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Abstract
The onset of instability in autonomous dynamical systems (ADS) of ordinary differ-
ential equations is investigated. Binary, ternary and quaternary ADS are taken into
account. The stability frontier of the spectrum is analyzed. Conditions necessary
and sufficient for the occurring of Hopf, Hopf–Steady, Double-Hopf and unsteady
aperiodic bifurcations—in closed form—and conditions guaranteeing the absence
of unsteady bifurcations via symmetrizability, are obtained. The continuous triopoly
Cournot game of mathematical economy is taken into account and it is shown that
the ternary ADS governing the Nash equilibrium stability, is symmetrizable. The
onset of Hopf bifurcations in rotatory thermal hydrodynamics is studied and the Hopf
bifurcation number (threshold that the Taylor number crosses at the onset of Hopf
bifurcations) is obtained.
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1 Introduction

The prediction of how evolves in time a phenomenon F of the real world, is of
preminent human interest. To this scope, when the behaviour of F can be considered
spatially homogeneous, a state vector U = (U1, U2, · · · , Un)T , with Ui (t), (i =
1, 2, · · · , n), relevant parameters describing the state of F at time t , is introduced.
Then, in order to model the behaviour of F via an O.D.Es system, the existence of a
function F(t,U) such that

dU
dt

= F, t ≥ 0; U(0) = U0, (1.1)

is established with U(0) assigned initial data [1].
Let Ũ denote a fixed solution of (1.1) and u = U − Ũ be the perturbation vector.

Then the behaviour of u is governed by

du
dt

= Lu + Nu, ∀t > 0, u(0) = u0, (1.2)

with u0 initial perturbation to Ū and (Nu)u0 = 0. We assume that

Ū = const., L = ∥
∥ai j

∥
∥ , i, j = 1, 2, · · · , n, ai j = const. ∈ R (1.3)

with ai j independent of t . The stability/instability of Ū is called linear if it is evaluated
via the linear system

du
dt

= Lu, ∀t > 0, u(0) = u0, (1.4)

123



Hopf bifurcations in dynamical systems 813

disregarding the nonlinear contribution Nu.
In the present paper, we investigate the onset of instability via (1.4). Let λi , (i =

1, 2, · · · , n), be the eigenvalues of the n ×n matrix
∥
∥ai j

∥
∥, i.e. the roots of the spectral

equation
det(ai j − λδi j ) = 0, (1.5)

with δi j Kronecker numbers. Setting

Re(λ) = real part of λ, λ∗
i = Re(λi ), λ∗ = max(λ∗

1, λ
∗
2, · · · , λ∗

n), (1.6)

the basic property of the linear stability/instability is
if and only if all the eigenvalues have negative real part (λ∗ < 0), u = 0 is linearly

globally attractive and asymptotically exponentially stable. If λ∗ > 0, then u = 0 is
unstable.

Denoting by σ(λ) the set {λ1, · · · , λn), spectrum of L , it follows that

(a) if and only if—in the complex plane—the spectrum is located in the left-hand side
of the imaginary axis, u = 0 is linearly globally attractive and exponentially
asymptotically stable;

(b) the solution u = 0 is on the frontier of instability when λ∗ = 0, i.e. when exist zero
and/or pure imaginary eigenvalues (all others having negative real part), since
then any small variation of the coefficients ai j can cause the passage to λ∗ > 0
and hence to instability;

(c) if λ∗ = 0, at each λ = λ̄ = 0, (1.4) admits the constant (steady) solution
ū = (ū1, ū2, · · · , ūn)T with ū given by

Lū = 0, det
∥
∥ai j

∥
∥ = 0; (1.7)

(d) if λ∗ = 0, at each λ = iω, (ω > 0), (1.4) admits the periodic (in time) complex

solutions of frequency ω and period
2π

ω
given by

{

u1 = k1eiωt , u2 = k2e−iωt
}

,

with k1 = i�,k2 = −i� corresponding eigenvectors, and exist two real solu-
tions of type {ū1 = � sinωt, ū2 = � cosωt}, with � real vector;

(e) if λ∗ = 0 and exists a null eigenvalue (all the others having negative real part),
at the onset of instability the system passes from the (steady) solution u = 0 to
the steady solution ū given by (1.7) and this passage is called steady bifurcation;

(f) if λ∗ = 0 and exists only one coupling pure imaginary eigenvalue λ = ±iω, with
ω = const. > 0 all the others having negative real part, at the onset of instability
the system passes from the steady solution u = 0 to an unsteady periodic solution
given by the linear combination {ū = (a sinωt + b cosωt)�}, with a and b real
constants and this passage is called Hopf (or rotatory) bifurcation;

(g) if λ∗ = 0 and exist zero eigenvalues and a couple of pure imaginary eigenvalues
λ = ±iω (all the others having negative real part), then at the onset of instability,
occurs a new state composed by steady solutions and a periodic solution and the
bifurcation solution can be called Hopf–Steady (HS) bifurcation.
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814 S. Rionero

(h) if λ∗ = 0 and exist two couples of pure imaginary eigenvalues λ1,2 =
±iω1, λ3,4 = ±iω2 then an Hopf or an unsteady aperiodic bifurcation occurs

according to
ω1

ω2
is or not a rational number.

At the onset of a bifurcation, a new scenario appears but the scenario produced by
the Hopf bifurcations, letting the transition from a steady state to an unsteady state, is
“less continuous” and more impressive from the physical point of view of the steady
bifurcation. Our aim in the present paper is to furnish conditions necessary and/or
sufficient for guaranteeing: (1) the existence of a unsteady bifurcations, periodic and
aperiodic; (2) absence of unsteady bifurcations. Since the existence of bifurcations
requires that the spectrum equation admits roots with zero real part, the starting point
of our approach to the problem at stark is the looking for conditions necessary and/or
sufficient to be satisfied by the characteristic values, coefficients of the spectral equa-
tion, for guaranteeing the existence of eigenvalues with zero real part.

The plan of the paper is the following. Section 2 is devoted to some Preliminaries.
In the Sect. 2.1 the characteristic values of the spectral equation via the

∥
∥ai j

∥
∥ entries

are furnished. Successively in 2.2 the Routh–Hurwitz criterion is recalled. Section 3
is devoted to the stability/instability conditions. Hopf bifurcations are investigated in
Sects. 4, 5 and 6. The case of Hopf bifurcations depending on parameters is investi-
gated in the subsequent Sect.7. Section 8 is devoted to the absence of Hopf bifurcations
in symmetrizable systems, and conditions guaranteeing the symmetrizability are fur-
nished. Applications of the results obtained are furnished in Sect. 9 while Sect. 10
is devoted to the discussion, final remarks and perspectives. The paper ends with
an “Appendix” (Sect. 11) devoted to a necessary conditions for having eigenvalues
with negative real part (Sect. 11.1) and the proof of the Routh–Hurwitz Criterion
(Sect. 11.2). Sections 11.3 and 11.4 are respectively devoted to the eigenvalues of
symmetric matrices and to the invariance of eigenvalues with respect to nonsingular
transformations.

2 Preliminaries

2.1 Spectral equation

The spectrum equation (1.5) can be written

P(λ)
de f=

n
∏

i=1

(λ − λi ) = λn − I1λ
n−1 + I2λ

n−2 + · · · + (−1)nIn = 0, (2.1)

with Ii real constants given by

Ii =
∑

λr1λr2 · · · λri ,

(

r1 + r2 + · · · + ri = i ∈ {1, 2, · · · , n}
r1 �= r2 �= · · · �= ri

)

. (2.2)

The coefficients Ii are the characteristic values of the spectrum equation and are
invariants with respect to the nonsingular transformation {see 11.1} and govern the
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Hopf bifurcations in dynamical systems 815

stability and the kind of instability occurring (bifurcations). These coefficients can be
expressed via the entries of L . Precisely (1.5) implies that Ii is obtained by adding
the principal minors of order i of

∥
∥ai j

∥
∥. In fact, P(λ), being a polynomial of n degree,

can be written (Mac-Lauren)

P(λ) =
n

∑

i=1

P(0)(i)

i ! λi (2.3)

and it follows that

Ii = (−1)i P(0)(i)

i ! , i = 1, 2, · · · , n (2.4)

with Ii obtained by adding the principal minors of order i . For the sake of simplicity,
we verify (2.3) in the case n = 3. Then

P(λ) =
∣
∣
∣
∣
∣
∣

a11 − λ a12 a13
a21 a22 − λ a23
a31 a32 a33 − λ

∣
∣
∣
∣
∣
∣

, (2.5)

implies

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d P

dλ
= −

[∣
∣
∣
∣

a22 − λ a23
a32 a33 − λ

∣
∣
∣
∣
+

∣
∣
∣
∣

a11 − λ a13
a31 a33 − λ

∣
∣
∣
∣
+

+
∣
∣
∣
∣

a11 − λ a12
a21 a22 − λ

∣
∣
∣
∣

]

,

d2P

dλ2
= 2 [(a11 + a22 + a33 − 3λ)] ,

d3P

dλ3
= −6

and hence

P(0) = I3, P ′(0) = −I2, P ′′(0) = 2I1, P ′′′(0) = −6.

It follows that
P(λ) = −(λ3 − I1λ

2 + I2λ − I3) (2.6)

with

I1 = a11 +a22 +a33, I2 =
∣
∣
∣
∣

a11 a12
a21 a22

∣
∣
∣
∣
+

∣
∣
∣
∣

a11 a13
a31 a33

∣
∣
∣
∣
+

∣
∣
∣
∣

a22 a23
a31 a33

∣
∣
∣
∣
, I3 = det

∥
∥ai j

∥
∥ .

(2.7)

2.2 Routh–Hurwitz criterion

In order to determine the stability/instability of the unperturbed solution u ≡ 0, one
only needs to know if all roots of the spectrum equation (1.5) have or not negative real
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816 S. Rionero

part: a direct evaluation of all roots is not needed. The equation (1.5) is an algebraic
equation of n-th degree with real coefficients of type

λn + a1λ
n−1 + a2λ

n−2 + · · · + an = 0. (2.8)

For (2.8), the following property holds {see 11.1}.
Property 1 The conditions

ai > 0,∀i ∈ {1, 2, · · · , n}, (2.9)

are necessary for all roots of (2.8) to have negative real part.

It remains to give a sufficient condition.
The problem of knowing if all the roots of (2.8)—without a direct evaluation of all

roots—will have or not all negative real part, has been solved by Routh in 1877 (for
n = 4, 5) and by Hurwitz in 1895, ∀n ∈ N, via different but equivalent procedures
[2–4].

Following the Hurwitz procedure, let us introduce the n×n (Hurwitz) matrix
∥
∥Hi j

∥
∥

associated to (2.8). The first row, in a sequential array, contains the coefficients with
odd indices of (2.8). The second row contains −1 and the coefficients of (2.8) with
even indices in a sequential array. The remaining entries of

∥
∥Hi j

∥
∥ are given by

{

Hi j = H2 j − 1, for 0 < 2 j − i ≤ n,

Hi j = 0, for (2 j − i) /∈]0, n]

and it follows that

Hurwitz matrix =

∥
∥
∥
∥
∥
∥
∥
∥

a1 a3 a5 · · · 0
1 a2 a4 · · · 0

· · · · · · · · · · · · · · ·
0 0 0 0 an

∥
∥
∥
∥
∥
∥
∥
∥

. (2.10)

The determinants Δi , (i = 1, 2, · · · , n), of the principal diagonal minors of (2.10)
are called Hurwitz determinants and are given by

Δ1 = a1, Δ2 =
∣
∣
∣
∣

a1 a3
1 a2

∣
∣
∣
∣
, Δ3 =

∣
∣
∣
∣
∣
∣

a1 a3 a5
1 a2 a4
0 a1 a3

∣
∣
∣
∣
∣
∣

, · · · (2.11)

Since a1, a2, · · · , an , are the entries of the principal diagonal of (2.10) and the entries
of the last column except the last element an are all equal to zero, one has

Δn = anΔn−1. (2.12)

The following criterion holds {see [2–4] and Sect. 11.2}.
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Hopf bifurcations in dynamical systems 817

Property 2 (Routh–Hurwitz criterion) If and only if

Δi > 0, ∀i ∈ {1, 2, · · · , n}, (2.13)

the roots of the algebraic equation (2.8) with real coefficients, have all negative real
part.

In the case of the spectrum equation (2.1) one has

a1 = −I1, a2 = I2, a3 = −I3, · · · , an = (−1)nIn (2.14)

and the Hurwitz matrix becomes

H-matrix =

∥
∥
∥
∥
∥
∥
∥
∥

−I1 −I3 −I5 · · · 0
1 I2 I4 · · · 0

· · · · · · · · · · · · · · ·
0 0 0 · · · (−1)nIn

∥
∥
∥
∥
∥
∥
∥
∥

. (2.15)

3 Stability conditions

3.1 RH stability conditions for binary ADS

The stability conditions for binary ADS are well known and are taken into account
here only for the sake of completeness. In the case n = 2, (1.4) reduces to

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

du1

dt
= a11u1 + a12u2,

du2

dt
= a21u1 + a22u2.

(3.1)

The corresponding spectrum equation is

λ2 − I1λ + I2 = 0 (3.2)

with

I1 = λ1 + λ2 = a11 + a22, I2 = λ1λ2 = det
∥
∥ai j

∥
∥ = a11a22 − a12a21. (3.3)

The matrix (2.15) and the RH conditions are

Hurwitz matrix =
∥
∥
∥
∥

−I1 0
1 I2

∥
∥
∥
∥

, Δ1 = −I1 > 0, Δ2 = −I1I2 > 0. (3.4)

Therefore
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818 S. Rionero

(i) if and only if

I1 = a11 + a22 < 0, I2 = a11a22 − a12a21 > 0, (3.5)

u ≡ 0 is asymptotically stable and globally attractive;
(ii) if even only one of (3.3) is reversed, there exist eigenvalues with positive real part

and instability occurs.

3.2 RH stability conditions for ternary ADS

In the case n = 3, (1.4) and the corresponding spectrum equation reduce respectively
to ⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

du1

dt
= a11u1 + a12u2 + a13u3,

du2

dt
= a21u1 + a22u2 + a23u3,

du3

dt
= a31u1 + a32u2 + a33u3

(3.6)

and to
λ3 − I1λ

2 + I2λ − I3 = 0, (3.7)

with
I1 = λ1 + λ2 + λ3, I2 = λ1(λ2 + λ3) + λ2λ3, I3 = λ1λ2λ3, (3.8)

given in terms of the coefficients ai j by (2.7). The Hurwitz matrix (2.15) and the
corresponding RH conditions are

∥
∥
∥
∥
∥
∥

−I1 −I3 0
1 I2 0
0 −I1 −I3

∥
∥
∥
∥
∥
∥

(3.9)

and
Δ1 = −I1 > 0,Δ2 = −(I1I2 − I3) > 0,Δ3 = −I3Δ2 > 0. (3.10)

Therefore

(iii) if and only if
I1 < 0, I1I2 − I3 < 0, I3 < 0, (3.11)

u ≡ 0 is asymptotically stable and globally attractive (stable in the large);
(iv) if even only one of (3.11) is reversed, there exist eigenvalues with positive real

part and instability occurs.

We remark that (3.11) ⇒ I2 > 0.
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3.3 RH stability conditions for quaternary ADS

In the case n = 4, the spectrum equation is

P(λ, n = 4) = λ4 − I1λ
3 + I2λ

2 − I3λ + I4 = 0. (3.12)

The Hurwitz matrix and the RH stability conditions are respectively given by

∥
∥
∥
∥
∥
∥
∥
∥

−I1 −I3 0 0
1 I2 I4 0
0 −I1 −I3 0
0 1 I2 I4

∥
∥
∥
∥
∥
∥
∥
∥

(3.13)

and by
{

Δ1 = −I1 > 0, Δ2 = −I1I2 + I3 > 0,
Δ3 = −I3Δ2 − I21I4 > 0, Δ4 = I4Δ3 > 0.

(3.14)

One easily verifies that (3.14) can be reduced to

I1 < 0, I2 > 0, I3 < 0, I4 > 0, Δ3 > 0. (3.15)

In fact
⎧

⎨

⎩

(I4 > 0,Δ3 > 0) ⇒ Δ4 > 0,
{

Δ3 > 0
I3 < 0,I4 > 0

}

⇒ Δ3 + I2
1I4 = −I3Δ2 > 0 ⇒ Δ2 > 0

In view of

−I3Δ2 = I1I2I3 − I23 − I21I4,

the RH stability conditions become

{

I1 < 0, I3 < 0, I4 > 0,
I1I2I3 − I23 − I21I4 > 0.

(3.16)

We remark that (3.16) implies I2 > 0 and that, in view of property 1 and (3.12),
I2 > 0 is necessary for λ∗ < 0.

4 Unsteady bifurcations in binary ADS

4.1 Hopf bifurcations in binary ADS

Property 3 In binary ADS the Hopf bifurcations occur if and only if

I1 = a11 + a22 = 0, I2 = a11a22 − a12a21 > 0, (4.1)
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820 S. Rionero

Table 1 Bifurcation in binary
DS

I1 I2 I21 − 4I2 Eigenvalues Bifurcation

< 0 0 > 0 λ1 = 0, λ2 = I1 Steady

0 > 0 < 0 λ1,2 = ±i
√
I2 Hopf

0 0 0 λ1 = λ2 = 0 Steady

and have ω = √
I2 frequency (Table 1).

Proof (4.1) are necessary. In fact the spectrum equation is given by (3.2) with

I1 = λ1 + λ2, I2 = λ1λ2. (4.2)

If the Hopf bifurcation occurs, then exists a positive ω such that

λ1 = iω, λ2 = −iω, I1 = 0, I2 = ω2. (4.3)

Vice-versa (4.1) are sufficient. In fact (4.1) reduces to (4.2) to

λ2 + I2 = 0 ⇔ λ = ±i
√
I2. (4.4)


�
5 Hopf bifurcations in ternary ADS

Property 4 In ternary ADS the Hopf bifurcations occur if and only if

I1 < 0, I2 > 0, I3 = I1I2 (5.1)

and are periodic in time with period
2π

ω
and frequency ω = √

I2 =
√
I3
I1

.

Proof (5.1) is necessary. In fact, let λ1,2 = ±iω. Then (3.8)1 gives λ3 = I1 < 0 and
(3.7) can be written

(λ − I1)(λ
2 + ω2) = λ3 − I1λ

2 + ω2λ − I1ω = 0, (5.2)

i.e.
I2 = ω2, I3 = I1ω

2 = I1I2. (5.3)

The sufficiency of (5.1) is easily obtained. In fact (5.1) reduces (3.7) to

λ3 − I1λ
2 + I2λ − I1I2 = (λ − I1)(λ

2 + I2) = 0, (5.4)

and one has
λ1,2 = ±i

√
I2, λ3 = I1 (5.5)

and the Hopf bifurcation occurs with period
2π

ω
and frequency ω = √

I2. 
�
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Table 2 Bifurcation in ternary ADS

I1 I2 I3 I1I2 − I3 Eigenvalues Bifurcation

< 0 > 0 0 < 0 λ1 = 0, λ∗ < 0 Steady

< 0 > 0 < 0 0 λ1,2 = ±i
√
I2, λ3 < 0 Hopf

0 > 0 0 0 λ1,2 = ±i
√
I2, λ3 = 0 Hopf–Steady

< 0 0 0 0 λ1 = I1, λ2,3 = 0 Steady

0 0 0 0 λ1 = λ2 = λ3 = 0 Steady

Property 5 In ternary ADS the Hopf–Steady bifurcations occur if and only if

I1 = 0, I2 > 0, I1I2 = I3 = 0 (5.6)

and have period
2π

ω
and frequency ω = √

I2 (Table 2).

Proof In fact, let
λ1,2 = ±iω, λ3 = 0. (5.7)

Then

I1 = λ1 + λ2 + λ3 = 0, I2 = λ1λ2 = ω2, I3 = λ1λ2λ3 = 0 = I1I2. (5.8)

Vice-versa (5.6) reduces (3.7) to

λ(λ2 + I2) = 0. (5.9)


�

6 Hopf bifurcations in quaternary ADS

Property 6 In quaternary ADS the Hopf bifurcations occur if and only if

I1 < 0, I3 < 0, I4 > 0, I3(I1I2 − I3) = I21I4 (6.1)

and occur with period
2π

ω
and frequency ω =

√
I3
I1

.

Proof Let λ1,2 = ±iω and let λ2, λ3 have negative real parts. Then the spectral
equation is

(λ2 + ω2)(λ − λ3)(λ − λ4) = 0, (6.2)

i.e.

λ4 − (λ3 + λ4)λ
3 + (ω2 + λ3λ4)λ

2 − ω2(λ3 + λ4)λ + ω2λ3λ4 = 0 (6.3)
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and one has

⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

I1=λ3 + λ4 < 0, I2=ω2 + λ3λ4 > 0, I3 = ω2(λ3 + λ4) < 0, I4 = ω2λ3λ4,

I1I2 − I3 = (λ3 + λ4)(ω
2 + λ3λ4) − ω2(λ3 + λ4) = (λ3 + λ4)λ3λ4,

I21I4
I3

= (λ3 + λ4)
2ω2λ3λ4

ω2(λ3 + λ4)
= (λ3 + λ4)λ3λ4 = I1I2 − I3, ω2 = I3

I1
,

(6.4)

i.e. (6.1) holds. Vice-versa, let (6.1) holds. Then λ = ±i

√
I3
I1

is solution of (3.12). In

fact, for λ = ±i

√
I3
I1

one has

I1λ
3 + I3λ = λ

(

−I1
I3
I1

+ I3

)

= 0 (6.5)

and (3.12) reduces to
λ4 + I2λ

2 + I4 = 0. (6.6)

In view of (6.1)4, (6.6) becomes

λ4 + I2λ
2 + I3(I1I2 − I3)

I2
1

= 0, (6.7)

verified by λ = ±i

√
I3
I1

. 
�

6.1 Hopf–Steady bifurcations in quaternary ADS

The spectrum equation (3.12) reduces to

λ(λ3 − I1λ
2 + I2λ − I3) = 0, (6.8)

in the case
I4 = 0, (6.9)

to
λ2(λ2 − I1λ

2 + I2) = 0, (6.10)

in the case
I3 = I4 = 0 (6.11)

and to
λ4 + I2λ

2 + I4 = 0, (6.12)
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in the case
I1 = I3 = 0. (6.13)

In view of the results of Sect. 5, the following property holds.

Property 7 In quaternary ADS the Hopf–Steady bifurcations occur if and only if

I1 < 0, I2 > 0, I3 = I1I2, I4 = 0, (6.14)

or
I1 = 0, I2 > 0, I3 = I4 = 0 (6.15)

and the bifurcating solution has period
2π

ω
with ω = √

I2.

6.2 Double-Hopf and unsteady bifurcations in quaternary ADS

We call Double-Hopf bifurcation the case

λ1,2 = ±iω1, λ3,4 = ±iω2, ω1 �= ω2. (6.16)

The following property holds.

Property 8 In quaternary ADS, Double-Hopf bifurcations occur if and only if

I1 = I3 = 0, I2 > 0, I4 > 0, I22 ≥ 4I4 (6.17)

and the bifurcating solution is time dependent and periodic in time in the case

−I2 +
√

I22 − 4I4

−I2 −
√

I22 − 4I4

= p2

q2 , p, q ∈ N. (6.18)

Proof (6.17)–(6.18) are necessary. In fact, let (6.16) holds. Then (3.12) can be written

(λ2 + ω2
1)(λ

2 + ω2
2) = 0, (6.19)

and hence
λ4 + (ω2

1 + ω2
2)λ

2 + ω2
1ω

2
2 = 0. (6.20)

In view of
(ω2

1 + ω2
2)

2 − 4ω2
1ω

2
2 = (ω2

1 − ω2
2), (6.21)

easily (6.17) follows. Vice-versa, in view of (6.17), (6.19) reduces to (6.12) and one
has (6.16) with

ω2
1 =

−I2 +
√

I2
2 − 4I4

2
, ω2

2 =
−I2 −

√

I2
2 − 4I4

2
. (6.22)
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Table 3 Bifurcation in quaternary ADS

I1 I2 I3 I4 I3(I2I2−I3)
− I21I4

Bifurcations Frequency

< 0 > 0 < 0 > 0 0 Hopf
√
I3
I1

< 0 > 0 I1I2 0 0 Hopf–Steady
√
I2

0 > 0 > 0, <
1

4
I22 0 Hopf ω = ω1

p1
= ω2

p2
ω1

ω2
= p1

p2
rational

number

0 > 0 > 0, <
1

4
I22 0 Unsteady

aperiodic

ω1

ω2
= irrational number

The bifurcating solution is composed by two periodic solutions of period
2π

ω1
and

2π

ω2
and Hopf bifurcation occurs if

ω1

ω2
= p1

p2
, with pi ∈ N, i = 1, 2, (6.23)

with the period given by T = 2π p1
ω1

= 2π p2
ω2

and frequency ω = ω1

p1
= ω2

p2
. Is an

unsteady aperiodic bifurcation when (6.23) does not hod. 
�
Remark 1 In the case

I1 = I2 = I3 = 0, I4 > 0, (6.24)

(6.12) reduces to λ4 + I4 = 0 and one has λ = √±i(I4)
1
4 . Since {√i =

±1 + i√
2

, {√−i = ±1 − i√
2

}, two eigenvalues have positive real part and hence the

zero solution is unstable (Table 3).

7 Hopf bifurcations parameter depending

Let ai j , (i, j = 1, 2, · · · , n), depend continuously on a positive parameter R and let
exists a positive value RC such that

⎧

⎪⎨

⎪⎩

R < RC ⇒ Δi > 0, ∀i ∈ {1, 2, · · · , n},

R > RC ⇒ Δi < 0, for at least one i ∈ {1, 2, · · · , n},
(7.1)

with Δi Hurwitz determinants. Rc is the critical value of R since it is the instability
threshold and R = RC implies the existence of eigenvalues (at least one) λci , with
zero real part. Let

123



Hopf bifurcations in dynamical systems 825

⎧

⎪⎪⎨

⎪⎪⎩

RC S = min
R∈R+ R : In = 0,

RC H = min
R∈R+ R : P(eiω) = 0

(7.2)

with ω real positive number and let eiωt root of the spectrum equation (2.1). Then,
since λ = 0 ⇔ In = 0, it follows that Hopf bifurcations occur if and only if

RC H < RC S, (7.3)

and one has RC = RC H . Setting

Rr = min
R∈R+ R : Ir = 0, r = 1, 2, · · · , n, (7.4)

one has
Rn = RC S (7.5)

and if and only if
Rn = RC S < RC H , (7.6)

steady bifurcations occur. In the sequel of this section, we assume that Ir (R) is a
non-decreasing or a non-increasing function of R according too r be odd or even.

7.1 Hopf bifurcations parameter depending in binary ADS

Property 9 Let
⎧

⎪⎨

⎪⎩

n = 2, I1(R1) = 0, R1 < R2,

I1 < 0, I2 > 0, ∀R ∈]0, R1[.
(7.7)

Then instability occurs at R = R1 via Hopf bifurcation associated to the eigenvalues
λ = ±i

√
I2.

Proof In fact, at R = R1 the spectrum equation reduces to λ2 + I2 = 0. 
�

7.2 Hopf bifurcations parameter depending in ternary ADS

Property 10 If and only if

0 < R12 = min(R1, R2) < R3 = RC S, (7.8)

Hopf bifurcation occurs and occurs at R̄ < R12 lowest positive root of I1I2 −I3 = 0

and the frequency of the bifurcating solution is

√
I3
I1

.
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Proof In fact, (7.8) is obviously necessary. Vice-versa, since (7.8) implies

I1 < 0, I2 > 0, I3 < 0, I1I2 − I3 < 0, at R = 0 (7.9)

and ⎧

⎨

⎩

(I1I2) = 0,
at R = R1R2

I1I2 − I3 = −I3 > 0
(7.10)

it follows that I1I2 − I3 = 0 has roots for R ∈]0, R12[. Let R̄ be the lowest root.
Then at R = R̄, I1I2 − I3 = 0 and at R = R̄

λ3 − I1λ
2 + I2λ − I3 = 0, (7.11)

reduces to
λ3 − I1λ

2 + I2λ − I1I2 = 0, (7.12)

i.e. to
(λ − I1)(λ

2 + I2) = 0 (7.13)

and one has

λ1 = I1 < 0, λ2,3 = ±i
√
I2 = ±i

√
I3
I2

. (7.14)


�

7.3 Hopf bifurcations parameter depending in quaternary ADS

Property 11 If and only if

0 < R123 = min(R1, R2, R3) < R4 = RC S, (7.15)

Hopf bifurcation occurs and occurs at R̄ < R123 lowest positive root of

(I1I2 − I3) = I21I4, (7.16)

with the frequency ω =
(√

I3
I1

)

(R=R̄)

.

Proof (7.15) is obviously necessary. Vice-versa since, at R = 0, (7.15) implies

I1 < 0, I2 > 0 I3 < 0, (I1I2 − I3) − I21I4 > 0 (7.17)

and at R = R123

⎧

⎪⎨

⎪⎩

I1I2I3 = 0,

(I1I2 − I3)I3 − I21I4 = −I2
3 − I2

1I4 < 0,

(7.18)
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it follows that (7.16) has roots for R ∈]0, R123[. Let R̄ be the lowest root. Then, at
R = R̄ one has

λ4 − I1λ
3 + I2λ

2 − I1λ + I3

I2
1

(I1I2 − I3) = 0. (7.19)

For λ = ±i

(√
I3
I1

)

(R=R̄)

, in view of {see (6.5)}

(I1λ
3 + I3λ)(R=R̄) = 0, (7.20)

(6.12) at R = R̄ reduces to
λ4 + I2λ

2 + I4 = 0 (7.21)

and is verified {see (6.7)} by λ = ±i

(√
I3
I1

)

(R=R̄)

. 
�

Remark 2 If the entries depend on two positive parameters, R, T , then, ∀n ∈ N, one
has that RC S and RC H depend on T and the Hopf bifurcations occur only for the
values of T such that RC H < RC S .

8 Absence of unsteady bifurcations in ADS

The present section is devoted to the ADS in which Hopf bifurcations are totally
absent. This happens when L = ∥

∥ai j
∥
∥ is a symmetric or symmetrizable n × n matrix.

In fact, when
ai j = a ji , i �= j (8.1)

as it is well known (see “Appendix A3”), the eigenvalues are all real numbers and the
frontier of instability is given by null eigenvalues. The eigenvalues of L = ∥

∥ai j
∥
∥ are

all real numbers also when (8.1) does not hold but L is symmetrizable according to
the following property.

Property 12 Let exists a non singular transformation u = L̃V such that

L = (L̃)−1 · L · L̃ = ∥
∥bi j

∥
∥ , (8.2)

be symmetric. Then L is said symmetrizable and its eigenvalues are all real.

Proof By virtue of the invariance principle {see 11.4}, L and L have the same eigen-
values (all real). 
�

8.1 Binary symmetrizable systems

Let
n = 2, a12a21 > 0. (8.3)

Then L is symmetrizable.
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In fact, let μ �= 0 be a scaling to be determined and set

u = L̃ · V, with L̃ =
∥
∥
∥
∥

1 0
0 μ

∥
∥
∥
∥

. (8.4)

Then L̃ is non-singular and (8.4) implies {u1 = V1, u2 = μV2} and
⎧

⎪⎨

⎪⎩

du1

dt
= a11u1 + a12u2

du2

dt
= a21u1 + a22u2

⇔

⎧

⎪⎪⎨

⎪⎪⎩

dV1

dt
= a11V1 + μa12V2

dV2

dt
= a21

μ
V1 + a22V2.

(8.5)

Therefore
μa12 = a21

μ
⇒ μ2 = a21

a12
(8.6)

and (8.5)2 becomes

dV
dt

= LV, L =
∥
∥
∥
∥

a11
√

a12a21√
a12a21 a22

∥
∥
∥
∥

(8.7)

8.2 Ternary symmetrizable systems

Let
n = 3, ai j �= a ji , ai j a ji > 0, i �= j, a12a23a31 = a21a32a13. (8.8)

Then L is symmetrizable.
In fact, let μ �= 0, δ �= 0 be scalings to be determined and set

u = L̃ · V, L̃ =
∥
∥
∥
∥
∥
∥

1 0 0
0 μ 0
0 0 δ

∥
∥
∥
∥
∥
∥

. (8.9)

Then L̃ is non-singular and (8.9) implies {u1 = V1, u2 = μV2, u3 = δV3} and
⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

du1

dt
= a11u1 + a12u2 + a13u3

du2

dt
= a21u1 + a22u2 + a23u3

du3

dt
= a31u1 + a32u2 + a33u3

⇔

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dV1

dt
= a11V1 + a12μV2 + a13δV3

dV2

dt
= a21

μ
V1 + a22V2 + δ

μ
a23V3

dV3

dt
= a31

δ
V1 + μ

δ
a32V2 + a33V3

(8.10)
Therefore

a12μ = a21
μ

, a13δ = a31
δ

, a23
δ

μ
= μ

δ
a32, (8.11)

require

μ2 = a21
a12

, δ2 = a31
a13

,

(
δ

μ

)2

= a32
a23

. (8.12)
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The consistency of (8.12), in view of

(
δ

μ

)2

= a32
a23

,
δ2

μ2 = a31
a13

a12
a21

,

is guaranteed by the assumption

a12a23a31 = a21a32a13 ⇔ a32
a23

= a31a12
a21a13

. (8.13)

In view of

a12μ = a21
μ

= √
a12a21, a13δ = a31

δ
= √

a13a31, a23
δ

μ
= μ

δ
a32 = √

a23a32,

(8.14)
(8.10)2 becomes

dV
dt

= LV, L =
∥
∥
∥
∥
∥
∥

a11
√

a12a21
√

a13a31√
a12a21 a22

√
a23a32√

a13a31
√

a23a32 a33

∥
∥
∥
∥
∥
∥

(8.15)

If a12a21 = 0, (8.13)1 holds and

{

δ2 = a31
a13

,

(
δ

μ

)2

= a32
a23

}

⇔ δ2 = a31
a13

, μ2 =
a31a23
a13a32

and

dU
dt

= LU, L =
∥
∥
∥
∥
∥
∥

a11 0
√

a13a31
0 a22

√
a23a32√

a13a31
√

a23a32 a33

∥
∥
∥
∥
∥
∥

.

8.3 Quaternary symmetrizable systems

Let {

n = 4, ai j a ji > 0, i �= j, a12a23a31 = a21a32a13,
a12a24a41 = a21a42a14, a13a34a41 = a31a43a14.

(8.16)

Then L is symmetrizable and

du
dt

= LV is equivalent to
dV
dt

= LV,

with

L =

∥
∥
∥
∥
∥
∥
∥
∥

a11
√

a12a21
√

a13a31
√

a14a41√
a12a21 a22

√
a23a32

√
a24a42√

a13a31
√

a23a32 a33
√

a34a43√
a14a41

√
a24a42

√
a34a43 a44

∥
∥
∥
∥
∥
∥
∥
∥

(8.17)

Proof The proof is obtained following step by step the procedure given in 8.2. 
�
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Remark 3 Following step by step the previous procedure, for any 1 < m ≤ n, one
finds the requests on the entries ai j to be added to {ai j a ji > 0, i, j = 1, 2, · · · , m} in
order to guarantee the symmetrizability of a m × m matrix L .

9 Applications

9.1 Cournot triopoly game

Oligopoly theory studies the competitions between firms producing the same good
[5]. Starting from the pioneering works of Cournot [6], this theory is one of the most
intensively areas of mathematical economy. We refer to [7] for the general setting
of the theory and the many contributions existing in the international literature. We
confine ourselves to the basic setting of the theory.

Let G be the good and let be Fk, (k = 1, 2, · · · , n), the firms producing G; xk , the
output quantity of Fk ; p, the price (inverse demand) of G; Ck = ck x2k , ck =positive
constant, the cost function of Fk ; Πk = pxk − Ck , the profit of Fk and assume that:

(1) the price p depends on all the good products

p = f (Q), Q =
n

∑

k=1

xk; (9.1)

(2) p is a linear non-increasing function of Q

p = a − bQ, (9.2)

with a, b positive constants;
(3) the profit Πk of Fk be given by

Πk = pxk − Ck = pxk − ck x2k = xk(p − ck xk) = xk

⎡

⎣a − b
n

∑

j=1

x j − ck xk

⎤

⎦ .

(9.3)

The value of outputs maximizing the profit is

xk = rk(x j ) = max
xk

Πk ⇔

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂Πk

∂xk
= a − b

n
∑

j=1, j �=k

x j − 2bxk − 2ck xk = 0,

∂2Πk

∂x2k
= −2(b + ck) < 0

(9.4)
It is easily found that

xk = 1

2(b + ck)

⎛

⎝a − b
n

∑

j=1, j �=k

x j

⎞

⎠ . (9.5)
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The expectations are said to be homogeneous when the firms (players) use the same
strategy to decide their outputs in the market; heterogeneous when the firms use dif-
ferent strategies to decide their outputs in the market.

Let n = 3 (triopoly game) and let the players use different strategies.

(1) The first player F1 does not have a complete knowledge of the demand function of

the market and builds his output on the basis of the expected marginal profit
∂Πk

∂xk
.

Then the discrete dynamical equation of F1 is

x1(t + 1) − x1(t) = αx1
∂Π1

∂x1
, (9.6)

with α positive parameter (relative speed adjustment), based on a bounded rationality.
It follows that

x1(t + 1) − x1(t) = αx1[a − 2(b + c1)x1 − b(x2 + x3)]. (9.7)

Assuming that the second players F2 thinks with adaptive expectation i.e. he computes
his outputs with weights between his last output and his reaction function r2(x1, x3),
one has

x2(t + 1) − x2(t) = −νx2 + ν

2(b + c2)
[a − b(x2 + x3)], (9.8)

ν ∈ [0, 1] speed adjustment of the adaptive player.
Finally let F3 be a “naive player” i.e. he computes his outputs using the reaction

function (9.4) (without introducing any speed of adjustment)

x3(t + 1) − x3(t) = −x3(t) + 1

2(b + c3)
[a − b(x1 + x2)]. (9.9)

Then the discrete triopoly game model is given by

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

x1(t + 1) − x1(t) = αx1 [a − 2(b + c1)x1 − b(x2 + x3)] ,

x2(t + 1) − x2(t) = −νx2 + ν

2(b + c2)
[a − b(x1 + x3)] ,

x3(t + 1) − x3(t) = −x3 + 1

2(b + c3)
[a − b(x1 + x2)]

(9.10)

and the continuous triopoly game model is given by the ternary ADS of ODE

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dx1
dt

= αx1 [a − 2(b + c1)x1 − b(x2 + x3)] ,

dx2
dt

= −νx2 + ν

2(b + c2)
[a − b(x1 + x3)] ,

dx1
dt

= −x3 + 1

2(b + c3)
[a − b(x1 + x2)]

(9.11)
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The equilibrium points of (11.11) [and (11.10)] are

E1 =
(

0,
a(b + 2c3)

3b2 + 4b(c2 + c3) + 4c2c3
,

a(b + 2c2)

3b2 + 4b(c2 + c3) + 4c2c3

)

(9.12)

and the Nash equilibrium—in which each firm has the expected profit

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

E2 =
(

a[b2 + 2b(c2 + c3) + 4c2c3]
A ,

a[b2 + 2b(c1 + c3) + 4c1c3]
A ,

a[b2 + 2b(c1 + c2) + 4c1c2]
A

)
(9.13)

with

A = 2[2b3 + 3b2(c1 + c2 + c3) + 4b(c1c2 + c2c3 + c1c3) + 4c1c2c3] (9.14)

Setting
xi = x̄i + Yi (9.15)

(11.11) gives

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dY1

dt
= α(x̄1 + Y1)[a − 2(b + c1)(x̄1 + Y1) − b(x̄2 + x̄3) − b(Y2 + Y3)],

dY2

dt
= −ν(x̄2 + Y2) + ν

2(b + c2)
[a − b(x̄1 + x̄3) − b(Y1 + Y3)],

dY3

dt
= −(x̄3 + Y3) + 1

2(b + c3)
[a − b(x̄1 + x̄2) − b(Y1 + Y2)]

(9.16)
Linearizing, one obtains

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dY1

dt
= α x̄1[a − 2(b + c1)(x̄1 + Y1) − b(x̄2 + x̄3) − b(Y2 + Y3)]+

+αY1[a − 2(b + c1)x̄1 − b(x̄2 + x̄3)],

dY2

dt
= −νY2 + ν

2(b + c2)
[a − b(Y1 + Y3)],

dY3

dt
= −Y3 + 1

2(b + c3)
[−b(Y1 + Y2)]

(9.17)
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9.1.1 Linear stability of E1

Setting
X = E1 + Y, E1 = (0, x̄1, x̄2), (9.18)

one has
dY
dt

= LY, (9.19)

with

L =

⎛

⎜
⎜
⎜
⎝

α[a − b(x̄2 + x̄3)] 0 0

− νb

2(b + c2)
−ν − νb

2(b + c2)

− b

2(b + c3)
− b

2(b + c3)
−1

⎞

⎟
⎟
⎟
⎠

(9.20)

and

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

I1 = α[a − b(x̄2 + x̄3) − (1 + ν)],
I2 = −α[a − b(x̄2 + x̄3)](1 + ν) + ν

3b2 + 4b(c2 + c3) + 4c2c3
4(b + c2)(b + c3)

,

I3 = αν[a − b(x̄2 + x̄3)]3b2 + 4b(c2 + c3) + 4c2c3
4(b + c2)(b + c3)

(9.21)

Since

a − b(x̄2 + x̄3) = a
b2 + 2b(c2 + c3) + 4c2c3
3b2 + 4b(c2 + c3) + 4c2c3

(9.22)

one has
I3 > 0 ⇔ E1 is unstable ∀(a.b.c1, c2, c3, α, ν). (9.23)

9.1.2 Linear stability of (Nash) equilibrium point E2

Setting
X = E2 + Z (9.24)

one has
dZ
dt

= LZ (9.25)

with

L =

⎛

⎜
⎜
⎜
⎝

−2α(b + c1) ¯̄x1 −αb ¯̄x1 −αb ¯̄x1
− νb

2(b + c2)
−ν − νb

2(b + c2)

− b

2(b + c3)
− b

2(b + c3)
−1

⎞

⎟
⎟
⎟
⎠

, (9.26)

one easily verifies that
{

ai j a ji > 0,

a12a23a31 = a13a21a32.
(9.27)
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Hence: L(E2) is symmetrizable, the eigenvalues are real numbers and steady bifur-
cation occurs at I3 = 0, with I3 given by

I3 = αb2ν

[
1

2(b + c3)

(
b

2(b + c2)
+ 1

)

+ 1

2(b + c2)

(

1 − b

2(b + c3)

)]

¯̄x1

+ − 2αν(b + c1) ¯̄x1
(

1 − b2

4(b + c2)(b + c3)

)

(9.28)

9.2 Hopf bifurcations in rotatory thermal hydrodynamic

The linear stability of the thermal conduction in a horizontal layer L heated from
below, rotating uniformly about a vertical axis—in the free-free boundary case—is
governed by the stability of the zero solution of the ternary ADS [8]

d

dt

⎛

⎝

X1
X2
X3

⎞

⎠ = L

⎛

⎝

X1
X2
X3

⎞

⎠ (9.29)

with

L =

⎛

⎜
⎜
⎝

−Pr (a2 + π2)
PrT

a2 + π2

a2Pr R

a2 + π2

−PrT π2 −Pr (a2 + π2) 0
R 0 −(a2 + π2)

⎞

⎟
⎟
⎠

(9.30)

with a2, Pr , R, T non-negative parameters [9–11].
The spectral equation is

λ3 − I1λ
2 + I2λ − I3 = 0, (9.31)

with the invariants Ir , (r = 1, 2, 3), given by

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

I1 = −(2Pr + 1)ξ, I2 = a2Pr

ξ

[
(2 + Pr )ξ

3 + PrT 2π2

a2

]

,

I3 = a2Pr

[

R2 − ξ3 + T 2π2

a2

]

, ξ = a2 + π2

(9.32)

and, via the Hurwitz criterion, setting

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

R2 = min
a2∈R+

(2 + Pr )(a2 + π2)3 + PrT 2π2

a2 ,

R3 = min
a2∈R+

(a2 + π2)3 + T 2π2

a2

(9.33)
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the conditions
R2 − R2 < 0, R2 − R3 < 0, (9.34)

are necessary stability conditions while

R2 − R2 < 0, R2 − R3 < 0, R2 − R4 < 0, (9.35)

with R4 lowest R2 such that I1I2 − I3 = 0, and

R2 < min(R2, R3) (9.36)

is necessary for the stability. On the other hand R2 = R3 ⇔ I3 = 0 and I3 = 0
implies the existence of a zero solution of (9.31). then it follows that R3 < R2 implies
steady bifurcation at R2 = R3 and Hopf bifurcation can occur only for R2 < R3 at
R2 < R2. One easily verifies that Pr < 1 is necessary for R2 < R3 and that, setting

F2 = (2 + Pr )ξ
3 + PrT 2π2, F3 = ξ3 + T 2π2, (9.37)

one has [8] ⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

F2 − F3 ≤ 0 ⇔ ξ3 ≤ ξ3∗ = 1 − Pr

1 + Pr
T 2π2,

d(F2 − F3)

dξ3
= 1 + Pr > 0.

(9.38)

In view of
(F2 − F3)(ξ=ξ∗) = 0 (9.39)

and (9.38)2, it follows that
(F2 − F3)(a2=0) < 0. (9.40)

Then (9.39)–(9.40) are necessary and sufficient for having RC2 < RC3 . One easily
verifies that the bifurcation number, i.e. the threshold that T 2 has to cross for the onset
of Hopf bifurcation, is given by

Tc = 1 + Pr

1 − Pr
π4 (9.41)

and one has that: The thermal conduction i the rotating layer L:

a) can be stable only if R2 < (R2, R3);
b) the inequality R2 < R3 is equivalent to

T 2 > Tc > 0 (9.42)

c) instability occurs via Hopf bifurcation if and only if (9.42) holds and occurs at
R2 < R2 given by the lowest positive root of I1I2 − I3 = 0
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d) instability occurs via steady bifurcation at R2 = R3 for

Pr ≥ 1 (9.43)

and for
Pr < 1, T ≤ Tc. (9.44)

As concerns the critical value of a2 at which the Hopf bifurcation occurs, being

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

I1I2 = I3 ⇔ 2Pr R2 = (1 + Pr )(a2 + π2)3 − (1 − Pr )T 2π2

a2 ,

d(2Pr R2)

da2 = 0 ⇔ 2(a2 + π2)3 − 3π2(a2 + π2)2 + 1 − Pr

1 + Pr
T 2π2 = 0

(9.45)
one has that the Hopf bifurcation occurs at

R2 = R4 = 1

2Pr

(1 + Pr )(a2
c4 + π2)3 − (1 − Pr )T 2π2

a2
c4

, (9.46)

with a2
c4 lowest positive root of the cubic equation

2(a2 + π2)3 − 3π2(a2 + π2)2 + 1 − Pr

1 + Pr
T 2π2 = 0. (9.47)

10 Discussion, final remarks and perspectives

(i) The paper concerns the onset of bifurcations in binary, ternary and quaternary
ADS;

(ii) Conditions necessary and sufficient for the onset of Hopf bifurcations, in closed
form, are furnished;

(iii) Hopf–Steady, Double-Hopf and unsteady aperiodic bifurcations are taken into
account;

(iv) Conditions guaranteeing steady bifurcations, via symmetrizability of ADS, are
furnished;

(v) Continuous triopoly Cournot game ADS of mathematical economy is taken into
account and its symmetrizability is found;

(vi) Hopf bifurcations in rotatory thermal hydrodynamic, are characterized via the
Taylor number instability threshold;

(vii) Although conditions guaranteeing the onset of Hopf bifurcations have been
furnished inmanyADS{see, for instance, [9–11]}, as far aswe know, the general
analysis furnished in the present paper, appears new in the existing literature and
could be generalized to multicomponent (n > 4) ADS. In particular, in the case
n > 4, when bifurcations depend on a parameter R, in view of (7.2)–(7.6) and
properties 9–11, the following result holds:
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If and only if

R < R12....n−1 = min(R1, R2, · · · , Rn−1) < Rn, (10.1)

Hopf bifurcation occurs and occurs at R̄ < R12···n−1, lowest positive root of
(7.2)2;

(viii) If and how the results obtained in the present paper can be generalized to ADS
of PDEs, is the scope of works in progress.

Acknowledgements This work has been performed under the auspices of the G.N.F.M. of INdAM.

11 Appendix

11.1 Proof of Property 1

Let Reλi < 0, ∀i . In view of

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λi < 0 ⇔ λ − λi = λ + |λi |,

{λi < 0, λ j < 0} ⇒ (λ − λi )(λ − λ j ) = λ2 + |λi + λ j |λ + |λiλ j |,

{λr = −α ± iβ, α > 0} ⇒ (λ − λr )(λ − λ̄r ) = (λ + α)2 + β2,

and the Berout’s factorization

P(λ) =
n

∏

i=1

(λ − λi ),

(2.8) immediately follows. One easily realizes that (2.9) are only necessary. In fact

λ3 + 27 = 0 admits the roots λ1,2 = 3

2
(1 ± i

√
3) with Reλ1,2 = 3

2
.

11.2 On Routh–Hurwitz criterion

In the case n = 1, the spectrum equation is λ + a1 = 0, i.e. λ < 0 ⇔ a1 > 0 which
is the H-stability condition. In the case n = 2, the roots of the spectrum equation
λ2 + a1λ + a2 = 0, in view of {a1 = −(λ1 + λ2), a2 = λ1λ2}, have negative real part
iff a1 > 0, a2 > 0. Being Δ1 = a1,Δ2 = a1a2, {a1 > 0, a2 > 0} ⇔ {Δ1 = a1 >

0,Δ2 = a1a2 > 0}. By induction one easily shows that the Hurwitz criterion holds
for n = 3. Let λ1 be the real root in the case n = 3. Then the spectrum equation can
be written

P(λ, n = 3) = (λ − λ1)P(λ, n = 2) = (λ − λ1)(λ
2 + a1λ + a2) =

= λ3 + (a1 − λ1)λ
2 + (a2 − a1λ)λ − λ1a2 = 0
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and the H-matrix and the H-conditions are

∥
∥
∥
∥
∥
∥

a1 − λ −λ1a2 0
1 a2 − a1λ1 0
0 a1 − λ1 −λ1a2

∥
∥
∥
∥
∥
∥

,

{

a1 − λ1 > 0, −λ1a2 > 0,
a1a2 − λ1a2

1 + λ21a1 > 0
(11.1)

Therefore, assuming that P(λ, n = 2) verifies the H-conditions {a1 > 0, a1a2 >

0}, guaranteeing Reλ2,3 < 0, it follows that, λ1 < 0 if and only if (11.1) occurs.
An analogous procedure can be applied to any ADS constituted by odd number of
equations

P(λ, n = 1 + 2q) = (λ − λ1)P(λ, n = 2q) = 0

with λ1 real and q ∈ N and assuming that the criterion holds in the case n = 2q. We
refer to [2–4] for further details on the RH criterion and its elaborate proof ∀n.

11.3 Real eigenvalues of symmetric matrices

Let
du
dt

= Lu, L = ∥
∥ai j

∥
∥ (11.2)

and let, by contradiction, λ = α + iβ with β �= 0 be a complex eigenvalue. In view of

{

L · k = λI · k,

k̄ · L · k = λk̄ · I · k,
(11.3)

with k = (k1, k2, · · · , kn) and k̄ = (k̄1, k̄2, · · · , k̄n) complex conjugate eigenvectors

kr = ar + ibr , k̄r = ar − ibr , (11.4)

one has
⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1−n
∑

r ,s

arsks k̄r = λ

1−n
∑

r ,s

δrsks k̄r ,

1−n
∑

r ,s

asr kr k̄s = λ

1−n
∑

r ,s

δsr kr k̄s .

(11.5)

In view of ai j = a ji it follows that

1−n
∑

r ,s

ars(ks k̄r + kr k̄s) = λ

1−n
∑

r ,s

δrs(ks k̄r + kr k̄s). (11.6)

In view of
ks k̄r + kr k̄s = 2(ar as + br bs), (11.7)
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(11.6) implies

λ =

1−n
∑

rs

ars(ar as + br bs)

n
∑

r=1

(a2
r + b2r )

= real number ⇒ β = 0. (11.8)

11.4 Invariance principle

The spectrum of (11.2) is invariant with respect to the non-singular transformation

u = L̃ · v, (det L̃ �= 0). (11.9)

In fact, (11.2) implies

L̃
dv
dt

= (L L̃)v (11.10)

and hence
dv
dt

= ((L̃)−1L L̃)v. (11.11)

The spectrum equation of (11.11) is

det((L̃)−1L L̃ − λI) = 0, (11.12)

with

Ii j = δi j =
{

1 i = j
0 i �= j .

(11.13)

In view of (L̃)−1IL̃ = I, one obtains

(L̃)−1L L̃ − λ(L̃)−1IL̃ = (L̃)−1(L − λI)L̃ (11.14)

and (11.12) is equivalent to

det[(L̃)−1(L − λI)L̃] = det(L̃)−1 det(L − λI) det L̃ = 0. (11.15)

Then det L̃ �= 0 ⇒ det(L̃)−1 �= 0 and (11.15) reduces to det(L − λI) = 0, the
spectrum of (11.2).
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