 into (93), we obtain a solution
of the system consisting of Eqs. (71) and (72) of the form

u0 = f
3
4
0 (a + 1)−

3
2 x− 3

2 t
3
2 − q, u1 = t−

3a+2
2 G(ξ), (96)
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where G is an arbitrary function of ξ = xt−a−1. Since G(ξ) is arbitrary, we can
choose

G(ξ) = tan ξ
(
3 + tan2 ξ

) 1
2

, (97)

and we obtain the solution

u0 =
( √

f0t

(a + 1)x

) 3
2

− q, u1 = t− 3a+2
2 tan

(
xt−a−1

)
(
3 + tan2

(
xt−a−1

)) 1
2

. (98)

This solution is finite everywhere except for t = 0. It represents a damping solution
with various factors of t .

22. For the subalgebra {X1 + εX2}, we obtain the travelling wave solution

u0 = u0(ξ), u1 = u1(ξ), (99)

where we have ξ = x − εt . Here, u0 satisfies the equation

(
1 − f0(u0 + q)−

4
3

)
u0,ξξ + 4

3
f0(u0 + q)−

7
3 (u0,ξ )

2 = 0, (100)

and u1 satisfies

(
1 − f0(u0 + q)−

4
3

)
u1,ξξ + 8

3
f0(u0 + q)−

7
3 u0,ξu1,ξ

+ f0

(
4

3
(u0 + q)−

7
3 u0,ξξ − 28

9
(u0 + q)−

10
3 (u0,ξ )

2
)
u1

+ λ0

(
28

9
ε(u0 + q)−

10
3 (u0,ξ )

3

− 4ε(u0 + q)−
7
3 u0,ξu0,ξξ + ε(u0 + q)−

4
3 u0,ξξξ

)

= 0. (101)

Equation (100) can be solved implicitly through the quadrature

∫
du0

ln
(
1 − f0(u0 + q)− 4

3

) = ξ0 − ξ. (102)

The quadrature (102) admits a discontinuity where u0 = f
3
4
0 − q.

23. For the subalgebra {X1 + εX4}, we get

u0 = x− 3
2 F(ξ) − q, u1 = x− 3

2G(ξ), (103)
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where we have the symmetry variable ξ = t − ε ln x , x > 0. Here, F and G satisfy
the equations

(
1 − f0F

− 4
3

)
Fξξ + 4

3
f0F

− 7
3 (Fξ )

2 − 3

4
f0F

− 1
3 = 0, (104)

and
(
1 − f0F

− 4
3

)
Gξξ + 8

3
f0F

− 7
3 FξGξ

+
(
4

3
f0F

− 7
3 Fξξ − 28

9
f0F

− 10
3 (Fξ )

2 + 1

4
f0F

− 4
3

)
G

+ λ0

(
1

4
F− 4

3 Fξ − 28

9
F− 10

3 (Fξ )
3 + 4F− 7

3 Fξ Fξξ − F− 4
3 Fξξξ

)
= 0, (105)

respectively. Equation (104) can be solved implicitly through the quadrature

∫ 2
(
f0F− 4

3 − 1
)

3
√

( f0)2F− 2
3 + f0F

2
3 + K

dF = ξ − ξ0, K ∈ R. (106)

The quadrature (106) admits a discontinuity where

F =
(

−K ± √
K 2 − 4( f0)3

2 f0

) 3
2

. (107)

24. For the subalgebra {X1 + ε(X2 − X5)}, we have
u0 = (x2 − 1)−

3
2 F(ξ) − q, u1 = (x2 − 1)−

3
2G(ξ), (108)

where we have the symmetry variable

ξ = εt + 1

2
ln

(
x − 1

x + 1

)
. (109)

Here, F and G satisfy the equations

(
1 − f0F

− 4
3

)
Fξξ + 4

3
f0F

− 7
3 (Fξ )

2 − 3 f0F
− 1

3 = 0, (110)

and

(
1 − f0F

− 4
3

)
Gξξ + 8

3
f0F

− 7
3 FξGξ

+
(
4

3
f0F

− 7
3 Fξξ − 28

9
f0F

− 10
3 (Fξ )

2 + f0F
− 4

3

)
G

+ λ0ε

(
F− 4

3 Fξ − 28

9
F− 10

3 (Fξ )
3 + 4F− 7

3 Fξ Fξξ − F− 4
3 Fξξξ

)
= 0. (111)
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Equation (110) can be solved implicitly through the quadrature

∫
f0F− 4

3 − 1

3
√

( f0)2F− 2
3 + f0F

2
3 + K

dF = ξ − ξ0, K ∈ R. (112)

The quadrature (112) admits a discontinuity where

F =
(

−K ± √
K 2 − 4( f0)3

2 f0

) 3
2

. (113)

25. For the subalgebra {X3−X4+a(X2−X5)}, we consider the case where a = 1
2 .

We obtain the solution in factored form

u0 = (x − 1)−3F(ξ) − q, u1 = (x − 1)−2(x + 1)−1G(ξ), (114)

where the rational symmetry variable is ξ = t(x − 1)(x + 1)−1. Here, F satisfies the
equation

(
1 − 4 f0ξ

2F− 4
3

)
Fξξ + 16

3
f0ξ

2F− 7
3 (Fξ )

2 − 8 f0ξF
− 4

3 Fξ = 0. (115)

A particular solution is

F = 2
3
2 f

3
4
0 ξ

3
2 . (116)

In the case where λ0 = 0 and a = 1
2 , substituting the function (116) and any arbitrary

function G(ξ) of the symmetry variable ξ = t(x − 1)(x + 1)−1 into (114) yields a
solution of the system consisting of Eqs. (71) and (72)

u0(t, x) = 2
3
2 f

3
4
0 t

3
2 (x − 1)−

3
2 (x + 1)−

3
2 − q. (117)

Since G(ξ) is arbitrary, we can choose

G(ξ) = A tanh

(
ξ − ξ0√

2

)
, (118)

and we obtain the solution

u0(t, x) =
(

2
√

f0t

(x − 1)(x + 1)

) 3
2

− q,

u1(t, x) = A(x − 1)−2(x + 1)−1 tanh

(
t(x − 1)(x + 1)−1 − c√

2

)
, (119)

where c ∈ R. This solution represents a kink with damping.
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3 Subalgebra classification and solutions for the integro-differential
case

The system (7) given by the equations

ut − vx = 0

vt −
(∫ u

f (s)ds + ελ(u)vx

)

x
= 0 (120)

is the potential system for Eq. (2) in the sense that its compatibility condition is given
by Eq. (2). Here, we have

u(t, x, ε) = u0(t, x)+εu1(t, x)+O(ε2) and v(t, x, ε) = v0(t, x)+εv1(t, x)+O(ε2)

(121)
The approximate Lie algebra of infinitesimal symmetries of Eq. (120) is spanned by
the five generators [10]

X1 = ∂t , X2 = ∂x , X3 = ∂v0 , X4 = ∂v1,

X5 = t∂t + x∂x − u1∂u1 − v1∂v1

(122)

For two specific cases of f (u0) and λ(u0), we also have an additional generator X6.
Specifically:

– For the case where f (u0) = f0eu0/p and λ(u0) = λ0e(1+s)u0/p, we have X6 =
x∂x + 2p∂u0 + v0∂v0 + 2su1∂u1 + (2s + 1)v1∂v1

– For the case where f (u0) = f0(u0 + q)
1
p and λ(u0) = λ0(u0 + q)

1+s
p −1, we have

X6 = x∂x + 2p(u0 + q)∂u0 + (2p + 1)v0∂v0 + 2su1∂u1 + (2s + 1)v1∂v1

For both cases, we obtain a classification of 63 conjugacy classes of one-dimensional
subalgebras, which we list in the Appendix.

3.1 The case where f(u0) = f0eu0/p and �(u0) = �0e(1+s)u0/p

Here, f0, λ0, p and s are constants. In this case, we have the additional symmetry
generator

X6 = x∂x + 2p∂u0 + v0∂v0 + 2su1∂u1 + (2s + 1)v1∂v1 (123)

Performing a symmetry reduction corresponding to the subalgebra {X6}, we obtain
the solution

u0 = F(t) + 2p ln x, v0 = xFt , u1 = x2s H(t), v1 = x2s+1

2s + 1
Ht (124)

where ∫
dF√

4p2 f0e
F
p + K

= t − t0 (125)
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and H(t) satisfies the linear ODE

Htt + f0e
F
p (−4s2 −6s−2)H − λ0(1 + s)

p
e
1+s
p F

√
4p2 + f0e

F
p + K (4ps+2p) = 0

(126)
In the case where λ0 = 0 and K = 0, we obtain

F = −2p ln
(√

f0(t0 − t)
)
, (127)

and Eq. (126) becomes the ODE

Htt + f0
(
−4s2 − 6s − 2

) [
−2p ln

(√
f0(t0 − t)

)]−2
H = 0, (128)

which is a Sturm–Liouville type equation. Therefore, we obtain the singular solution

u0(t, x) = −2p ln
(√

f0(t0 − t)
)

+ 2p ln x, v0(t) = 2p

t0 − t
,

u1(t, x) = x2s H(t), v1(t, x) = x2s+1

2s + 1
Ht

(129)

where H satisfies (128).

3.2 The case where f(u0) = f0(u0 + q)
1
p and �(u0) = �0(u0 + q)

1+s
p −1

Here, f0, λ0, p, q and s are constants. In this case, we have the additional symmetry
generator

X6 = x∂x + 2p(u0 + q)∂u0 + (2p + 1)v0∂v0 + 2su1∂u1 + (2s + 1)v1∂v1 (130)

Performing a symmetry reduction corresponding to the subalgebra {X6}, we obtain
the solution

u0 = x2pF(t) − q, v0 = x2p+1

2p + 1
Ft , u1 = x2s H(t), v1 = x2s+1

2s + 1
Ht

(131)
where ∫ √

2p + 1

2 f0 p(4p2 − 2p + 1)F
1
p +2

dF = t − t0 (132)

and H(t) satisfies the equation

Htt − f0

(
2s(2s − 1) + 2(2p − 1) + 8s + 4p

(
1

p
− 1

))
F

1
p H

− λ0

[ (
1 + s

p
− 1

) (
1 + s

p
− 2

)
(4p2) +

(
1 + s

p
− 1

)
(2p)(2p − 1)
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+ 2

(
1 + s

p
− 1

)
(4p2) + (2p)(2p − 1)

]
F

1+s
p −1Ft = 0 (133)

In the specific case where p = 1
2 , s = − 3

2 and t0 = 0, we obtain the following explicit
solution in factored form:

u0(t, x) = x2p
(

−
√

2

f0

) (
1

t

)
− q, v0(t, x) = x2p+1

2p + 1

√
2

f0

(
1

t2

)
,

u1(t, x) = C1t
r1x2s + C2t

r2x2s +
√
2 f

3
2
0 λ0x2s t2

2( f0 − 2)
,

v1(t, x) = x2s+1

2s + 1

⎡
⎣C1r1t

r1−1 + C2r2t
r2−1 +

√
2 f

3
2
0 λ0t

2( f0 − 2)

⎤
⎦ .

(134)

where r1 = 1
2

(
1 +

√
1 + 16

f0

)
and r2 = 1

2

(
1 −

√
1 + 16

f0

)
. The solution (134) admits

a discontinuity in v1 for small values of t since r2 − 1 < 0.

4 Concluding remarks

In this paper, the approximate symmetry analysis of a nonlinear wave equation with
small dissipation has been performed. Based on the Lie symmetry approach, we deter-
mined subalgebras of dimension one and reduced the perturbed system of PDEs to
systems of ODEs. These ODEs could often be explicitly integrated in terms of known
functions or at least their singularity structure could be investigated using well-known
methods. In particular, for ODEs of second and third order, it is possible to determine
whether they are of the Painlevé type (i.e. whether all of their critical points are fixed
and independent of the initial data). This approach has achieved a systematic classifi-
cation of equations and invariant solutions from the group-theoretical point of view.
Solutions obtained included elementary solutions (constant and algebraic solutions
involving one or two simple poles), combinations of monomial powers of x and t ,
solutions admitting damping and going to zero for large values of t , trigonometric and
hyperbolic functions, doubly periodic solutions which can be expressed in terms of
Jacobi elliptic functions, singular periodic solutions and solutions given by quadra-
tures. In some cases, singular solutions represent static structureswith quantitieswhich
define the given power in terms of the symmetry variable. Some of these singularities
develop from a point into a line. A natural question that may be asked is what physical
insight is obtained from such exact analytic particular solutions. A partial answer is
that they allow us to observe qualitative behavior that may be difficult to detect numer-
ically, especially in the case of doubly periodic solutions. Stable solutions could be
observed and may provide a starting point for perturbative calculations. This analysis
can be applied to more general hydrodynamic systems admitting dissipation terms
like viscosity and could lead to some new understanding of the problem of solving the
Navier–Stokes system through the use of approximate symmetries.
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Appendix: subalgebra classification for the integro-differential case

The Lie symmetry subalgebra for the integro-differential case given in Sect. 3 can be
written as the semi-direct sum

L = {X5, X6} +⊃ {X1, X2, X3, X4} (135)

The algebra {X5, X6} is Abelian and its subalgebra classification is given by

{0}, {X5}, {X6}, {X5 + aX6}(a �= 0), {X5, X6} (136)

Using the method of splitting and non-splitting subalgebras as given in [12], we clas-
sify the one-dimensional subalgebras of the semi-direct sum (135). A basis element
for each one-dimensional invariant subalgebra of L is transformed by the Baker-
Campbell-Hausdorff formula in order to determine which other invariant subalgebras
it is conjugate to. For instance, if we consider the subalgebra X = {X1} and take an
arbitrary element of the group generated by L, eY , where Y is the generator

Y = αX1 + βX2 + γ X3 + δX4 + ζ X5 + ηX6 (137)

we obtain

eY X1e
−Y = X1 − ζ X1 + ζ 2

2
− · · · = e−ζ X1 (138)

so the subalgebra {X1} is conjugate only to itself. Applying this procedure to the
other one-dimensional invariant subalgebras of L, we obtain the following list of 63
one-dimensional subalgebras.

The following list constitutes the classification of the one-dimensional subalgebras
of the symmetry Lie algebra for both cases of Eq. (120) (where the symbol X6 rep-
resents the symmetry generator (123) or the symmetry generator (130) respectively)
into conjugacy classes.
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L1 = {X1}, L2 = {X2}, L3 = {X1 + εX2}, L4 = {X3}, L5 = {X3 + εX1},
L6 = {X3 + εX2}, L7 = {X3 + εX1 + aX2}, L8 = {X4},L9 = {X4 + εX1},
L10 = {X4 + εX2}, L11 = {X4 + εX1 + aX2}, L12 = {X4 + εX3},
L13 = {X4 + εX3 + aX1}, L14 = {X4 + εX3 + aX2},
L15 = {X4 + εX3 + aX1 + bX2},

L16 = {X5}, L17 = {X5 + εX1}, L18 = {X5 + εX2}, L19 = {X5 + εX1 + aX2},
L20 = {X5 + εX3}, L21 = {X5 + εX3 + aX1}, L22 = {X5 + εX3 + aX2},
L23 = {X5 + εX3 + aX1 + bX2}, L24 = {X5 + εX4}, L25 = {X5 + εX4 + aX1},
L26 = {X5 + εX4 + aX2}, L27 = {X5 + εX4 + aX1 + bX2},
L28 = {X5 + εX4 + aX3},

L29 = {X5 + εX4 + aX3 + bX1}, L30 = {X5 + εX4 + aX3 + bX2},
L31 = {X5 + εX4 + aX3 + bX2 + cX1}, L32 = {X6},L33 = {X6 + εX1},
L34 = {X6 + εX2}, L35 = {X6 + εX1 + aX2}, L36 = {X6 + εX3},
L37 = {X6 + εX3 + aX1}, L38 = {X6 + εX3 + aX2},
L39 = {X6 + εX3 + aX1 + bX2},

L40 = {X6 + εX4}, L41 = {X6 + εX4 + aX1}, L42 = {X6 + εX4 + aX2},
L43 = {X6 + εX4 + aX1 + bX2}, L44 = {X6 + εX4 + aX3},
L45 = {X6 + εX4 + aX3 + bX1}, L46 = {X6 + εX4 + aX3 + bX2},
L47 = {X6 + εX4 + aX3 + bX1 + cX2}, L48 = {X5 + aX6},
L49 = {X5 + aX6 + εX1},

L50 = {X5 + aX6 + εX2}, L51 = {X5 + aX6 + εX1 + bX2},
L52 = {X5 + aX6 + εX3},

L53 = {X5 + aX6 + εX3 + bX1}, L54 = {X5 + aX6 + εX3 + bX2},
L55 = {X5 + aX6 + εX3 + bX1 + cX2}, L56 = {X5 + aX6 + εX4},
L57 = {X5 + aX6 + εX4 + bX1}, L58 = {X5 + aX6 + εX4 + bX2},
L59 = {X5 + aX6 + εX4 + bX1 + cX2}, L60 = {X5 + aX6 + εX4 + bX3},
L61 = {X5 + aX6 + εX4 + bX3 + cX1}, L62 = {X5 + aX6 + εX4 + bX3 + cX2},
L63 = {X5 + aX6 + εX4 + bX3 + cX1 + dX2},

The subalgebra structure of the integro-differential case is far more extensive than that
of the three cases analyzed in Sect. 2.
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