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Abstract
A ternary autonomous dynamical system of FitzHugh–Rinzel type is analyzed. The
system, at start, is reduced to a nonlinear integro differential equation. The fundamental
solution H(x, t) is explicitly determined and the initial value problem is analyzed in
the whole space. The solution is expressed by means of an integral equation involving
H(x, t). Moreover, adding an extra control term, explicit solutions are achieved.

Keywords FitzHugh–Rinzel model · Fundamental solution · Laplace transform ·
Exact solutions

Mathematics Subject Classification 35K47 · 35K25 · 78A70 · 35E05 · 44A10

1 Introduction

The FitzHugh–Rinzel (FHR) system [1–4] is a three-dimensional model deriving from
the FitzHugh–Nagumo (FHN) model [5–12] developed to incorporate bursting phe-
nomena of nerve cells. Indeed, a number of different cell types exhibit a behaviour
characterized by brief bursts of oscillatory activity alternated by quiescient periods
during which the membrane potential only changes slowly, and this behaviour is
called bursting, see e.g. [13]. Accordingly, bursting oscillations are characterized by
a variable of the system that changes periodically from an active phase of rapid spike
oscillations to a silent phase. These phenomena are becoming increasingly important
as they are being investigated in many scientific fields. Indeed, phenomena of bursting
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have been observed as electrical behaviours in many nerve and endocrine cells such
as hippocampal and thalamic neurons, mammalian midbrain and pancreatic in β−
cells, see e.g. [1] and references therein. Also, in the cardiovascular system, bursting
oscillations are generated by the electrical activity of cardiac cells that excite the heart
membrane to produce the contraction of ventricles and auricles [14]. Furthermore,
bursting oscillations represent a topic of potential interest in dynamics and bifurcation
mechanisms of devices and structures and in the analysis of nonlinear problems in
mechanics [15–19]. Recent studies proved that the development of this field helps in
the studying of the restoration of synaptic connections. Indeed, it seems that nanoscale
memristor devices have potential to reproduce the behaviour of a biological synapse
[20,21]. This would lead in the future, also in case of traumatic lesions, to the intro-
duction of electronic synapses to connect neurons directly.

The paper is organized as follows. In Sect. 1.1 the mathematical problem is defined
and the state of the art with the aim of the paper are discussed. In Sect. 2, the explicit
expression of the fundamental solution H(x, t) is achieved and some properties are
proved. In Sect. 3 the integral solution for the initial value problem is given. In Sect.
4 the insertion of an extra term allows us to obtain explicit solutions for the model.

1.1 Mathematical considerations, state of the art and aim of the paper

Generally, denoting by D, ε, β, c constant parameters, the (FHN) model is a p.d.e.
system such that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂ u

∂ t
= D

∂2 u

∂ x2
− w + f (u)

∂ w

∂ t
= ε(−βw + c + u),

(1)

where function f (u) depends on the reaction kinetics of the model. In the literature
f (u) can assume a piecewise linear form, see, e.g. [22] and reference therein, or
f (u) = u − u3/3 [12]. However, in general, one has [5,13]:

f (u) = u ( a − u ) ( u − 1 ) ( 0 < a < 1 ). (2)

As for the FitzHugh–Rinzel model, most of the articles consider the following
system characterized by three o.d.e.:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ u

∂ t
= u − u3/3 + Iext − w + y

∂ w

∂ t
= ε(−βw + c + u)

∂ y

∂ t
= δ(−u + h − dy)

(3)

where Iext , ε, β, c, d, h, δ indicate arbitrary constants.
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In this paper, in order to evaluate the contribute of a diffusion term, the following
FitzHugh–Rinzel type system is considered:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ u

∂ t
= D

∂2 u

∂ x2
− w + y + f (u)

∂ w

∂ t
= ε(−βw + c + u)

∂ y

∂ t
= δ(−u + h − dy).

(4)

Indeed, the second order term with D > 0 represents just the diffusion contribution
and it can be associated to the axial current in the axon. It derives from the Hodgkin-
Huxley (HH) theory for nervemembranes where, if b represents the axon diameter and
ri is the resistivity, the spatial variation in the potential V gives the term (b/4ri )Vxx

from which term D uxx derives [23].
Moreover it is also assumed β, d, ε, δ as positive constants that together with

c, h, characterize the model’s kinetic.
Model (4) can be considered as a two time-scale slow-fast system with two fast

variables (u, w) and one slow variable (y). However, if for instance, ε = δ the system
can be considered as a two time-scale with one fast variable u and two slow variables
(w, y). Otherwise, if δ and ε have significant difference, it can also be considered as
a three-time-scale system with the fast variable u, the intermediate variable and the
slow variable [24].

As for function f (u) one considers the non-linear form expressed in formula (2).
As a consequence, it results

f (u) = − a u + ϕ(u) wi th ϕ(u) = u2 ( a + 1 − u ) 0 < a < 1 (5)

Then, the system (4) becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ u

∂ t
= D

∂2 u

∂ x2
− au − w + y + ϕ(u)

∂ w

∂ t
= ε(−βw + c + u)

∂ y

∂ t
= δ(−u + h − dy).

(6)

Indicating by means of

u(x, 0) = u0 , w(x, 0) = w0 y(x, 0) = y0, ( x ∈ � ) (7)
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the initial values, from (6)2,3 it follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

w = w0 e
− εβ t + c

β
(1 − e− ε β t ) + ε

∫ t

0
e− ε β ( t−τ ) u(x, τ ) dτ

y = y0 e
− δ d t + h

d
(1 − e− δ d t ) − δ

∫ t

0
e− δ d ( t−τ ) u(x, τ ) dτ.

(8)

Consequently, denoting the source term by

F(x, t, u) = ϕ(u) − w0(x)e
−εβt + y0(x)e

−δdt − c

β
(1 − e−εβt ) + h

d
(1 − e−δdt ),

(9)

problem (6)–(7) can be modified into the following initial value problem P:

⎧
⎪⎪⎨

⎪⎪⎩

ut − Duxx + au +
∫ t

0
[εe−εβ(t−τ) + δe−δd(t−τ)]u(x, τ )dτ = F(x, t, u)

u(x, 0) = u0(x) x ∈ �.

(10)

As for the state of art, mathematical considerations allow to assert that the knowl-
edge of the fundamental solution H(x, t) related to the linear parabolic operator L :

Lu ≡ ut − Duxx + au +
∫ t

0
[ε e− εβ(t−τ) + δe− δd(t−τ)]u(x, τ ) dτ, (11)

leads to determine the solution of P . Indeed, if F( x, t, u ) verifies appropriate
assumptions, through the fixed point theorem, solution can be expressed by means of
an integral equation, see f.i. [25,26].

Moreover, according to [26], when operator L assumes a similar but simpler form,
many properties and inequalities are achieved.

The aim of the paper is to explicitly determine the fundamental solution H(x, t)
which involves naturally the diffusion constant D. Then, the initial value problem in
all the space is analyzed and the solution is deduced by means of an integral equation.
Moreover, using amethod of travellingwave, solutions of amodified FitzHugh–Rinzel
type system have been explicitly determined pointing out the influence of the diffusion
parameter D.

2 Fundamental solution and its properties

Indicating by T an arbitrary positive constant, let us consider the initial- value problem
(10) defined in the whole space �T :

�T = {(x, t) : x ∈ �, 0 < t ≤ T },
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and let us denote by

û(x, s) =
∫ ∞

0
e−st u(x, t) dt , F̂(x, s) =

∫ ∞

0
e−st F [x, t, u(x, t) ] dt ,

the Laplace transform with respect to t . If Ĥ(x, s) expresses the Lt transform of the
fundamental solution H(x, t), from (10) it follows:

û(x, s) =
∫

�
Ĥ ( x − ξ, s ) [ u0( ξ ) + F̂(ξ, s) ] dξ , (12)

and formally it follows that

u(x, t) =
∫

�
H(x − ξ, t) u0(ξ) dξ

+
∫ t

0
dτ

∫

�
H(x − ξ, t − τ) F [ ξ, τ, u(ξ, τ ) ] dξ. (13)

So that, denoting by J1(z) the Bessel function of first kind and order 1, let us
consider the following functions:

H1(x, t) = e− x2
4Dt

2
√

πDt
e−at

−1

2

∫ t

0

e− x2
4Dy −ay

√
t − y

√
ε e−βε(t−y)

√
πD

J1(2
√

εy(t − y))}dy, (14)

H2 =
∫ t

0
H1(x, y) e

−δd(t−y)

√
δy

t − y
J1(2

√
δy(t − y)dy. (15)

Besides, by setting

σ 2 = s + a + δ

s + δd
+ ε

s + βε
, (16)

and by denoting

H = H1 − H2, (17)

the following theorem holds:

Theorem 1 In the half-plane �e s > max(− a, −βε,−δd ) the Laplace integral
Lt H converges absolutely for all x > 0, and it results:
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Lt H ≡ Ĥ =
∫ ∞

0
e−st H (x, t) dt = 1√

D

e
− |x |√

D
σ

2 σ
. (18)

Moreover, function H(x,t) satisfies some properties typical of the fundamental solu-
tion of heat equation, such as:

(a) H(x, t) ∈ C∞, t > 0, x ∈ �,

(b) for fixed t > 0, H and its derivatives are vanishing esponentially fast as |x |
tends to infinity.

(c) In addition, it results lim
t →0

H(x, t) = 0, for any fixed η > 0, uniformly for all

|x | ≥ η.

Proof Since for all real z one has |J1 (z)| ≤ 1, the Fubini–Tonelli theorem assures
that

Lt

(
1

2

∫ t

0

e− x2
4Dy −a y

√
t − y

√
ε e−βε ( t − y )

√
π D

J1( 2
√

ε y (t − y)

)

dy

=
√

ε

2
√

πD

∫ ∞

0
e−(s+a)y − x2

4Dy dy
∫ ∞

0
e−(s+βε)t J1(2

√
ε y t )

dt√
t

and being

∫ ∞

0
e−p t

√
c

t
J1( 2

√
c t ) dt = 1 − e− c/p (�e p > 0 ), (19)

∫ ∞

0

e−x2/4t

√
π t

e−(s+α)t dt = e−x
√

s+α

√
s + α

(20)

it results:

Ĥ1(x, s) = 1

2
√

πD

∫ ∞

0
e− x2

4Dy −(s+a+ ε
s+βε

)y dy√
y

= 1

2
√
D

e
− |x |√

D
r

r
(21)

where

r2 = s + a + ε

s + βε
. (22)

Besides, since Fubini–Tonelli theorem and (19) one has:

Ĥ2 = Ĥ1 − 1

2
√

πD

∫ ∞

0
e− x2

4Dy − (s+a+ ε
s+βε

+ δ
s+dδ

) y dy√
y

(23)
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from which, since (20),

Ĥ (x, s) = 1

2
√
D

e
− |x |√

D
σ

σ
(24)

is deduced.
Besides, by means of property of convolution for which f ∗ g = g ∗ f , since (14)

and (15), property a) is evident. Moreover, properties b) and c) are proved following
Theorem 3.2.1 of [25]. In particular, as for property c), for |x | ≥ η and since |J1(z)| ≤
1, it results:

|H1| = e− η2

4 D t

2
√

πDt
e− a t +

√
ε t

πD
; (25)

|H2| ≤
√

δ t

4πD
+ 2

√
εδ

πD
t (26)

from which property follows. ��
Now, introducing the following functions:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ(x, t) = e− x2
4 D t

2
√

πDt
e− a t ;

ψε(y, t) =
√

ε y e−βε ( t − y )

√
t − y

J1( 2
√

ε y (t − y) ;

ψδ(y, t) =
√

δ y e−δ d ( t − y )

√
t − y

J1( 2
√

δ y (t − y) ;

(27)

it results:

H1(x, t) = ϕ(x, t) −
∫ t

0
ϕ(x, y) ψε(y, t) dy (28)

H2(x, t) =
∫ t

0
H1(x, y) ψδ(y, t) dy. (29)

Moreover, by denoting

g1(x, t) ∗ g2(x, t) =
∫ t

0
g1(x, t − τ)g2(x, τ ) dτ (30)

the convolution with respect to t, for t > 0, as proved in [26] by means of formula
(20),(21) and (24), it results:

(∂t + a − D∂xx )H1 = −εe−εβt ∗ H1(x, t) = −εKε(x, t) (31)
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where Kε is given by

Kε(x, t) = 1

2
√

π D

∫ t

0
e− x2

4Dy −a y −βε(t−y) J0 (2
√

ε y (t − y) )
dy√
y
. (32)

Hence, the following theorem can be proved:

Theorem 2 For t > 0, it results L H = 0, i.e.

Ht − DHxx + aH +
∫ t

0
[ε e− εβ(t−τ) + δe− δd(t−τ)]H(x, τ ) dτ = 0. (33)

Proof Let us consider that:

(∂t + a − D∂xx )H2 = H1(x, t)ψδ(t, t) +
∫ t

0
H1(x, y)

[
∂tψδ(y, t) + aψδ(y, t)

]

− D
∫ t

0
ψδ(y, t) ∂xx H1(x, y) dy. (34)

Accordingly, given relation (31), one has

(∂t + a − D∂xx )H2 =
∫ t

0

[
H1(x, y) ∂tψδ(y, t) − ψδ(y, t) ∂y H1(x, y)

]
dy +

+H1(x, t)ψδ(t, t) − ε

∫ t

0
Kε(x, y)ψδ(y, t)dy. (35)

Besides, considering that:

∫ t

0
ψδ(y, t)∂y H1(x, y) dy = H1(x, t)ψδ(t, t) −

∫ t

0
H1(x, y) ∂yψδ(y, t) dy, (36)

one has:

(∂t + a − D∂xx )H2 =
∫ t

0
H1(x, y)

[
∂tψδ(y, t) + ∂yψδ(y, t)

]
dy

−ε

∫ t

0
Kε(x, y)ψδ(y, t)dy (37)

where it results:

∂tψδ(y, t) + ∂yψδ(y, t) = δe−δd ( t − y ) J0( 2
√

δ y (t − y) . (38)

So that, denoting by

Kδ(x, t) ≡
∫ t

0
e−δd(t−y)H1(x, y)J0(2

√
δy(t − y))dy, (39)
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one has:

(∂t + a − D∂xx )H2 = δKδ − ε
∫ t
0 Kε(x, y)ψδ(y, t)dy.

Consequently, since for equation (31) one has Kε(x, t) = H1(x, t) ∗ e−εβ t , by
means of Fubini–Tonelli theorem and (29), it is proved that:

(∂t + a − D∂xx )H2 = δKδ − ε e−εβt ∗ H2(x, t). (40)

On the other hand, the convolution e− δd t ∗ H(x, t) is given by

e−δdt ∗ H(x, t) = e−δdt ∗ H1(x, t) −
∫ t

0
H1(r , y)dy

∫ t

y
e−δd(t−τ)ψδ(y, τ ) dτ

with

∫ t

y
e−δd(t−τ)ψδ(y, τ )dτ = e−δd(t−y)

∫ t
y

√
δy

τ−y J1(2
√

δy(τ − y))dτ

= e−δd(t−y)
[
1 − J0(2

√
δy(t − y))

]
. (41)

As a consequence, it results:

e− δd t ∗ H = Kδ. (42)

Therefore, given relations (31), (40), (42), theorem holds. ��

3 Solution related to the FitzHugh–Rinzel problem

To provide the solution by means of the integral expression (13), some convolutions
need to be determined.

In order to evaluate
∫ t
0 dτ

∫

� H(ξ, τ ) dξ, let us start to observe that

∫

�
dξ

∫ t

0
H2(ξ, τ )dτ =

∫

�
dξ

∫ t

0
H1(ξ, y)dy

∫ t

y
ψδ(y, τ )dτ

with

∫ t

y
ψδ(y, τ )dτ = 1 − e−δ d(t−y) J0(2

√
δy(t − y) +

−δ d
∫ t

y
e−δ d(t−y) J0(2

√
δy(t − y)dτ. (43)
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Consequently, for (39), one has:

∫

�
dξ

∫ t

0
H2(ξ, τ )dτ =

∫

�
dξ

∫ t

0
H1(ξ, τ )dτ −

∫

�
Kδ(ξ, t)dξ +

− δd
∫

�
dξ

∫ t

0
Kδ(ξ, τ )dτ (44)

So that, according to (17), it results:

∫ t

0
dτ

∫

�
H(ξ, τ ) dξ =

∫

�
Kδ(ξ, t)dξ + δd

∫

�
dξ

∫ t

0
Kδ(ξ, τ )dτ. (45)

Now, let us evaluate

e− ε β t ∗ H2 =
∫ t

0
H1 (x, y) dy

∫ t

y
e−βε (t−τ) ψδ (y, τ ) dτ.

Considering (27)3, after an integration by parts, one obtains:

e−εβt ∗ H2 = e−βεt ∗ H1(x, t) −
∫ t

0
e−δd(t−y)H1(x, y)J0(2

√
δy(t − y))dy +

(εβ − δd)

∫ t

0
dτ

∫ τ

0
H1 (x, y) e−δd(τ−y) e−εβ (t−τ) J0 ( 2

√
δ y(τ − y) )dy, (46)

and, for (39), it results:

e− ε β t ∗ H2 = e− ε β t ∗ H1 − Kδ + (εβ − δd)e−βε t ∗ Kδ. (47)

Moreover, since (17) and (47), one deduces:

e− ε β t ∗ H = Kδ + (δd − εβ)e−βε t ∗ Kδ. (48)

Now, let us denote by

f1(x, t) � f2(x, t) =
∫

�
f1(ξ, t) f2(x − ξ, t) dξ (49)

the convolution with respect to the space x, and let

H ⊗ F =
∫ t

0
dτ

∫

�
H(x − ξ, t − τ) F [ ξ, τ, u(ξ, τ ) ] dξ. (50)
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Considering (42) and (48) one has:

⎧
⎪⎪⎨

⎪⎪⎩

H ⊗ e−δdt =
∫

�
Kδ(ξ, t) dξ,

H ⊗ e−βε t =
∫

�
[
Kδ + (δd − εβ)e−βε t ∗ Kδ

]
dξ.

(51)

Moreover, it results:

{
H ⊗ (y0(x) e−δdt ) = y0�Kδ

H ⊗ (w0(x) e−βεt ) = w0�[Kδ + (δd − εβ)e−βε t ∗ Kδ ] (52)

where

w0�(δd − εβ)e−βε t ∗ Kδ = (δd − εβ)w0 ⊗ (e−βε t Kδ ). (53)

Consequently, given (9) and (13), for (45), (51), (52) and (53), it results:

u(x, t) = u0(x)�H + (y0(x) − w0(x))�Kδ + ϕ(u) ⊗ H

+(εβ − δd)w0(x) ⊗ e−βε t Kδ + c

β

(
δd − εβ)e−βε t ⊗ Kδ

+
(
h

d
− c

β

)

δd ⊗ Kδ (54)

and this formula, together with relations (8), allow us to determine also v(x, t) and
y(x, t) in terms of the data.

4 Explicit solutions

Several methods have been developed to find exact solutions related to partial differ-
ential equations [27–31]. In this case, by referring to [7], an extra term is added in
order to achieve some solutions. Accordingly, let us consider

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂ u

∂ t
= D

∂2 u

∂ x2
− w + y + f (u)

∂ w

∂ t
= ε(−βw + c + u) + k u2

∂ y

∂ t
= δ(−u + h − dy)

(55)

where k �= 0 and let us assume εβ = δ d and f (u) = 2 u (a − u) (u − 1).
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Under these conditions, problem (10) turns into:

⎧
⎪⎪⎨

⎪⎪⎩

ut − Duxx + 2au + (ε + δ)

∫ t

0
e− εβ(t−τ) u(x, τ ) dτ = F(x, t, u)

u(x, 0) = u0(x) x ∈ �,

(56)

where, by denotingϕ1 = 2 u2 ( a+1 −u )+k
∫ t

0
e− ε β ( t−τ ) u2(x, τ ) dτ, it results:

F = ϕ1(u) − w0e
−εβt + y0e

−δdt − c

β
(1 − e−εβt ) + h

d
(1 − e−δdt ) (57)

and

⎧
⎪⎪⎨

⎪⎪⎩

w = w0e
−εβt + c

β
(1 − e−εβt ) +

∫ t

0
e−εβ(t−τ)

[
ε u(x, τ ) + ku2(x, t)

]
dτ

y = y0 e
− δ d t + h

d
(1 − e− δ d t ) − δ

∫ t

0
e− δ d ( t−τ ) u(x, τ ) dτ.

(58)

In order to find explicit solutions, let us introduce

z = x − C t,

obtaining, from system (55), the following equation:

DC uzzz + (C2 − εβ D)uzz − 6Cu2uz + 4C(a + 1)u uz + 2εβu3 + k u2

−C (2 a + εβ) uz − 2 εβ(a + 1)u2 + 2 εβ a u + (ε + δ) u + ε c − δh = 0. (59)

Now, let us consider

f (z) = √
y tanh (

√
y (z − z0)), (60)

that is a solution of Riccati type equation:

fz + f 2 − y = 0,

and let us assume

u(z) = A f (z) + b. (61)
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Since

uz = −A f 2(z) + A y

uzz = 2 A f 3 − 2 A f y

uzzz = −6A f 4(z) + 8 A y f 2(z) − 2 A y2

u uz = −A2 f 3(z) − Abf 2 + A2y f + Aby

u2 uz = −A3 f 4 − 2A2 b f 3 + (A3y − Ab2) f 2 + 2A2b y f + Ab2y, (62)

in order to satisfy Eq. (59), constant b needs to assume the following expression:

b = εβ A

2C
− ε + δ

2 k
(63)

and, moreover, it has to be

A2 = D

a + 1 = 3 b + C A

2 D

D y = 3 b2 +
(
C

A
− 3 − k

εβ

)

b − C

2A
− ε + δ

2 ε β
+ 1

and

ε c − δ h = 2CDAy2 + εβ CAy − 2εβ b3 + 2 εβ (a + 1) b2 +
−2 εβ a b + 6C A y b2 − 4C y (a + 1)Ab + 2 a C A y − (ε + δ) b − k b2.

So, if for instance, it is assumed εβ = 1, z0 = 0, ε + δ = 0.04, k = 0.01 and
C = 1 with D > 0.019, for A = √

D, by introducing

g(D) =
√

3900
√
D − 1501 D + 150 D

√
D − 500, (64)

equation (61) gives

u(z) =
√
2

20 D1/4 g(D) tanh

(√
2 z g(D)

20 D3/4

)

+
√
D

2
− 2. (65)

In Fig. 1, solutions u(z) expressed by means of formula (65) are illustrated for
different values of D, by showing that the amplitude increases as 0 < D < 1 increases.

Remark When fast variable u simulates the membrane potential of a nerve cell, while
slow variable w and superslow variable y determine the corresponding ion number
densities, model (55) with its solutions can be of interest in applications to understand
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Fig. 1 Solution u(z) when εβ = 1, z0 = 0, ε + δ = 0.04, k = 0.01,C = 1, A = √
D and for

D = 0.02, D = 0.05, D = 0.5.

how impulses are propagated fromoneneuron to another.Moreover, as similarly under-
lined in [4], the knowledge of exact solutions can help in testing different applications
of models in neuroscience.
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