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Abstract
In this talk we discuss some recent results I obtained for a class of nonlinear mod-
els in quantum mechanics. In particular we focus our attention to the nonlinear
one-dimensional Schrodinger equation with a periodic potential and a Stark-type per-
turbation. In the limit of large periodic potential the Stark–Wannier ladders of the
linear equation become a dense energy spectrum because a cascade of bifurcations of
stationary solutions occurs; for a detailed treatment we refer to Sacchetti (Phys Rev E
95:062212, 2017, SIAM J Math Anal 50(6):5783–5810, 2018) where this model has
been studied.
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1 Introduction

The nonlinear Schrodinger equation (NLSE) received an increasing attention from
mathematicians since the seminal papers by Ginibre and Velo [26], we refer to the
research monographs [14] and [16]. Such an attention was initially motivated because
of applications of NLSE to nonlinear optics; indeed, Maxwell equations in a Kerr
medium may lead to certain NLSEs [60]. More recently, a large interest for NLSE
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also arose in quantummechanics; in fact, the dynamics of a Bose–Einstein condensate
(BEC), that is a state of matter of a dilute gas of bosons cooled to temperatures very
close to absolute zero (that is, very near to 0 K), may be described by means of
a NLSE. We should mention that BECs were predicted by Satyendra Nath Bose
and Albert Einstein and only recently, in 1995, E. Cornell and C. Wieman at the
University of Colorado gave the first experimental evidence of BECs, they received
with Ketterle the 2001 Nobel price in Physics for such a result. The Bose gas is
governed by Bose–Einstein statistics which describes the statistical distribution of
bosons allowed to share the same quantum state. Under such conditions macroscopic
quantum phenomena become apparent. In other words, a BEC is a Schrodinger’s
cat, that is a macroscopic object which obeys to the laws of quantum mechanics. In
1961 Eugene P. Gross [28] and Lev Petrovich Pitaevskii [35] independently obtained
a NLSE, called now Gross–Pitaevkii equation (GPE), which describes the dynamics
of a BEC under some circumstances, e.g. when only binary collisions are taken into
account. The rigorous derivation of the GPE from a N-body problem in a suitable
scale limit has been the object of a large interest in the last few years (see [9] and
the reference therein). We should also mention that NLSE represents a versatile and
interestingmodel for understandingmolecular physics too (see [37] and the references
therein).

In the present paper I briefly review some results I have obtained in this last decade
and finally I describe with more details the cascade of bifurcations that occur in the
model of accelerated BECs in a periodic lattice. The NLSE I consider has the form

i�
∂ψ

∂t
= − �

2

2m

∂2ψ

∂x2
+ V ψ + α|ψ |2σ ψ , σ > 0 , (1)

where m is the mass of the quantum particle, � is the Planck constant, V is the exter-
nal potential and σ is the power nonlinearity; in fact, σ = 1 in the GPE. One can
study such an equation by reducing it to a discrete NLSE by making use of semi-
classical techniques (the basic ideas are developed in the papers [43,44]) or canonical
perturbation theory (the basic ideas are developed by [6,7]).

Concerning the potential V (x) I have considered different situations.

1.1 Singular potential

In this case the external potential V is represented by means of a singular “function”,
typically it is a Dirac’s δ or a derivative of the Dirac’s δ [1,2,8,18,19,30,45,62]. In
fact, Dirac’s delta potentials provide a general and idealized model for short-range
interactions. They have been introduced by Enrico Fermi in 1936 in three dimensions
in order to investigate the scattering of slow neutrons by atoms; such potentials were
later recognized to provide the simplest example of exactly solvable quantum models
and have been widely employed in toy models.
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1.2 Double-well potential

The spontaneous symmetry breaking (SSB) phenomenon is a very important effect
that arises in a wide range of physical systems modeled by nonlinear equations. For
instance, in optics SSB has been experimentally observed for laser beams in Kerr
media and focusing nonlinearity [13,29]. Another natural setting in which SSB phe-
nomenon may arise is for Bose–Einstein condensates with a double well potential
[4,17,38]. Also, the study of gases of pyramidal molecules such as the ammonia N H3
is a topicwhere SSBphenomenon plays a crucial role. A nonlinearmeanfieldmodel of
a gas of pyramidal molecules has been introduced [37,61]; in this model spontaneous
symmetry breaking explaining the presence of two asymmetrical degenerate ground
states, corresponding to the different localization of the molecules, has been predicted
with the full agreement with experimental data. The bifurcation picture is quite com-
plicated, and it depends on the spatial dimension as well as on the nonlinearity power;
see, e.g. [3,5,15,22,27,31,34,46–49].

1.3 Periodic potential

Trapped atoms in optical lattices is an emerging field for applications in quantum
optics and quantum information processing; furthermore, it is a model system for
solid state physics, too [10,11]. A lattice potential can be formed by overlapping
counter-propagating laser beams, where the atoms are trapped by the optical standing
wave produced by the interference between the laser beams. By interfering more
laser beams, one can obtain one-, two- and three-dimensional lattice potentials. In
a periodic lattice BECs exhibit a quantum phase transition from a superfluid phase
to a Mott-insulator phase when the depth of the lattice potential, which can be tuned
with great accuracy, changes from shallow to deep [12]. This fact has been predicted
to occur in the framework of the Bose–Hubbard model [21], and recently observed
experimentally (see,e.g., [24,25,58,59]). The basic argument which leads to phase
transition for nonlinear models is the SSB, this effect has been deeply discussed by
[23,32,50], see also [33].

1.4 External symmetric potential plus a Stark-type field

Here, we consider the case where the trapping external potential has a symmetric
double well or a periodic shape and where an external Stark-type perturbation breaks
the symmetry. The external Stark-type perturbation term may represent the effect of
gravity on a BEC. In this case one speaks of accelerated BECs in an external potential.
It iswell known thatwhen theStark-type perturbation is absent then a periodic behavior
of the wave-function is expected; in fact, in the case of double-well potential a beating
motion is observed, while in the case of a periodic potential Bloch oscillations are
expected. The point is to understand what happen to these periodic behaviors when
a Stark-type potential is switched on. The problem has some interesting aspects
connected with applications. In fact, accelerated ultracold atoms moving in an optical
lattice have opened the field to multiple applications [10,11,39,42,57], as well as the
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measurements of the value of the gravity acceleration g using ultracold strontium
atoms confined in a vertical optical lattice [20,36], and direct measurement of the
universal Newton gravitation constant G [40] and of the gravity-field curvature [41].
This problem has been the main object of my research activity in these last few years
[51–56].

2 Accelerated BECs in a periodic lattice

The dynamics of quantum particles in a one-dimensional periodic potential under
an homogeneous external field is one of the most important problems in solid-state
physics. Because of the periodicity of the potential, it is expected the existence of fam-
ilies of quantum resonances with associated energies displaced on regular ladders, the
so-called Stark–Wannier ladders, and the wavefunction would perform Bloch oscilla-
tions with period

T = 2π�

mga
, (2)

where g is the gravity acceleration and a is the lattice period. In fact, if one look for the
spectrum of the one-dimensional operator − �

2

2m
∂2

∂x2
+ V + mgx , where V is a smooth

periodic potential with period a, it turns out that it covers the whole real axis (and
it is absolutely continuous). Thus stationary states are no admissible. However, the
existence of quantum resonances are proved; where a quantum resonances is, roughly
speaking, a complex pole of the kernel of the resolvent operator and it is associated to
(meta)stable stationary states. In such a model these complex poles λ	,n are labeled
by the indexes 	 ∈ N and n ∈ Z and they are displaced on a regular ladders:

λ	,n = λ	,0 + nmga, where �λn,0 < 0.

The study of accelerated ultracold atoms moving in an optical lattice has opened
the field to multiple applications, as well as the measurement of the value of the
gravity acceleration g using ultracold Strontium atoms confined in a vertical optical
lattice. Determination of g has been obtained by measuring the period T of the Bloch
oscillations of the atoms in the vertical optical lattice; indeed, recalling that the period
T is connected to the gravity acceleration g by (2), then a precise value of the constant
g has been obtained by means of the experimental measurements of the oscillating
period. Since Bloch oscillations with period T have been predicted by the Bloch
Theorem only for a one-body particle in a periodic field and under the effect of a Stark
potential then it has been chosen, in the experiments above, a particular Strontium’s
isotope 88Sr ; in fact, the scattering length as of atoms 88Sr is very small and thus
it has been assumed that the effects of the atomic binary interactions are negligible
[20,36].

Motivated by such physical applications we study, as a model for a confined accel-
erated BECs in a periodic optical lattice under the effect of the gravitational force,
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the nonlinear one-dimensional time-dependent Schrodinger equation with a periodic
potential V and an accelerating Stark-type potential W

i�
∂ψ

∂t
= − �

2

2m

∂2ψ

∂x2
+ 1

ε
V ψ + αWψ + γ |ψ |2σ ψ, σ > 0, (3)

in the limit of large periodic potential, i.e. 0 < ε � 1. Here, γ is the strength of the
nonlinearity term; the real valued parameters m, �, α and γ are assumed to be fixed.
In particular W (x) is a Stark-type potential with strength α, that is it is locally a linear
function: W (x) = x for any x belonging to a fixed interval large enough.

By means of a simple recasting we swap the limit of large potential ε � 1 to a
semiclassical equation. If we set

F = εα, h = �

√
ε/2m, τ = t/

√
ε/2m and η = εγ

then the above equation takes the form

ih
∂ψ

∂τ
= −h2 ∂2ψ

∂x2
+ V ψ + FWψ + η|ψ |2σ ψ (4)

and the limit of large periodic potential ε → 0+ is equivalent to the semiclassical limit
h → 0+ where

η ∼ F ∼ h2 as h goes to zero. (5)

In the semiclassical limit we will show that the time-independent NLSE may be
approximated by means of a system of discrete time-independent NLSEs which sta-
tionary solutions may be explicitly calculated. In particular, a cascade of bifurcations
occurs when the ratio between the nonlinearity strength and the strength of the Stark-
type potential increases; in the opposite situation, that is when this ratio goes to zero,
we recover a local Wannier–Stark ladders picture.

2.1 Notation

By 	
p
R
we denote the space of vectors c = {cn}n∈Z ∈ 	p(Z) such that cn ∈ R are real

valued. Similarly

L p
R

= {ψ ∈ L p : ψ is a real-valued function}.

Let f and g two vectors belonging to a normed space with norm ‖ · ‖, and depending
on the semiclassical parameter h. By the notation f = g + Õ (

e−S0/h
)
, as h → 0,

we mean that for any ρ ∈ (0, S0) there exist a positive constant C := Cρ > 0
(independent of h) such that

‖ f − g‖ ≤ Ce−(S0−ρ)/h, ∀h ∈ (0, h�),
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for some h� > 0. By the notation f ∼ g, as h → 0, we mean that limh→0+ f
g = C

for some C ∈ (0,+∞). By C we denote a generic positive constant independent of
h whose value may change from line to line.

3 Description of themodel and assumptions

Here we consider the nonlinear Schrodinger equation (4) where V (x) is a smooth,
real-valued, periodic and non negative function with period a, i.e.

V (x) = V (x + a), ∀x ∈ R,

and with minimum point x0 ∈ [− 1
2a,+ 1

2a
)
such that

V (x) > V (x0), ∀x ∈
[
−1

2
a,+1

2
a

)
\{x0}.

For argument’s sake we assume that V (x0) = 0 and x0 = 0.
In the following let us denote by xn = x0 + na.
Concerning the perturbation W (x) we assume that it is a smooth, real-valued and

bounded function such that

W (x) = x if |x | ≤ Na,

for some N ∈ N. Furthermore W has compact support � ⊃ [−Na, Na]. In fact,
a Stark potential is such that W (x) ≡ x for any x ; in such a case W (x) is not a
bounded operator and this fact is a source of serious technical problems. For this
kind of reasons we have restricted ourselves to a bounded and compactly supported
Stark-type potential.

Let HB be the Bloch operator formally defined on L2(R, dx) as

HB := −h2 d2

dx2
+ V . (6)

The linear operator H , formally defined as

H = HB + FW

on the Hilbert space L2(R, dx), admits a self-adjoint extension, still denoted by H .
Here, we look for stationary solutions to Eq. (4) of the form

ψ(x, τ ) = e−iλτ/hψ(x)

for some energy λ ∈ R and wave function ψ(x). Hence, Eq. (4) takes the form

Hψ + η|ψ |2σ ψ = λψ. (7)
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Wemust underline that when a stationary solution ψ to Eq. (7) is regular enough then
ψ is, up to a phase factor, a real-valued function. Hence, Eq. (7) can be replaced by
the following equation

Hψ + ηψ2σ+1 = λψ, ψ ∈ L2
R
. (8)

where ψ is real-valued.
Finally, we state our last assumption; it concerns the nonlinearity power: we assume

that

σ = 1.

That iswe restrict ourselves to the case of a cubic nonlinear equationwhere (4) becomes
the so called Gross–Pitaevskii equation.

Our aim is to look for real-valued stationary solutionsψ ∈ H1 to (8)with associated
energy λ ∈ R.

The following results have been proved in forthcoming paper [56] and already
discussed from a physical point of view by [55].

4 Construction of the discrete nonlinear Stark–Wannier equation

We consider low energies: let � the projection operator associated to the first band
[Eb

1 , Et
1] of HB and let �⊥ = 1 − �. Let

ψ = ψ1 + ψ⊥ where ψ1 = �ψ and ψ⊥ = �⊥ψ. (9)

We may write ψ1 by means of a linear combination of a suitable orthonormal base
{un}n∈Z of the space �

[
L2(R)

]
, that is

ψ1(x) =
∑

n∈Z

cnun(x), (10)

where un ∈ H1(R) and

c = {cn}n∈Z ∈ 	2
R
(Z)

since ψ , and then ψ1, is a real-valued function by (8) and un are real valued too.
Roughly speaking each vector un is approximated by the ground state of the operator
−h2 ∂2

∂x2
+ Vn , where Vn is obtained by filling all the wells of the periodic potential V ,

but the one with index n and center at xn .
By inserting (9) and (10) in Eq. (8) then it takes the form

{
λcn = 〈un, HBψ〉 + F〈un, Wψ〉 + η〈un, ψ2σ+1〉, n ∈ Z

λψ⊥ = �⊥ HBψ + F�⊥Wψ + η�⊥ψ2σ+1
, (11)
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where c ∈ 	2
R
and ψ⊥ are such that

‖ψ‖2L2 = ‖c‖2
	2

+ ‖ψ⊥‖2L2 .

If one expands the r.h.s of the first equation of (11) then it finally takes the form

{
λcn = (�1 + FC0)cn − β(cn+1 + cn−1) + Fξ(n)acn + ηC1c2σ+1

n + rn,

λψ⊥ = HBψ⊥ + F�⊥Wψ + η�⊥ψ2σ+1
(12)

where C1 = ‖u0‖2σ+2
2σ+2 ∼ h− σ

2 as h goes to zero, ξ(n) = n, |n| ≤ N , is a bounded
function with compact support; r = {rn}n∈Z is a remainder term such that for any
δ0 > 0 fixed

sup
‖c‖

	1≤δ0

‖r‖	1 ≤ C�
5
2

and

β = Õ(e−S0/h) where S0 = dA(xn, xn+1) =
∫ xn+1

xn

√
V (x)dx

is the Agmon distance between two adjacent wells.

5 Anticontinuous limit of the DNLSWE

Let us set

μS := λ − (�1 + FC0), ν := ηC1, f := Fa, (13)

hence

f ∼ h2 and ν ∼ h2− 1
2 σ . (14)

For argument’s sake, we assume that f , ν ≥ 0. If we neglect the remainder term r
then (12) takes the form

μSgn = −β (gn+1 + gn−1) + f ξ(n)gn + νg2σ+1
n . (15)

and in the anticontinuous limit β → 0 then (15) becomes

(
μS − νd2σ

n

)
dn = f ξ(n)dn,d = {dn}n∈Z ∈ 	2

R
(Z) . (16)
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5.1 Finite-mode solutions to the anticontinuous limit equation (16)

Here,we look for stationary solutionsd ∈ 	2
R
to (16) under the normalization condition

‖d‖2
	2

=
∑

n∈Z

d2
n = 1.

We say that the anticontinuous limit equation (16) has a finite-mode solution if there
exists a solution-set S ⊂ Z with finite cardinality, a real value μS and a normalized
vector dS = {d S

n }n∈Z ∈ 	2
R
(Z) where μS and dS solve

(
μS − νd2σ

n

)
dn = f ξ(n)dn, with dn �= 0 if n ∈ S, (17)

and where d S
n = 0 if n /∈ S. The real valueμS is hereafter called the energy associated

to the stationary solution dS .
In Fig. 1 an example of finite-mode solutions is given; both solution sets are asso-

ciated to the same value of the energy μ = 1
3ν + 7

3 f .
We consider solution-sets S associated to a given rung of the (kind of) Stark–

Wannier ladder satisfying the condition S ⊆ [−N ,+N ] where ξ(n) is a linear
function. That is we consider energies μS in the interval [ν − f N , ν + f N ]. We
can see that stationary solutions to Eq. (17) associated to such solution-sets S may
bifurcate when the ratio ν/ f is a positive integer number.

In order to count how many stationary solutions we have let us introduce the fol-
lowing function denoted by Q(n), where n ∈ N, and defined by the number of ways
of writing the integer number n as a sum of positive integers without regard to order,
with the constraint that all integers in a given partition are distinct. E.g.: Q(1) = 1,
Q(2) = 1, Q(3) = 2 and Q(4) = 2.

Theorem 1 When ν/ f takes the value of a positive integer number then stationary
solutions to (17), associated to solution-sets S ⊂ [−N , N ], bifurcate. Furthermore,
the total number of solutions-sets S associated to a given rung of the (kind of) Wannier–
Stark ladder, assuming that all these sets S are contained in the interval [−N ,+N ],
is given by

M(ν/ f ) =
∑

0<n<ν/ f

Q(n). (18)

A cascade of bifurcation points, when ν/f takes the value of any positive integer,
occurs; indeed, when the ratio ν/f becomes larger than a positive integer n then Q(n)

new stationary solutions appear. This fact can be seen in Fig. 2, where we plot the
values of μ/f , when ν/f belongs to the interval [0, 10], associated to solution-sets S
such that min S = 0, that is we plot the value of energies associated to the 0-th rung of
the (kind of) Wannier–Stark ladder. By translation this picture occurs for each rung
of the ladder and then the collection of values of μ associated to stationary solutions
is going to densely cover intervals of the real axis.
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892 A. Sacchetti

Fig. 1 In the left panel we plot the 4 solutions dS1 corresponding to the solution-set S1 = {0, 3, 4}. In
the right panel we plot the solutions dS1 and dS2 with sign +, corresponding to the solution-sets S1 and
S2 = {0, 2, 5}; both solutions are associated to the same value of the energy μ. Reprinted from [56]
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Fig. 2 Here we plot the values of μ/ f associated to stationary solution-sets S such that min S = 0 and
where N = 1, 2, 3; we can see a cascade of bifurcations when ν/ f increases. Full line represents the
solution corresponding to the 0-th rung of the Stark–Wannier ladder localized on the 0-th cell (N = 1),
broken lines represent the solutions of the same rung of the Stark–Wannier ladder localized on two cells
(N = 2), and finally point lines represent the solutions of the same rung of the Stark–Wannier ladder
localized on three cells (N = 3). Reprinted from [56]

In order to understand why Theorem 1 holds true we assume now that the effective
nonlinearity strength is not zero, that is ν > 0 for argument’s sake. In such a case,
Eq. (17) has finite mode solutions dS = {d S

n }n∈Z, associated to sets S ⊂ Z with finite
cardinality N = �S < ∞, given by

d S
n =

⎧
⎨

⎩

0 if n /∈ S

±
[

μS− f ξ(n)
ν

]1/2σ
if n ∈ S

, (19)

with the condition

μS − f ξ(n) > 0, n ∈ S, (20)

since we have assumed that d S
n ∈ R and ν > 0. The normalization condition reads

1 = ‖dS‖	2 =
∑

n∈S

(d S
n )2 =

∑

n∈S

[
μS − f ξ(n)

ν

]1/σ
. (21)

123



894 A. Sacchetti

In the case N = 1 then S = { j} again for any j ∈ Z and (21) reduces to

μS = ν + f ξ( j)

where condition (20) holds true because we have assumed that ν > 0; the associated
stationary solution dS takes the form:

d S
n =

{
0 if n �= j

± 1 if n = j
.

That is we recover a kind of (perturbed) Stark–Wannier ladder.
From this fact we can conclude that the anticontinuous limit (16) always admits a

ladder-type family of normalized one-mode solutions.

5.2 Finite-mode solutions to equation (17) associated to solution-sets Swith finite
cardinality bigger that 1

In order to look for finite-mode solutions withN > 1 we restrict ourselves to the case
of cubic nonlinearity (i.e. σ = 1) as we have previously assumed; in such a case it
follows that the normalization condition (21) implies that

μS = ν

N + f

N
∑

n∈S

ξ(n) with max
n∈S

ξ(n) <
μS

f
. (22)

Theorem 2 Let S = { j + 	0, j + 	1, . . . , j + 	N−1}, with j ∈ Z and 0 = 	0 < 	1 <

	2 < . . . < 	N−1 positive integer numbers such that

ξ
(

j + 	N−1
)

<
ν

f N + 1

N
N−1∑

k=0

ξ ( j + 	k) (23)

Then S is a solution-set connected to the j-th rung of a (kind of) Stark–Wannier ladder
and Eq. (17) has a N -mode solution

μS = ν

N + f

N
N−1∑

k=0

ξ ( j + 	k) . (24)

First of all, since the stationary problem (17) is translation invariant n → n + 	

and μS → μS − f 	, provided that the solution-sets are contained in the interval
[−N , N ], then we can always restrict ourselves to the 0-th rung of the ladder such
that min S = 0, that is the solution-set has the form S = {0, 	1, . . . , 	N−1} with
0 < 	1 < 	2 < · · · < 	N−1 < N positive and integer numbers. Hence, (22)
becomes
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μS = ν

N + f

N
∑

	∈S

	

and condition (20) implies the following condition on the solution-set S

ν

f
> N max S −

∑

	∈S

	 =
∑

	∈S

[max S − 	] >
∑

	�∈S�

	� (25)

where

S� = {	� := max S − 	 : 	 ∈ S}.

Let S�(ν/ f ) be the collection of sets S� satisfying (25), and let Q�(n) be the
collection of sets of all non negative integer numbers, including the number 0, which
sum is equal to n, without regard to order with the constraint that all integers in a
given partition are distinct; e.g. Q�(1) = {{0, 1}}, Q�(2) = {{0, 2}} and Q�(3) =
{{0, 3}, {0, 1, 2}}. Hence, by construction

S�(n + 1) = S�(n) ∪ Q�(n).

In conclusion, we have shown that the counting function M(ν/ f ) defined as the
number of solution-sets S of integer numbers satisfying the conditions (25) and such
that min S = 0, is given by

M(ν/ f ) =
∑

0<n<ν/ f

Q(n).

Theorem 1 then follows.
One can see that M(ν/ f )growsquite fast, indeed the following asymptotic behavior

holds true:

Q(n) ∼ eπ
√

n/3

4 · 31/4n3/4 as n → ∞.

Hence

M(n) ∼ 1

2
erfi

[√
π(n/3)1/4

]
∼ exp

[
π(n/3)1/2

]

2π(n/3)1/4

as n goes to infinity, where erfi(x) = −i erf(i x) is the imaginary error function. In
particular, since ν

f ∼ C1 ∼ h−σ/2 with σ = 1, then we have that the energy μ lies in

an interval [ν − f N , ν + f N ] with center at ν ∼ h3/2 and amplitude of order h2, and
the number of stationary solutions is of order

M

(
ν

f

)
∼ h1/8eCh−1/4

as h goes to zero,
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896 A. Sacchetti

for some positive constant C . That is the energy spectrum densely fill the interval
[ν − f N , ν + f N ] when h goes to zero.

5.3 When doN -mode stationary solutions arise from (N − 1)-mode stationary
solutions?

If one looks withmore detail the bifurcation cascade one can see that we haveN -mode
solutions for any value of N , provided that S ⊂ [−N , N ] for some N large enough.

Theorem 3 If ν/ f < N (N − 1)/2 then stationary solutions to (16), associated to
solution-sets S ⊂ [−N ,+N ], are localized on a number of sites less than N , at
ν/ f = N (N − 1)/2 a stationary solution localized on N − 1 sites bifurcates and a
new stationary solution localized on N sites arises.

6 Conclusion

Now, we are ready to close our analysis by connecting the stationary solutions to the
discrete NLSE in the anticontinuous limit (16) with the stationary solutions to the GP
equation (4). In particular, by making use of some fixed point arguments developed
with Reika Fukuizumi [23] we are able to prove that:

Theorem 4 Let ν
f /∈ N and let h > 0 small enough. Let σ = 1. Let dS be a

finite-mode normalized solution to the discrete nonlinear Schrodinger equation in
the anticontinuous limit associated to a solution-set S satisfying the assumption of
Theorem 1. Then there exists a stationary solution ψ S to the nonlinear Schrodinger
equation (8) such that

∥∥∥∥∥
ψ S −

∑

n∈S

d S
n un

∥∥∥∥∥
H1

≤ Ch1/4.
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