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Abstract
In this paper, we use the gate condition on two multivalued k-demicontractive map-
pings to approximate a common solution of a finite family of monotone inclusion
problemandfixed point problem inCAT(0) space. Furthermore,we propose aHalpern-
type proximal point algorithm and prove its strong convergence to a common solution
of a finite family of monotone inclusion problems and fixed point problem for two
multivalued k-demicontractivemappings in a complete CAT(0) space.We also applied
our result to the problem of finding a common solution of a finite family of minimiza-
tion problem and fixed point problem in CAT(0) space. Finally, numerical experiments
of our result are presented to further show its applicability.
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1 Introduction

Let (X , d) be a metric space, x, y ∈ X and I = [0, d(x, y)] be an interval. A curve c
(or simply a geodesic path) joining x to y is an isometry c : I → X such that c(0) = x ,
c(d(x, y)) = y and d(c(t), c(t ′)) = |t − t ′| for all t, t ′ ∈ I . The image of a geodesic
path is called the geodesic segment, which is denoted by [x, y] whenever it is unique.
We say that a metric space X is a geodesic space if for every pair of points x, y ∈ X ,
there is aminimal geodesic from x to y. A geodesic triangle�(x1, x2, x3) in a geodesic
metric space (X , d) consists of three vertices (points in X ) with unparameterized
geodesic segment between each pair of vertices. For any geodesic triangle, there is
comparison (Alexandrov) triangle �̄ ⊂ R

2 such that d(xi , x j ) = dR2(x̄i , x̄ j ) for
i, j ∈ {1, 2, 3}. A geodesic space X is a CAT(0) space if the distance between arbitrary
pair of points on a geodesic triangle � does not exceed the distance between its pair
corresponding points on its comparison triangle �̄. If � is a geodesic triangle and �̄

is its comparison triangle in X , then � is said to satisfy the CAT(0) inequality for all
points x, y of � and x̄, ȳ of �̄, if

d(x, y) = dR2(x̄, ȳ). (1.1)

Let x, y, z be points in X and y0 be the midpoint of the segment [y, z], then the
CAT(0) inequality implies

d2(x, y0) ≤ 1

2
d2(x, y) + 1

2
d2(x, z) − 1

4
d(y, z). (1.2)

Inequality (1.2) is known as CN inequality of Bruhat and Titus [9]. A geodesic space
X is said to be a CAT(0) space if all geodesic triangles satisfy the CN inequality.
Equivalently, X is called a CAT(0) space if and only if it satisfies the CN inequality.
Examples of CAT(0) spaces includes Hadamard manifold, R-trees [27], pre-Hilbert
space [7], hyperbolic metric [42], Euclidean building [8] and Hilbert ball [19].

Let X be a CAT(0) space and D be a nonempty closed and convex subset of X .
Suppose CB(X) is the family of nonempty closed and bounded subset of X , then the
Hausdorff metric H on CB(X) is defined by

H(A, B) = max{sup
a∈A

d(a, B), sup
b∈B

d(b, A)}, ∀ A, B ∈ CB(X),

where dist(a, B) = inf{d(a, b) : b ∈ B}.
Suppose for each x ∈ X , there exists u ∈ D such that

d(x, u) = dist(x, D) = inf{d(x, y) : y ∈ D},

then D is called proximal.
Let T : D → CB(X) be a multivalued mapping. A point x ∈ D is called a fixed

point of T if x ∈ T x, and an endpoint of T if x is a fixed point of T and T x = {x}. The
set of all fixed points and endpoints of T are denoted by F(T ) and E(T ) respectively.
A multivalued mapping T : X → 2X is called
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Approximation of common solution of finite... 15

(1) L-Lipschitz, if there exists L > 0 such that

H(T x, T y) ≤ Ld(x, y), ∀ x, y ∈ X ,

if L = 1, then T is called nonexpansive,
(2) quasi nonexpansive, if F(T ) �= ∅ and

H(T x, p) ≤ d(x, p) ∀ x ∈ X and p ∈ F(T ),

(3) k-demicontractive, if F(T ) �= ∅ and there exists k ∈ [0, 1) such that

H2(T x, p) ≤ d2(x, p) + kd2(x, T x) ∀ x, y ∈ X , and p ∈ F(T ).

Clearly, nonexpansive multivalued mappings with nonempty fixed point sets are quasi
nonexpansive multivalued mappings. However, quasi nonexpansive multivalued map-
pings are k-demicontractivemultivaluedmappings. The following example shows that
the converse of this statement is not always true.

Example 1.1 Let X = R be the set of real numbers with the usual metric. Let Tj :
X → 2X , where j ∈ N be defined by

Tj x =
{[−(5 j+1)

5 x,−( j + 1)x
]
, if x ≤ 0,[ − ( j + 1)x, −(5 j+1)

5 x
]

if x > 0.

Clearly, F(T ) = {0}. H(Tj x, Tj0) = | − ( j + 1)x − 0|2 = ( j + 1)2|x − 0|2. Hence,
Tj is L-Lipschitzian with L = ( j + 1)2, for j ∈ N and Tj is not quasi nonexpansive.
Also,

d(x, Tj x)
2 =

∣∣∣x + (5 j + 1)

5
x
∣∣∣2

=
∣∣∣ (5 j + 6)

5
x
∣∣∣2

=
( (25 j2 + 60 j + 36)

25

)
|x |2

and

H2(Tj x, Tj0)
2 = ( j + 1)2|x − 0|2

= |x − 0|2 + ( j2 + 2 j)|x − 0|2

= |x − 0|2 + (25( j2 + 2 j)

25 j2 + 60 j + 36
d2(x, Tj x).

Hence, Tj is k-demicontractive with k = (25( j2+2 j)
25 j2+60 j+36

∈ (0, 1) for j ∈ N.
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16 K. O. Aremu et al.

The application of fixed point theorems of multivalued mappings in CAT(0) spaces
are well known in differential equations, convex optimization, control theory, graph
theory, computer science, biology and economics (see [4,6,17,27,27,47]). In 2012,
Samanmit and Panyanak [46] introduced the gate condition on a multivalued mapping
inR−trees (which is weaker than endpoint condition) as follows: Let x /∈ D, a unique
point yx is called the gate of x in D if

d(x, z) = d(x, yx ) + d(yx , z),

where z ∈ D. A point u is called a key of T if for each x ∈ F(T ), x is a gate of
u in T x . E(T ) ⊂ F(T ) and T satisfies the endpoint condition if E(T ) = F(T ).

Also, T is said to satisfy the gate condition if T has a key in D. They proved strong
convergence theorem of a modified Ishikawa iteration for quasi nonexpansive mul-
tivalued mappings satisfying the gate condition. Phuengrattana [39] also introduced
k-strictly pseudononspreading multivalued mappings in R-trees as follows: Let D be
a nonempty subset of a completeR-tree X . A multivalued mapping T : D → CB(D)

is called k-strictly pseudononspreading, if there exists k ∈ [0, 1) such that

(2 − k)H(T x, T y)2 ≤ k d(x, y)2 + (1 − k) dist(y, T x)2 + (1 − k) dist(x, T y)2

+ k dist(x, T x)2 + k dist(y, T y)2. (1.3)

If T is k-strictly pseudonospreading and has a fixed point p ∈ F(T ), then (1.3)
becomes

H(T x, T p)2 ≤ d(x, p)2 + k dist(x, T x)2.

He also proposed a new two-step Mann-type iterative algorithm to approximate com-
monfixed point of two k-strictly pseudononspreadingmappings and established strong
convergence result using the gate condition. We remark here that approximation of
fixed points of multivalued mappings with respect to Hausdorff metric in CAT(0)
spaces were mostly obtained with the endpoint conditions which are known to be
stronger than the gate conditions (see for example, [11,31,40,45,49,51,52]).

On the other hand, monotone operator theory remains one of the most important
aspects of nonlinear and convex analysis. It plays an essential role in showing existence
of solutions in optimization, variational inequalities, semigroup theory, partial differ-
ential equations and evolution equation (see [18,29,55] and other references therein).
Finding the solutions of the following nonlinear stationary problem

x ∈ D(A) such that 0 ∈ A(x), (1.4)

where A is amonotone operator (to be defined in Sect. 2), remains a problem of interest
in monotone operator theory since many mathematical problems can be modeled as
problem (1.4). The problem (1.4) is called Monotone Inclusion Problem (MIP) and
its solution set is closed and convex [26] which we denote by A−1(0). The MIP can
be applied to solve some well known problems like the minimization problem, equi-
librium problem, variational inequality problem, convex feasibility problems, among
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Approximation of common solution of finite... 17

others (see [13,41]). These problems are better studied with the concept of mono-
tonicity through the subdifferential which is also a monotone operator (see [12]). For
example, the proper convex and lower semicontinuous functional for a minimiza-
tion problem can be characterized by monotonicity of its subdifferential (see [37,44]).
Therefore, the problemof existence and approximation of zeros ofmonotone operators
is of great importance in mathematics. Several iterative methods have been developed
to solve MIP and other related optimization problems. The Proximal Point Algorithm
(PPA) is one of the most used method for finding solutions of MIP. It was first studied
in Hilbert space by Martinet [35] and was later developed by Rockafellar [43] who
proved that the PPA converges weakly to a zero of a monotone operator. As a result,
several authors have modified the PPA to obtain strong convergence results in Banach
and Hilbert spaces (see for example, [1,2,10,22–24,36,38,48,50,53,54]).

In 2016,Khatibzadeh andRanjbar [26] generalized and studied themonotone opera-
tors, their resolvents and the PPA in the framework of CAT(0) spaces. They established
some fundamental properties of the resolvent and studied the following PPA to approx-
imate the solutions of (1.4) in CAT(0) spaces:

{[ 1
λ
−−−−→xnxn−1

] ∈ A(xn)

x0 ∈ X .
(1.5)

They proved that (1.5) �-converges to a zero of the monotone operator A in a com-
plete CAT(0) space. This development led Heydari et.al. [20] to employ the PPA in
approximating a common zero of a finite family of monotone operators in a complete
CAT(0) space. In the same vein, Ranjbar and Khatibzadeh [41] established strong and
�-convergence results using the Mann-type and Halpern-type PPAs respectively in
complete CAT(0) spaces under some mild conditions. Other authors have also studied
the PPA in CAT(0) spaces (see [13,21,30]).

Motivated by the works of Samanmit and Panyanak [46], Khatibzadeh and Ranjbar
[26], we use the gate condition on two multivalued k-demicontractive mappings to
approximate a common solution of finite family of MIPs and fixed point problem in
CAT(0) spaces. Furthermore, we propose and study a Halpern-type PPA, and prove
its strong convergence to a common solution of a finite family of monotone inclusion
problem and fixed point problems for two multivalued k-demicontractive mappings
in a complete CAT(0) space. We also applied our result to the problem of finding a
common solution of a finite family of minimization problem and fixed point problem
in CAT(0) space. Finally, numerical experiments of our results are presented to further
show its applicability.

The rest of the paper is organized as follows: Sect. 2 is devoted to some preliminaries
and lemmas that are important to our result. In Sect. 3, we give the main theorem and
some consequences of the main theorem. Lastly, in Sect. 4, we give the application of
the main theorem and also present numerical illustrations of our main theorem.
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18 K. O. Aremu et al.

2 Preliminaries

In this section, we state some known and useful results which will be needed in the
proof of our main theorem. In the sequel, we denote strong and �-convergence by
“→” and “⇀” respectively. We begin with the following definitions.

Definition 2.1 [5] Let X be a CAT(0) space and (a, b) ∈ X × X be denoted by
−→
ab and

called a vector in X × X . A quasilinearization map 〈., .〉 : (X × X) × (X × X) → R

is defined by

〈−→ab,−→cd〉 = 1

2
(d2(a, d) + d2(b, c) − d2(a, c) − d2(b, d)), ∀ a, b, c, d ∈ X .

(2.1)

It is easy to see that 〈−→ba,
−→
cd〉 = −〈−→ab,−→cd〉, 〈−→ab,−→cd〉 = 〈−→ae,−→cd〉 + 〈−→eb,

−→
cd〉 and

〈−→ab,−→cd〉 = 〈−→cd ,
−→
ab〉 for all a, b, c, d, e ∈ X .

Recall that a geodesic space X is said to satisfy the Cauchy-Schwarz inequality if

〈−→ab,−→cd〉 ≤ d(a, b)d(c, d)

for all a, b, c, d ∈ X . Moreover, a geodesically connected space X is a CAT(0) space
if and only if it satisfies the Cauchy-Schwarz inequality (see [16]).

Definition 2.2 (See [25]) Let (X , d)be a completeCAT(0) space and� : R×X×X →
C(X ,R) be defined by

�(t, a, b)(x) = t〈−→ab,−→ax〉 ∀ t ∈ R, a, b, x ∈ X , (2.2)

where C(X ,R) is the space of all continuous real-valued functions on X . Let the
pseudometric space (R × X × X ,D) be a subspace of the pseudometric space
(Lip(X ,R), L) of all real-valued Lipschitz functions. Note that D defines an equiva-
lence relation on (R × X × X), where the equivalence class of (t, a, b) is

[t−→ab] = {s−→cd : t〈−→ab,−→xy〉 = s〈−→cd ,
−→xy〉 ∀ x, y ∈ X}. (2.3)

Then the set X∗ = {[t−→ab] : (t, a, b) ∈ R × X × X} is called a metric space with the
metric D, and the pair (X∗,D) is called the dual space of X .

Definition 2.3 Let X be a complete CAT(0) space and X∗ be its dual space. A multi-
valued operator A : X → 2X

∗
with domain D(A) = {x ∈ X : Ax �= ∅} is monotone,

if for all x, y ∈ D(A) with x �= y, we have

〈x∗ − y∗,−→yx〉 ≥ 0, ∀ x∗ ∈ Ax, y∗ ∈ Ay. (2.4)
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Approximation of common solution of finite... 19

The graph of a monotone operator A : X → 2X
∗
is the set

Gr(A) = {(x, x∗) ∈ X × X∗ : x∗ ∈ A(x)}.

A monotone operator A is called a maximal monotone operator if the graph Gr(A) is
not properly contained in the graph of any other monotone operator. It is easy to see
that a monotone operator is maximal if and only if for each (x, x∗) ∈ X × X∗,

〈y∗ − x∗,−→xy〉 ≥ 0 ∀ (y, y∗) ∈ G(A) ⇒ x∗ ∈ A(x). (2.5)

Definition 2.4 (See [26]) Let X be a complete CAT(0) space and X∗ be its dual space.
The resolvent of a monotone operator A of order λ > 0 is the multivalued mapping
J A
λ : X → 2X defined by

J A
λ (x) := {

z ∈ X : [1
λ

−→zx ] ∈ Az
}
. (2.6)

The multivalued operator A is said to satisfy the range condition if D(J A
λ ) = X , for

every λ > 0. For examples of monotone operators and their resolvents in complete
CAT(0) spaces, see [13, Section 2 and Section 4]).

Definition 2.5 (See [26]) Let X be a complete CAT(0) space and X∗ be its dual space.
The Yosida approximation of A is the multivalued mapping Aλ : X → 2X

∗
defined

by

Aλ(x) := {[1
λ

−→yx] : y ∈ J A
λ (x)

}
. (2.7)

The following result is due to [26] and it gives the connection between monotone
operators, their resolvents and Yosida approximations, in the framework of CAT(0)
spaces.

Theorem 2.6 Let X be a CAT(0) space and J A
λ be the resolvent of the operator A of

order λ. Then

(i) for any λ > 0, R(J A
λ ) ⊂ D(A) and F(J A

λ ) = A−1(0),where R(J A
λ ) is the range

of J A
λ ,

(ii) If J A
λ is single-valued then Aλ is singlevalued, and Aλ(x) ⊂ A(J A

λ (x)), ∀ x ∈
X ,

(iii) if A is monotone, then J A
λ is single-valued and firmly nonexpansive.

Definition 2.7 Let D be a nonempty closed and convex subset of a CAT(0) space X .

The metric projection is a mapping PD : X → D which assigns to each x ∈ X , the
unique point PDx ∈ D such that

d(x, PDx) = inf{d(x, y) : y ∈ D}.
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20 K. O. Aremu et al.

Recall that a mapping T : D → X is firmly nonexpansive (see [26]), if

d2(T x, T y) ≤ 〈−−−→
T xT y,−→xy〉 ∀ x, y ∈ X .

Lemma 2.8 [14,16] Let X be a CAT(0) space. Then for all x, y, z ∈ X and all t ∈
[0, 1], we have
(1) d(t x ⊕ (1 − t)y, z) ≤ td(x, z) + (1 − t)d(y, z),
(2) d2(t x ⊕ (1 − t)y, z) ≤ td2(x, z) + (1 − t)d2(y, z) − t(1 − t)d2(x, y),
(3) d2(z, t x ⊕ (1 − t)y) ≤ t2d2(z, x) + (1 − t)2d2(z, y) + 2t(1 − t)〈−→zx ,

−→zy 〉.
Lemma 2.9 [34] Let X be a complete CAT(0) space with a convex metric and V ,W
be bounded gated subsets of X . Then,

d(PV (u), PW (u)) ≤ H(V ,W ),

for any u ∈ X , where PV (u), PW (u) are respectively the unique nearest points to u
in V , W .

Lemma 2.10 [32] Every bounded sequence in a complete CAT(0) space has a �-
convergent subsequence.

Lemma 2.11 [25] Let X be a complete CAT(0) space, {xn} be a bounded sequence in X
and x ∈ X. Then {xn} �-converges to x if and only if lim sup

n→∞
〈−→xnx,−→yx〉 ≤ 0 ∀ y ∈ X .

Lemma 2.12 [14] Let D be a nonempty convex subset of a CAT(0) space X , x ∈ X
and u ∈ D. Then u = PDx if and only if 〈−→ux,−→yu〉 ≤ 0 for all y ∈ D

Lemma 2.13 [15] Let X be a complete CAT(0) space and T : X → X be a nonex-
pansive mapping. Then T is �-demiclosed.

Lemma 2.14 [56] Let {an} be a sequence of non-negative real numbers satisfying

an+1 ≤ (1 − αn)an + αnδn + γn, n ≥ 0,

where {αn}, {δn} and {γn} satisfy the following conditions:
(i) {αn} ⊂ [0, 1], 	∞

n=0αn = ∞,
(ii) lim supn→∞ δn ≤ 0,
(iii) γn ≥ 0(n ≥ 0), 	∞

n=0γn < ∞.
Then limn→∞ an = 0.

Lemma 2.15 [33] Let {an} be a sequence of real numbers such that there exists a
subsequence {n j } of {n} with an j < an j+1 ∀ j ∈ N. Then there exists a nondecreasing
sequence {mk} ⊂ N such that mk → ∞ and the following properties are satisfied by
all (sufficiently large) numbers k ∈ N:

amk ≤ amk+1 and ak ≤ amk+1.

In fact, mk = max{i ≤ k : ai < ai+1}.
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3 Main results

Lemma 3.1 Let X be a complete CAT(0) space and X∗ be its dual space. Let
A1, A2, . . . , Ak : X → 2X

∗
be multivalued monotone operators satisfying the range

condition and S, T : D → CB(X) be two L-Lipschitzian demicontractive mappings
with coefficients λ1 and λ2 respectively and λ = max{λ1, λ2}. Suppose S and T
satisfy the gate condition h1, h2 are the keys of S and T respectively. Assume that

 := F(S) ∩ F(T ) ∩ ⋂k

i=1 A
−1
i (0) �= ∅ and for arbitrary points u, x1 ∈ X, the

sequence {xn} is generated iteratively by

⎧⎪⎨
⎪⎩
un = J Ak

μn ◦ J Ak−1
μn ◦ · · · ◦ J A1

μn (αnu ⊕ (1 − αn)xn),

yn = βnun ⊕ (1 − βn)vn,

xn+1 = δn yn ⊕ (1 − δn)zn, n ≥ 1,

(3.1)

where vn is a gate of h1 ∈ Sun, zn is a gate of h2 ∈ T yn, {αn}, {βn} and {δn} are
sequences in [0, 1] satisfying the following condition:

(C1) 0 ≤ βn, δn ≤ 1 − λ.

Then, {xn} is bounded.
Proof Let p ∈ 
, then 0 ∈ Ai x for i ∈ {1, 2, . . . , k}. Put wn = αnu ⊕ (1−αn)xn and
let

� i
n = J Ai

μn
� i−1

n , for i ∈ {1, 2, . . . , k},

where �0
n = wn , for all n ∈ N. Then �k

n = un, for all n ≥ 1. we obtain from (2.6)
that

[ 1

μn

−−−−−→
� i

n�
i−1
n

]
∈ Ai (�

i
n), for i ∈ {1, 2, . . . , k}.

Thus, by the monotonicity of Ai , for i ∈ {1, 2, . . . , k}, we have

0 ≤
〈[ 1

μn

−−−−−→
� i

n�
i−1
n

]
− 0,

−−→
p� i

n

〉
.

This implies by quasilinearization that

0 ≤ d2(� i−1
n , p) − d2(� i

n, p) − d2(� i
n, �

i−1
n ). (3.2)

By summing up the inequality in (3.2), from i = 1 to k, we get

0 ≤ d2(�0
n , p) − d2(�k

n , p) −
k∑

i=1

d2(� i
n, �

i−1
n ). (3.3)
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22 K. O. Aremu et al.

Hence, we obtain from Lemma 2.8 that

d2(un, p) ≤ d2(wn, p)

= d2(αnu ⊕ (1 − αn)xn, p)

≤ αnd
2(u, p) + (1 − αn)d

2(xn, p). (3.4)

Since S is λ1-demicontractive, we have from Lemma 2.9 and (3.1) that

d2(yn, p) = d2((1 − βn)un ⊕ βnvn, p)

≤ (1 − βn)d
2(un, p) + βnd

2(vn, p) − βn(1 − βn)d
2(un, vn)

≤ (1 − βn)d
2(un, p) + βnd

2(PSun (h1), PSp(h1)) − βn(1 − βn)d
2(un, vn)

≤ (1 − βn)d
2(un, p) + βnH

2(Sun, Sp) − βn(1 − βn)d
2(un, vn)

≤ (1 − βn)d
2(un, p) + βn

(
d2(un, p) + λ1dist

2(un, Sun)
)

−βn(1 − βn)d
2(un, vn)

= d2(un, p) − βn(1 − βn − λ1)d
2(un, vn). (3.5)

Thus,

d2(xn+1, p) = d2((1 − δn)yn ⊕ δnzn, p)

≤ (1 − δn)d
2(yn, p) + δnd

2(zn, p) − δn(1 − δn)d
2(yn, zn)

≤ (1 − δn)d
2(yn, p) + δnd

2(PT yn (h2), PTp(h2))

− δn(1 − δn)d
2(yn, zn)

≤ (1 − δn)d
2(yn, p) + δnH

2(T yn, T p) − δn(1 − δn)d
2(yn, zn)

≤ (1 − δn)d
2(yn, p) + δ

(
d2(yn, p) + λ2dist

2(yn, T yn)
)

− δn(1 − δn)d
2(yn, zn)

= d2(yn, p) − δn(1 − δn − λ2)d
2(yn, zn)

≤ d2(un, p) − βn(1 − βn − λ1)d
2(un, vn)

− δn(1 − δn − λ2)d
2(yn, zn). (3.6)

Thus, we have

d2(xn+1, p) ≤ d2(un, p)

≤ αnd
2(u, p) + (1 − αn)d

2(xn, p)

≤ max
{
d2(u, p), d2(xn, p)

}
...

≤ max
{
d2(u, p), d2(x1, p)

}
. (3.7)

This implies that {d2(xn, p)} is bounded and hence {xn} is bounded. Consequently,
{un}, {yn}, {vn} and {zn} are bounded. ��
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Theorem 3.2 Let X be a complete CAT(0) space and X∗ be its dual. Let A1, A2, . . . ,

Ak : X → 2X
∗
be multivalued monotone operators satisfying the range condition

and S, T : D → CB(X) be two L-Lipschitzian demicontractive mappings with
coefficients λ1 and λ2 respectively and λ = max{λ1, λ2}. Suppose S and T satisfy
the gate condition h1, h2 are the keys of S and T respectively. Assume that 
 :=
F(S) ∩ F(T ) ∩ ⋂k

i=1 A
−1
i (0) �= ∅ and for arbitrary points u, x1 ∈ X, the sequence

{xn} is generated iteratively by (3.1) where vn is a gate of h1 ∈ Sun, zn is a gate
of h2 ∈ T yn, {αn}, {βn} and {δn} are sequences in [0, 1] satisfying the following
conditions:

(C1) 0 ≤ βn, δn ≤ 1 − λ,
(C2) lim infn→∞ μn > 0,
(C3) limn→∞ αn = 0 and

∑∞
n=1 αn = +∞.

Then, {xn} converges strongly to p = P
u, where P
 is the metric projection of X
onto 
.

Proof Let p = P
u, then from (3.6) and Lemma 2.8, we have

d2(xn+1, p) ≤ d2(un, p) − βn(1 − βn − λ1)d
2(un, vn) − δn(1 − δn − λ2)d

2(yn, zn)

≤ d2(αnu ⊕ (1 − αn)xn, p) − βn(1 − βn − λ1)d
2(un, vn)

− δn(1 − δn − λ2)d
2(yn, zn)

≤ αnd
2(u, p) + (1 − αn)d

2(xn, p) + 2αn(1 − αn)〈−→up,−→xn p〉
−βn(1 − βn − λ1)d

2(un, vn)

− δn(1 − δn − λ2)d
2(yn, zn). (3.8)

We now divide the rest of the proof into two cases.

Case I: Assume that {d2(xn, p)} is monotonically decreasing. Then {d2(xn, p)} con-
verges and

d2(xn, p) − d2(xn+1, p) → 0 as n → ∞.

Therefore from (3.8), we obtain that

βn(1 − βn − λ1)d
2(un, vn) + δn(1 − δn

− λ2)d
2(yn, zn) ≤ αn(d

2(u, p) − d2(xn, p)) + d2(xn, p) − d2(xn+1, p)

+ 2αn(1 − αn)〈−→up,−→xn p〉 → 0 as n → ∞.

From 0 < a ≤ βn, δn ≤ b < 1 − λ, we have

lim
n→∞ d2(un, vn) = 0 and lim

n→∞ d2(yn, zn) = 0. (3.9)

Hence

dist(un, Sun) ≤ d(un, zn) → 0, as n → ∞. (3.10)
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Observe that

d(yn, un) ≤ βnd(un, un) + (1 − βn)d(vn, un) → 0, as n → ∞. (3.11)

Since T is L-Lipschitzian, then

dist(un, Tun) ≤ dist(un, T yn) + H(T yn, Tun)

≤ d(un, zn) + Ld(yn, un)

≤ d(un, yn) + d(yn, zn) + Ld(yn, un)

= (1 + L)d(un, yn) + d(yn, zn).

Therefore, from (3.9) and (3.11), we have

lim
n→∞ dist(un, Tun) = 0. (3.12)

From (3.3) and (3.6), we obtain

k∑
i=1

d2(� i
n, �

i−1
n ) ≤ d2(�0

n , x) − d2(�k
n , p)

= d2(wn, x) − d2(un, p)

≤ αnd
2(u, p) + (1 − αn)d

2(xn, p) − d2(xn+1, p) → 0,

as n → ∞.

Therefore

lim
n→∞ d(� i

n, �
i−1
n ) = 0, i ∈ {1, 2, · · · , k}. (3.13)

By using the triangle inequality of d, we obtain

lim
n→∞ d(un, wn) = 0. (3.14)

Note that

d(wn, xn) ≤ αnd(u, xn) + (1 − αn)d(xn, xn) → 0, as n → ∞,

then

d(un, xn) ≤ d(un, wn) + d(wn, xn) → 0, as n → ∞. (3.15)

Also

d(zn, xn) ≤ d(zn, yn) + d(yn, un) + d(un, xn) → 0, as n → ∞
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and

d(xn+1, zn) ≤ (1 − δn)d(yn, zn) + δnd(zn, zn) → 0, as n → ∞.

Thus

d(xn+1, xn) ≤ d(xn+1, zn) + d(zn, xn) → 0, as n → ∞. (3.16)

Since {xn} is bounded, there exists a subsequence {xn j } of {xn} such that xn j ⇀q. By
(2.7), the Yosida approximation of Ai for each i ∈ {1, 2, . . . , k}, we have

Ai,μn�
i−1
n =

[ 1

μn

−−−−−→
� i

n�
i−1
n

]
.

Since lim inf
n→∞ μn > 0, we obtain from (3.13) that lim

n→∞ Ai,μn�
i−1
n = 0.

Let (a1, a2) ∈ G(Ai ) for each i ∈ {1, 2, . . . , k}, by the maximal monotonicity of
Ai , we have

〈a2 − Ai,μn�
i−1
n ,

−−→
� i

na1〉 ≥ 0. (3.17)

Replacing n by n j in (3.17) and taking the limit as j → ∞, we obtain that

〈a2,−→qa1〉 ≥ 0.

Hence, by maximal monotonicity of Ai , we obtain that q ∈ A−1
i (0) for each i ∈

{1, 2, . . . , k}. Therefore, q ∈ ⋂k
i=1 A

−1
i (0).

Furthermore, since d(un j , xn j ) → 0 as n → ∞ and S, T are demiclosed at zero,
it follows from (3.10) and (3.12) that q ∈ F(S) and q ∈ F(T ) respectively. Hence,
q ∈ F(S) ∩ F(T ) ∩ ⋂∞

i=1 A
−1
i (0).

Next, we show that lim supn→∞〈−→ux,−→xn p〉 ≤ 0. Choose a subsequence {xnk } of
{xn} such that

lim sup
n→∞

〈−→up,−→xn p〉 = lim
k→∞〈−→up,−−→xnk p〉.

Since xnk⇀q, it follows from Lemma 2.12 that

lim sup
n→∞

〈−→up,−→xn p〉 = lim
j→∞〈−→up,−−→xnk p〉

= 〈−→up,−→qp〉 ≤ 0. (3.18)

We now show that {xn} converges to p. From (3.8), we obtain

d2(xn+1, p) ≤ (1 − αn)d
2(xn, p) + αn

(
2(1 − αn)〈−→up,−→xn p〉 + d2(u, p)

)
. (3.19)
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Using Lemma 2.12 in (3.19) and from (3.18), we conclude that d(xn, x) → 0 as
n → ∞. Therefore, {xn} converges strongly to p = P
u.

Case II: Suppose there exists a subsequence {n j } of {n} such that d2(xn j , p) ≤
(d2(xn j+1, p) for all i ∈ N. Then, by Lemma 2.15, there exists a subsequence {mk} ⊂
N such that mk → ∞, d2(xmk , p) < d2(xmk+1, p), for all k ∈ N. Following similar
process as in Case I, we obtain

lim
k→∞ d(umk , Sumk ) = lim

k→∞ d(umk , Tumk ) = lim
k→∞ d(xmk+1, xmk ) = 0,

and

lim sup
k→∞

〈−→up,−−→xmk p〉 ≤ 0. (3.20)

From (3.7) and Lemma 2.8, we obtain

d2(xmk+1, p) ≤ d2(umk , p)

≤ d2(αmpu ⊕ (1 − αmk )xmk , p)

≤ α2
mk
d2(u, p) + (1 − αmk )

2d2(xmk , p)

+2αmk (1 − αmk )〈−→up,−−→xmk p〉. (3.21)

Since d2(xmk , p) < d2(xmk+1, p), then we have

0 ≤ d2(xmk+1, p) − d2(xmk , p)

≤ α2
mk
d2(u, p) + (1 − αmk )d

2(xmk , p)

+ 2αmk (1 − αmk )〈−→up,−−→xmk p〉 − d2(xmk , p).

Therefore

d2(xmk , p) ≤ αmkd
2(u, p) + 2(1 − αmk )〈−→up,−−→xmk p〉. (3.22)

Since αmk → 0 as k → ∞, it follows from (3.20) and (3.22) that

lim
n→∞ d(xmk , p) = 0.

Consequently, we obtain

d(xmk+1, p) ≤ d(xmk+1, xmk ) + d(xmk , p) → 0, as n → ∞.

By Lemma 2.15, we have

d(xn, p) ≤ d(xmk+1, p) → 0, as n → ∞.

This implies that {xn} converges strongly to p ∈ 
. This completes the proof. ��
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By setting k = 1, in Theorem 3.2, we obtain the following result:

Corollary 3.3 Let X be a complete CAT(0) space and X∗ be its dual. Let A : X → 2X
∗

be multivalued monotone operator satisfying the range condition and S, T : D →
CB(X) be two L-Lipschitzian demicontractive mappings with coefficients λ1 and λ2
respectively and λ = max{λ1, λ2}. Suppose S and T satisfy the gate condition h1, h2
are the keys of S and T respectively. Assume that
 := F(S)∩F(T )∩⋂k

i=1 A
−1
i (0) �=

∅ and for arbitrary points u, x1 ∈ X, the sequence {xn} is generated iteratively by

⎧⎪⎨
⎪⎩
un = J A

μn
(αnu ⊕ (1 − αn)xn),

yn = βnun ⊕ (1 − βn)vn,

xn+1 = δn yn ⊕ (1 − δn)zn, n ≥ 1,

(3.23)

where vn is the gate of h1 ∈ Sun, zn is the gate of h2 ∈ Tun, {αn}, {βn} and {δn} are
sequences in [0, 1] satisfying the following conditions:

(C1) 0 ≤ βn, δn ≤ 1 − λ,
(C2) lim inf

n→∞ μn > 0,

(C3) lim
n→∞ αn = 0 and

∑∞
n=1 αn = +∞.

Then, {xn} converges strongly to p = P
u, where P
 is the metric projection onto 
.

By setting S and T to be quasi nonexpansive mappings in Theorem 3.2, we obtain the
following result:

Corollary 3.4 Let X be a complete CAT(0) space and X∗ be its dual. Let A1, A2, . . . ,

Ak : X → 2X
∗
be multivalued monotone operators satisfying the range condition and

S, T : D → CB(X) be two L-Lipschitzian quasi nonexpansive mappings. Suppose S
and T satisfy the gate condition h1, h2 are the keys of S and T respectively. Assume
that 
 := F(S) ∩ F(T ) ∩ ⋂k

i=1 A
−1
i (0) �= ∅ and for arbitrary points u, x1 ∈ X, the

sequence {xn} is generated iteratively by

⎧⎪⎨
⎪⎩
un = J Ak

μn ◦ J Ak−1
μn ◦ · · · ◦ J A1

μn (αnu ⊕ (1 − αn)xn),

yn = βnun ⊕ (1 − βn)vn,

xn+1 = δn yn ⊕ (1 − δn)zn, n ≥ 1,

(3.24)

(3.24) where vn is the gate of h1 ∈ Sun, zn is the gate of h2 ∈ T yn, {αn}, {βn} and
{δn} are sequences in [0, 1] satisfying the following conditions:

(C1) 0 < a ≤ βn, δn ≤ b < 1,
(C2) lim inf

n→∞ μn > 0,

(C3) lim
n→∞ αn = 0 and

∑∞
n=1 αn = +∞.

Then, {xn} converges strongly to p = P
u, where P
 is the metric projection onto 
.
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4 Applications and numerical example

It is well known that subdifferential of proper, convex and lower semicontinuous
functions is maximal monotone in Hilbert spaces and satisfies the range conditions. In
the sequel, we approximate a minimizer of a proper, convex and lower semicontinuous
function in complete CAT(0) spaces.

Definition 4.1 Let X be a complete CAT(0) space and X∗ be its dual space. Let f :
X → (−∞,+∞] be a proper, convex and lower semicontinous functionwith efficient
domain D( f ) = {x : f (x) < +∞}, then the subdifferential of f is the multivalued
function ∂ f : X → 2X

∗
defined by

∂ f (x) =
{
x∗ ∈ X∗ : f (z) − f (x) ≥ 〈 x∗,−→xz〉; ∀ z ∈ D( f );
∅, otherwise.

Theorem 4.2 [25]Let f : X(−∞,+∞]beaproper, lower semicontinuous and convex
function on a complete CAT(0) space X with dual X∗, then

(i) f attains its minimum at x ∈ X if and only if 0 ∈ ∂ f (x),
(ii) ∂ f : X → 2X

∗
is a monotone operator,

(iii) for any y ∈ X and α > 0, there exists a unique point x ∈ X such that [α−→xy]
∈ ∂ f (x), that is, D(J ∂ f

λ ) = X ,∀ λ > 0.

In 2013, Bačák [3] introduced the PPA in CAT(0) space as follows:

xn+1 = argmin
u∈X

[
f (u) ⊕ 1

2λn
d2(y, xn)

]
, (4.1)

for n ∈ N, where λn > 0 such that
∑∞

n=1 λn = ∞. He obtained a �-convergence
result of (4.1) to a minimizer of f .

Proposition 4.3 [26] Let f : X → (−∞,+∞] be a proper, convex and lower semi-
continuous function on complete CAT(0) space X and X∗ be its dual space. Then

J ∂ f
λ = argmin

z∈X
[
f (z) ⊕ 1

2λ
d2(z, x)

]
, ∀ λ > 0 and x ∈ X .

The following result is an application of Theorem 3.2 to obtain a common solution of
a finite family of proper, convex and lower semicontinuous functions and fixed points
of two demicontractive multivalued mappings.

Theorem 4.4 Let X bea completeCAT(0) spaceand X∗ be its dual. Let f1, f2, . . . , fk :
X → (−∞,∞] be proper, convex and lower semicontinuous functions. Let S, T :
D → CB(D) be two L-Lipschitzian demicontractive mappings with coefficients λ1
and λ2 such that λ = max{λ1, λ2}. Suppose S and T satisfy the gate condition.
Let h1, h2 be keys of S and T respectively. Assume that 
 := F(S) ∩ F(T ) ∩
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⋂k
i=1 argmin

y∈X fi (y) �= ∅ and for arbitrary points u, x1 ∈ X, the sequence {xn} is

generated iteratively by

⎧⎪⎨
⎪⎩
un = J ∂ fk

μn ◦ J ∂ fk−1
μn ◦ · · · ◦ J ∂ f1

μn (αnu ⊕ (1 − αn)xn),

yn = βnun ⊕ (1 − βn)vn,

xn+1 = δn yn ⊕ (1 − δn)zn,

(4.2)

where vn is the gate of h1 ∈ Sun, zn is a gate of h2 ∈ T yn, {αn}, {βn} and {δn} are
sequences in [0, 1]. Suppose the following conditions are satisfied:

(C1) 0 ≤ βn, δn ≤ 1 − λ,
(C2) lim inf

n→∞ μn > 0,

(C3) lim
n→∞ αn = 0 and

∑∞
n=1 αn = +∞.

Then, {xn} converges strongly to p = P
u, where P
 is the metric projection onto 
.

Proof By setting ∂ fi = Ai in Theorem 3.2, the proof follows. ��
Next, we give a numerical example in (R2, ||.||2) (where R2 is the Euclidean plane)
to illustrate the applicability of our main result.

Example 4.5 Let N = 2 in Theorem 3.2, then for i = 1, we define A1 : R2 → R
2 by

A1(x) = (x1 + x2, x2 − x1).

Then A1 is a monotone operator.
Recall that [t−→ab] ≡ t(b− a), for all t ∈ R and a, b ∈ R

2 (see [25]). Using this, we
have for each x ∈ R

2 that

J 1μn
(x) = z, ⇐⇒ 1

μn
(x − z) = A1z, ⇐⇒ x = (I + μn A1)z,

⇐⇒ z = (I + μn A1)
−1x .

Hence, we compute the resolvent of A1 as follows:

J 1μn
(x) =

([
1 0
0 1

]
+

[
μn μn

−μn μn

])−1 [
x1
x2

]

=
[
1 + μn μn

−μn 1 + μn

]−1 [
x1
x2

]

= 1

1 + 2μn + 2μ2
n

[
1 + μn −μn

μn 1 + μn

] [
x1
x2

]

=
(

(1 + μn)x1 − μnx2
1 + 2μn + 2μ2

n
,

μnx1 + (1 + μn)x2
1 + 2μn + 2μ2

n

)
.
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Thus,

J 1μn
(x) =

(
(1 + μn)x1 − μnx2
1 + 2μn + 2μ2

n
,

μnx1 + (1 + μn)x2
1 + 2μn + 2μ2

n

)
.

Now, for i = 2, let A2 : R2 → R
2 be defined by

A2(x) = (x2, − x1).

So that by the same argument as in above, we obtain

J 2μn
(x) =

(
x1 − μnx2
1 + μ2

n
,
x2 + μnx1
1 + μ2

n

)
.

Thus for i = 1, 2, we obtain

J 2μn
(J 1μn

x)

=
(

(1 + μn − μ2
n)x1 − (2μn + μ2

n)x2
(1 + μ2

n)(1 + 2μn + 2μ2
n)

,
(2μn + μ2

n)x1 + (1 + μn − μ2
n)x2

(1 + μ2
n)(1 + 2μn + 2μ2

n)

)
.

Let S, T : X → 2X , be defined as in Example 1.1:
for j = 1, we have

Sx =
{

[− 6
5 x,−2x] if x ≤ 0,

[−2x,− 6
5 x] if x > 0,

Similarly, for j = 10, we have

Tx =
{

[− 51
5 x,−11x] if x ≤ 0,

[−11x,− 51
5 x] if x > 0,

Then S and T are λ1 (respectively λ2)-demicontractive mappings with λ1 = 75
121 and

λ2 = 3000
3136 respectively. Take δn = 4n+1

100n+9 , βn = 1
100(n+1) , αn = 1

n and μn = 1
2 then

conditions C1 to C3 in Theorem 3.2 are satisfied.
Hence, for u, x1 ∈ R

2, our Algorithm (3.1) becomes:

⎧⎪⎪⎨
⎪⎪⎩
un = J A1

μn ◦ J A2
μn ( 1n u + n−1

n x1),

yn = 1
100(n+1)un + 100n+99

100(n+1) vn,

xn+1 = 4n+1
100n+9 yn + 96n+8

100n+9 zn, n ≥ 1.

(4.3)
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Fig. 1 Errors versus Iteration numbers(n): Case 1 (a) (top left); Case 1 (b) (top right); Case 2 (a) (bottom
left); Case 2 (b) (bottom right)

Case I

(a) Take x1 = (0.5, 1)T and u = (−5, 10)T .
(b) Take x1 = (2, 5)T and u = (5, 10)T .

Case II

(a) Take x1 = (2, 3)T , u = (1, 4)T .
(b) Take x1 = (−2, 3)T , u = (2, 5)T .

Mathlab version R2017a is used to obtain the graphs of errors against number of
iterations.

Remark 4.6 Using different choices of the initial vectors x1 and u (that is, Case 1-
Case 2), we have the above numerical results (Figure 1). We see that the error values
converge to 0, suggesting that by choosing arbitrary starting points, the sequence {xn}
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converges to the common zero of Ai , i = 1, 2, which is also a common fixed point
of S and T .

5 Conclusion

The gate condition which is weaker than the endpoint condition (commonly used
by many authors in this direction), was used to establish the strong convergence of
an Halpern-type proximal point algorithm to a common solution of a finite family
of monotone inclusion problems and a common fixed point of two L-Lipschitzian
demicontractivemultivaluedmappings in the frameworkCAT(0) spaces. Furthermore,
the obtained result (that is Theorem 3.2) was applied to solve minimization problems
in CAT(0) spaces, and numerical experiments of the obtained result were given to
further show its applicability.

Acknowledgements The authors thank the anonymous referee for valuable and useful suggestions and
comments which led to the great improvement of the paper.

References

1. Aremu, K.O., Izuchukwu, C., Ugwunnadi, G.C., Mewomo, O.T.: On the proximal point algorithm and
demimetric mappings in CAT(0) spaces. Demonstr. Math. 51, 277–294 (2018)

2. Abass, H., Okeke, C.C., Mewomo, O.T.: On split equality mixed equilibrium and fixed point problems
of countable families of generalized k-strictly pseudocontractive mappings. Dym. Contin. Discrete
Impul. Syst. Ser B. Appl. Algorithms 25, 369–395 (2018)

3. Bacak, M.: The proximal point algorithm in metric spaces. Israel J. Math. 194, 689–701 (2013)
4. Bartolini, I., Ciaccia, P., and Pattela, M.: String Matching with Trees Using an Approximate Distance.

SPIR Lecture Notes in Computer Science, vol. 2476. Spring, Berlin (1999)
5. Berg, I.D., Nikolaev, I.G.: Quasilinearization and curvature of Alexandrov spaces. Geom. Dedicata

133, 195–218 (2008)
6. Bestvina, M.: R−trees in topology, geometry and group theory. In: Sher, R.B., Daverman, R.J. (eds.)

Handbook of Geometric Topology North-Holland, pp. 55–91. Elsevier, Amsterdam (2002)
7. Bridson,M.R., Haeiger, A.: Metric Spaces of Non-Positive Curvature, Fundamental Principle ofMath-

ematical Sciences, vol. 319. Springer, Berlin, Germany (1999)
8. Brown, K.S.: Buildings. Springer, New York, NY (1989)
9. Bruhat, F., and Tits, J.: Groupes réductits sur un cor local, I. Donneés Radicielles Valueés, Institut. des

Hautes Études Scientifiques, 41, 5–251 (1972)
10. Chabrowski, J.H.: On the existence of a solution to a class of variational inequalities. Ricerche Mat.

60(2), 333–350 (2011)
11. Chidume, C. E., Bello, A .U., and Ndambomve, P: Strong and � -convergence theorems for common

fixed points of a finite family of multivalued demicontractive mappings in CAT(0) spaces. Abstr. Appl.
Anal. 2014, 805168 (2014)

12. Combettes, P.L.: Monotone operator theory in convex optimization. Math. Program. Ser. B 170, 177–
206 (2018)

13. Dehghan, H., Izuchukwu, C., Mewomo, O.T., Taba, D.A., Ugwunnadi, G.C.: Iterative algorithm for
a family of monotone inclusion problems in CAT(0) spaces. Quaest. Math. (2019). https://doi.org/10.
2989/16073606.20

14. Dehghan, H., and Rooin, J: Metric projection and convergence theorems for nonexpansive mapping in
Hadamard spaces. arXiv:1410.1137VI [math.FA], 5 Oct. (2014)

15. Dhompongsa, S., Kirk, W.A., Panyanak, B.: Nonexpansive set-valued mappings in metric and Banach
spaces. J. Nonlinear Convex Anal. 8, 35–45 (2007)

123

https://doi.org/10.2989/16073606.20
https://doi.org/10.2989/16073606.20
http://arxiv.org/abs/1410.1137VI


Approximation of common solution of finite... 33

16. Dhompongsa, S., Panyanak, B.: On �-convergence theorems in CAT(0) spaces. Comp. Math. Appl.
56, 2572–2579 (2008)

17. Espinola, R., Kirk, W.A.: Fixed point theorems in R−trees with applications to graph theory. Topol.
Appl. 153(7), 1046–1055 (2006)

18. Ghoussoub, N.: Self-Dual Partial Differential Systems and Their Variational Principles. Springer, New
York (2009)

19. Goebel, K., Reich, S.: UniformConvexity, Hyperbolic Geometry andNonexpansiveMappings.Marcel
Dekker, New York (1984)

20. Heydari, M.T., Khadem, A., Ranjbar, S.: Approximating a common zero of finite family of monotone
operators in Hadamard spaces. Optimization 66(12), 2233–2244 (2017)

21. Izuchukwu, C., Aremu, K.O., Mebawondu, A.A., Mewomo, O.T.: A viscosity iterative technique for
equilibrium and fixed point problems in a Hadamard space. Appl. Gen. Topol. 20(1), 193–210 (2019)

22. Izuchukwu, C., Ugwunnadi, G.C., Mewomo, O.T., Khan, A.R., Abbas, M.: Proximal-type algorithms
for split minimization problem in p-uniformly convexmetric space. Numer. Algorithms (2018). https://
doi.org/10.1007/s11075-018-0633-9

23. Jolaoso, L.O., Ogbuisi, F.U., Mewomo, O.T.: An iterative method for solving minimization, variational
inequality and fixed point problems in reflexive Banach spaces. Adv. Pure Appl. Math. 9(3), 167–184
(2017)

24. Jolaoso, L.O., Oyewole, K.O., Okeke, C.C., Mewomo, O.T.: A unified algorithm for solving split
generalized mixed equilibrium problem and fixed point of nonspreading mapping in Hilbert space.
Demonstr. Math. 51, 211–232 (2018)

25. Kakavandi, B.A., Amini, M.: Duality and subdifferential for convex functions on complete CAT(0)
metric spaces. Nonlinear Anal. 73, 3450–3455 (2010)

26. Khatibzadeh,H.,Ranjbar, S.:Monotoneoperators and the proximal point algorithm in completeCAT(0)
metric spaces. J. Aust. Math. Soc. 103, 70–90 (2017)

27. Kirk, W.A.: Fixed point theorems in CAT(0) spaces and R-trees. Fixed Point Theory Appl. 2004(4),
309–316 (2004)

28. Kirk, W.A.: Some recent results in metric fixed point theory. Fixed Point Theory Appl. 2, 195–207
(2007)

29. Kōmura, Y.: Nonlinear semi-groups in Hilbert space. J. Math. Soc. Jpn. 19, 493–507 (1967)
30. Kumam, P., and Chaipunya, P.: Equilibrium Problems and Proximal Algorithms in Hadamard Spaces,

arXiv: 1807.10900v1 [math.oc]. Accessed 28 Mar 2018
31. Laowang,W., Panyanak,B.: Strong and�−convergence theorems formultivaluedmappings inCAT(0)

spaces. J. Inequal. Appl. 1, 730132 (2009)
32. Leustean, L.: Nonexpansive iterations uniformly cover W-hyperbolic spaces. Nonlinear analysis and

optimization 1: nonlinear analysis. Contemp. Math. Am. Math. Soc. 513, 193–209 (2010)
33. Maingé, P.E.: Strong convergence of projected subgradient methods for nonsmooth and nonstrictly

convex minimization. Set-Valued Anal. 16, 899–912 (2008)
34. Markin, J.T.: Fixed points, selections and best approximation for multivalued mappings in R−trees.

Nonlinear Anal. 67, 2712–2716 (2007)
35. Martinet, B.: Regularisation d’ inequations varaiationnelles par approximations successives. Rev. Fr.

Inform. Rec. Oper. 4, 154–158 (1970)
36. Mewomo,O.T., Ogbuisi, F.U.: Convergence analysis of iterativemethod formultiple set split feasibility

problems in certain Banach spaces. Quaest. Math. 41(1), 129–148 (2018)
37. Moreau, J.J.: Fonctionnelles sous-différentiables. C.R. Acad. Sci. Paris A257, 4117–4119 (1963)
38. Okeke, C.C., Izuchukwu, C.: A strong convergence theorem for monotone inclusion and minimiza-

tion problems in complete CAT(0) spaces. Optim. Methods Softw. (2018). https://doi.org/10.1080/
10556788.2018.1472259

39. Phuengrattana, W.: Approximation of common fixed points of two strictly pseudononspreading mul-
tivalued mappings in R−trees. Kyungpook Math. J. 55, 378–382 (2015)

40. Puttansontiphot, T.: Mann and Ishikawa iteration schemes for multivalued mappings in CAT(0) spaces.
Appl. Math. Sci. 4(61), 3005–3018 (2010)

41. Ranjbar, S., Khatibzadeh, H.: Strong and �−convergence to a zero of a monotone operator in CAT(0)
spaces. Mediterr. J. Math. (2017). https://doi.org/10.1007/s00009-017-0885-y

42. Reich, S., Shafrir, I.: Nonexpansive iterations in hyperbolic spaces.NonlinearAnal. 15, 537–558 (1990)
43. Rockafellar, R.T.: Monotone Operators and the proximal point algorithm. SIAM J. Control Optim. 14,

877–898 (1976)

123

https://doi.org/10.1007/s11075-018-0633-9
https://doi.org/10.1007/s11075-018-0633-9
http://arxiv.org/abs/1807.10900v1
https://doi.org/10.1080/10556788.2018.1472259
https://doi.org/10.1080/10556788.2018.1472259
https://doi.org/10.1007/s00009-017-0885-y


34 K. O. Aremu et al.

44. Rockafellar, R.T.: Characterization of the subdifferentials of convex function. Pac. J.Math. 17, 497–510
(1966)

45. Samanmit,K.:A convergence theorem for finite family ofmultivalued a k−strictly pseudononspreading
mappings in R−trees. Thai J. Math. 13(3), 581–591 (2015)

46. Samanmit, K., Panyanak, B.: On multivalued nonexpansive mappings in Rtrees. J. Appl. Math. 38(6),
13 (2012)

47. Semple, C., Steel, M.: Phylogenetics. Oxford Lecture Series in Mathematics and Its Applications, vol.
24. Oxford University Press, Oxford (2003)

48. Senakka, P., Cholamjiak, P.: Approximation method for solving fixed point problem of Bregman
strongly nonexpansive mappings in reflexive Banach spaces. Ricerche Mat. 65(1), 206–220 (2016)

49. Shahzad, N.: Fixed points for multimaps in CAT(0) spaces. Topol. Appl. 156(5), 997–1001 (2009)
50. Shehu, Y., Mewomo, O.T.: Further investigation into split common fixed point problem for demicon-

tractive operators. Acta Math. Sin. (Engl. Ser.) 32(11), 1357–1376 (2016)
51. Tufa, A.R., Zegeye, H.: Krasnoselskii–Mann method for multivalued non self mappings in CAT(0)

spaces. Filomat 31(14), 4629–4640 (2017)
52. Tufa, A.R., Zegeye, H., Thuto, M.: Convergence theorems for non self mappings in CAT(0) spaces.

Numer. Funct. Anal. Optim. 38(6), 705–722 (2017)
53. Ugwunnadi, G.C., Izuchukwu, C., Mewomo, O.T.: Proximal point algorithm involving fixed point of

nonexpansive mapping in p-uniformly convex metric space. Adv. Pure Appl. Math. (2018). https://doi.
org/10.1515/apam-2018-0026

54. Ugwunnadi,G.C., Izuchukwu,C.,Mewomo,O.T.: Strong convergence theorem formonotone inclusion
problem in CAT(0) Spaces. Afr. Mat. 31(1–2), 151–169 (2019)

55. Vaı̆nberg, M.M.: Variational Method and Method of Monotone Operators in the Theory of Nonlinear
(Equations English translation). Wiley, New York (1973)

56. Xu, H.K.: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 66, 240–256 (2002)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1515/apam-2018-0026
https://doi.org/10.1515/apam-2018-0026

	Approximation of common solution of finite family  of monotone inclusion and fixed point problems  for demicontractive multivalued mappings in CAT(0) spaces
	Abstract
	1 Introduction
	2 Preliminaries
	3 Main results
	4 Applications and numerical example
	5 Conclusion
	Acknowledgements
	References




