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Abstract
We construct square and target patterns solutions of the FitzHugh–Nagumo reaction–
diffusion system on planar bounded domains. We study the existence and stability
of stationary square and super-square patterns by performing a close to equilibrium
asymptotic weakly nonlinear expansion: the emergence of these patterns is shown to
occur when the bifurcation takes place through a multiplicity-two eigenvalue without
resonance. The system is also shown to support the formation of axisymmetric target
patterns whose amplitude equation is derived close to the bifurcation threshold. We
present several numerical simulations validating the theoretical results.

Keywords FitzHugh–Nagumo model · Turing instability · Square patterns ·
Amplitude equations

Mathematics Subject Classification 37L10 · 70K50 · 35B36

1 Introduction

In this paper we shall investigate the process of Turing pattern selection for the
FitzHugh–Nagumo model (FN) that, in the adimensionalized form, writes as:

∂u

∂t
= Γ [−u3 + u − v] + ∇2u, (1.1)

∂v

∂t
= Γ [β(u − αv)] + d∇2v. (1.2)
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In the above system u(x, t) and v(x, t) represent the densities of two species, being
x ∈ Ω ⊂ R

n . In the present paper we shall consider the cases n = 1, 2,Ω being either
a bounded interval or a rectangular domain. We shall impose homogeneous Neumann
boundary conditions:

n · ∇u(x, t) = n · ∇v(x, t) = 0 when x ∈ ∂Ω,

where n is the outward normal of ∂Ω .
The parameter β is the ratio of the characteristic time scales of the two species,

α controls the relative position and the number of intersections of the nullclines, d
is the ratio between the diffusion coefficients of the two species, and the constant Γ

regulates the domain size. All parameters are non negative.
The FN equations were initially derived as a mathematical simplification of the

Hodgkin-Huxley model to describe the flow of an electric current through the surface
membrane of a nerve fiber [14,23]. In the resulting reaction–diffusion system u repre-
sents the electric potential, v a recovery variable and the diffusion term appears only
in the equation for u (therefore d = 0).

More recently, the FN systemhas appeared in themodeling of population dynamics.
In [33] it has been shown that the local dynamics of phytoplankton and zooplankton can
be described with a simple ODE model having a mathematical structure analogous
to the FN kinetics. In [5,8,34] the FN model has been employed to describe the
excitable character of the dynamics in a predator–prey interaction. In the framework of
population modeling diffusion of both species must be considered (therefore d > 0),
with the consequence that the diffusion term appears in both equations of the FN
system.

In this paper we shall be mainly concerned with the pattern forming properties
of the FN equations. Reaction–diffusion systems, with diffusion and cross-diffusion
terms, have been largely adopted to describe the spontaneous formation of inhomo-
geneous structures in many contexts [3,7,10,12,15,21,27]; however the capability of
the FN equations to generate, through Turing bifurcation, coherent structures, has
been addressed only recently, see [41], where the driving mechanism is classical dif-
fusion, and [24], where super-diffusive effects are considered. In [24,41] the authors
consider the degenerate case, namely when the bifurcation occurs through a multi-
ple eigenvalue, and derive the amplitude equations corresponding to the resonance
of three active modes. This produces the occurrence of striped, hexagonal or mixed
structure patterns, which are widely studied and often observed in many reaction–
diffusion systems. Stationary squares are rarely found in experiments and simulations
and are usually unstable; however, square aggregates, during the last 10/15years have
been experimentally found in a variety of systems, starting from fluid dynamics, but
also in reaction–diffusion systems [26,36,37]. The aim of this paper is to show that
the FN system on a planar domain supports a wider scenario of stationary extended
structures than found in [24,41]: we first consider the case when the instability is
degenerate non-resonant and demonstrate that the pattern selection process can yield
stable square patterns. We also derive the amplitude equations for mixed-mode and
super-square patterns, which we prove to be unstable. Secondly, we investigate the
pattern formation process when the initial datum is a localized circularly symmetric
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Pattern selection in the 2D FitzHugh–Nagumomodel 537

perturbation of the uniform state and derive the evolution equation of the outcoming
target pattern.

The paper is organized as follows: in Sect. 2 we concisely derive the conditions for
diffusion driven instability and, through a weakly nonlinear (WNL) analysis, derive
the normal form of the bifurcation on a one dimensional spatial domain. In Sect. 3
the analysis focuses on 2D rectangular domains: the amplitude equations are derived
when the bifurcation is degenerate non resonant and the emergence of target patterns
is addressed through a matched asymptotic expansion. For the reader’s convenience,
an Appendix has been added where the details of the 2D WNL analysis are reported.

2 Instability analysis and one dimensional patterns

In this sectionwe derive the conditions for the onset of Turing instability for the system
(1.1)–(1.2). If α < 1, the system admits a unique steady state solution Ē ≡ (0, 0).
Linearizing the system (1.1)–(1.2) around the steady state Ē , we get:

∂w
∂t

= Lw, with w =
(

u
v

)
, (2.1)

and:

L = Γ Kw + D∇2, K =
(
1 −1
β −αβ

)
, D =

(
1 0
0 d

)
. (2.2)

Looking for solutions of the form eλt+ikx leads to the following dispersion relation:

λ2 + g
(

k2
)

λ + h
(

k2
)

= 0, (2.3)

where:

h
(

k2
)

= det(D)k4 − Γ (K11D22 + K22D11)k
2 + Γ 2 det(K )

= dk4 + Γ (αβ − d)k2 + Γ 2(αβ − 1), (2.4)

g
(

k2
)

= k2tr(D) − Γ tr(K )

= k2(1 + d) + Γ (αβ − 1). (2.5)

The conditions for diffusion driven instability require that the steady state solution
must be linearly stable with respect to uniform-in-space perturbations and unstable
with respect to non-homogeneous perturbations, namely�(λ(k)) > 0 for some k �= 0.
Choosing the diffusion coefficient d as the bifurcation parameter and imposing the
marginality condition

min h(k2) = 0,
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one finds the following values for the bifurcation parameter dc and the critical wave
number kc:

dc = β
(
2
√
1 − α + 2 − α

)
, k2c = −Γ (αβ − d)

2 det(D)
. (2.6)

It is straightforward to prove the following

Theorem 1 (Turing instability) Let α < 1 and let β > 1/α, then the steady state
Ē = (0, 0) exhibits a Turing bifurcation at d = dc.

Notice how Theorem 1 implies, for the destabilization of the homogeneous equilib-
rium, the classical condition on the diffusion parameter d > 1.

In Fig. 1a we report, for different values of α, the Turing instability region: notice
that the effect of increasing α is to enlarge the Turing region.

Theorem 1 gives the necessary conditions for the system (1.1)–(1.2) to admit a
finite k pattern-forming Turing instability, but they do not guarantee the emergence
of spatial patterns. The pattern in fact will emerge only if the parameter Γ is large
enough so that there exists at least one integer n so that k21 <

( n
2

)2
< k22, where k1

and k2 are the roots of h(k2) and n/2 (n ∈ N) are the modes allowed by the Neumann
boundary condition on the interval [0, 2π ] ⊂ R.

Inwhat followswe shall perform aWNLexpansion based on themethod ofmultiple
scales aimed to predict the solution to the system (1.1)–(1.2) near criticality. The
method of multiple scales is used to transform the original system into its normal form
near the threshold [22,30] and, when the bifurcation is supercritical, an asymptotic
approximation, uniformly approximating the solution of the original system [28], is
thus generated.We recast the system (1.1)–(1.2), separating the linear and the nonlinear
terms, in the following form:

∂w
∂t

= Lw + N (w) , where N (w) = −Γ

(
u3

0

)
, (2.7)

and L is the linear operator defined in (2.2). Introducing the control parameter ε2 =
(d − dc)/dc, we expand the solution w:

w = εw1 + ε2w2 + ε3w3 + ε4w4 + ε5w5 + O(ε6). (2.8)

Next to the threshold the instability evolves on a slow time scale, so that we define:

T1 = εt, T2 = ε2t, T3 = ε3t, . . . (2.9)

Substituting the expansions (2.8) and (2.9) into the system (2.7), a sequence of equa-
tions for the coefficients wi , one at each order in ε, are obtained. The O(ε) linear
problem is:

Lcw1 = 0, (2.10)
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where Lc is the linear operator L in (2.2) evaluated at d = dc. The solution to the
problem (2.10) satisfying the Neumann boundary conditions is given by:

w1 = A(T1, T2, . . .)� cos(kcx), � ∈ K er
{
Γ K − k2c D(c)

}
, (2.11)

where A(T1, T2, . . .) is still unknown and � = (
1, (Γ − k2c )/Γ

)t
. The compatibility

condition at O(ε2) is automatically satisfied imposing T1 = 0 and the corresponding
problem at this order admits the solution w2 = 0.

Imposing the Fredholm alternative at O(ε3), one obtains the following Stuart–
Landau equation, which regulates the time evolution of the amplitude A:

∂ A

∂T2
= σ A − L A3, (2.12)

where:

σ = d(2) k2c
(
Γ 2 − k4c

)
Γ 2

(
k4c − β

) , L =
3
4Γ

3β

βΓ 2 − (
Γ − k2c

)2 . (2.13)

Proposition 2.1 (Supercritical Bifurcation) Under the hypotheses of the Theorem 1,
L is positive and the Turing bifurcation is always supercritical.

Proof Showing that L > 0 is equivalent to prove that:

βΓ 2 −
(
Γ − k2c

)2
> 0. (2.14)

Substituting the value of the critical wave number k2c = −Γ (αβ−dc)
2dc

, into the inequality
(2.14), it reduces to:

d2
c + α2β2 + 2αβdc − 4βd2

c < 0. (2.15)

Using the hypotheses of Theorem 1, the following estimate is obtained:

d2
c + α2β2 + 2αβdc − 4βd2

c < d2
c + d2

c + 2d2
c − 4βd2

c = 4d2
c (1 − β) . (2.16)

Moreover, from α < 1 it follows that β > 1, which completes the proof. 	

Since the Turing branch of stationary nonhomogeneous solutions bifurcates super-

critically from the uniform steady state, the asymptotic amplitude of the arising pattern
is predicted by the following Theorem:

Theorem 2 (Asymptotic Solution) Under the hypotheses of Proposition 2.1, and
assume the distance from the bifurcation threshold to be small enough so that
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Fig. 1 a The Turing instability region in which we have fixed α = 0.5 (light grey), α = 0.6 (grey) and
α = 0.7 (dark grey). b Comparison between the numerical solution (solid line) of the reaction–diffusion
system (1.1)–(1.2) and the solution predicted by theWNL analysis (dotted line). The parameters are chosen
as α = 0.5, β = 2.1, Γ = 9.6567, ε = 0.1

Ē ≡ (0, 0) is unstable only to modes corresponding to the critical wave number
kc. Then the emerging pattern solution of the system (1.1)–(1.2) writes:

w = ε�A∞ cos (kcx) , (2.17)

where A∞ =
√

σ
L is the stable equilibrium of the Stuart–Landau equation (2.12).

In Fig. 1b the comparison between the solution predicted by the WNL analysis and
the numerical solution of the full system computed using spectral methods is shown,
displaying a very good agreement of the two solutions.

If the domain size is large with respect to the characteristic length of the pattern, one
can observe the phenomenon of propagation of the pattern as a travelling wave along
the physical domain. Taking into account in our analysis also the slow modulation of
the spatial variable, we obtain that the time evolution of the envelope of the propagating
pattern is described by the following real Ginzburg-Landau equation:

∂ A

∂T
= σ A − L A3 + ν

∂2A

∂ X2 , (2.18)

where the σ and L are as in (2.13) and:

ν = Γ 2 (β + dc) (1 + 2kc) − dck2c
(
2k3c + 5k2c + 4Γ

)
Γ 2β + Γ 2 − k4c

. (2.19)

3 Two dimensional patterns

In this Section, performing a WNL analysis, we will investigate the existence and
stability of Turing patterns on a rectangular domain Ω = [0, Lx ] × [0, L y]. The
solutions to the linearized system in Ω are:
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w =
∑

m,n∈N
fmneλ(k2mn)t cos (φx) cos (ψ y) , (3.1)

with φ = mπ

Lx
, ψ = nπ

L y
, and m, n integers, (3.2)

where φ andψ have the expressions in (3.1) in order to satisfy the Neumann boundary
conditions, fmn are the Fourier coefficients of the initial conditions, and λ(k2mn) are
the eigenvalues derived by the dispersion relation (2.3) (see [29]). The value of the
critical wavenumber kc is obtained via linear stability analysis as in (2.6), however
once substituted the expression (3.1) in the system (2.1), in a two dimensional domain
we obtain that the following condition should be satisfied:

k2c = φ2 + ψ2. (3.3)

We will assume Γ such that there exists only one unstable wavenumber admissible
for the Neumann boundary conditions. Depending on whether there exists one or two
pairs of integers (m, n) such that the condition (3.3) holds, the Turing bifurcation
is respectively regular or degenerate and the following characterization of supported
patterns can be made [17]:

(i) rolls and square-rhombic patterns when the bifurcation is regular;
(ii) rolls, square and mixed-mode patterns when the bifurcation is degenerate and the

non resonant conditions hold;
(iii) rolls and hexagonal patterns when the bifurcation is degenerate and the resonant

conditions hold.

Since the classification in (iii) has been already obtained in [24,41], here we will
deal with the cases (i) and (ii).

3.1 Regular bifurcation

If there exists a unique pair of integers (m, n) such that the condition (3.3) holds, the
WNL analysis is quite similar to the 1D case described in Sect. 2, therefore we skip
the details and give the following result:

Theorem 3 If:

(i) there exists a unique pair of integers (m, n) such that (3.3) is satisfied;
(ii) the coefficient L of the Stuart–Landau equation (2.12) is positive;

then the emerging pattern solution of the system (1.1)–(1.2) is:

w = εA∞� cos (φx) cos (ψ y) , (3.4)

where A∞ is the stable equilibrium of (2.12).

The patterns in (3.4) are rhombic structures, reducing to rolls, when φ or ψ is zero,
and square, when φ = ψ .
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Fig. 2 a Rolls. The parameters are chosen as α = 0.9, β = 1.5, Γ = 104.06, ε = 0.01. b Squares. The
parameters are chosen as α = 0.1, β = 11, Γ = 65.731, ε = 0.1

In the numerical test shown in Fig. 2a, we choose the parameters in such a way
that k2c = 25. In the rectangular domain [0, 2√2π ] × [0, 2π ] the only pair satisfy-
ing the condition (3.3) is (0, 10). Since the Stuart–Landau equation admits a stable
equilibrium, the emerging solution of the system (1.1)–(1.2) starting from a random
periodic perturbation of Ē is the roll pattern in Fig. 2a. The square pattern in Fig. 2b
corresponds to the choice of the system parameters such that k2c = 32 and (4, 4) is the
only couple satisfying condition (3.3) in the domain [0, π ] × [0, π ].

In the numerical test given in Fig. 3, the parameters are chosen in such a way that
k2c = 4. In the domain Lx = L y = 16

√
2π the unique pairs of integers which

satisfies the condition (3.3) is (m, n) ≡ (32, 32). Giving, as initial condition, a radi-
ally symmetric perturbation at the center of the domain, one can observe a transient
where the perturbation radially spreads as a wave; when the pattern wave meets the
boundary, square structures begin to emerge at the corner to subsequently invade the
whole domain. The emerging solution is the square pattern predicted by the WNL
analysis.

3.2 Non resonant degenerate bifurcation

Let us assume that the bifurcation is degenerate as two mode pairs (mi , ni ) satisfy the
condition in (3.3). Moreover, the following non resonant conditions hold:

φi + φ j �= φ j or ψi − ψ j �= ψ j

and
φi − φ j �= φ j or ψi + ψ j �= ψ j .

(3.5)

Performing the WNL analysis (the details are given in Appendix A), at O(ε3) the
compatibility condition leads to the following two coupled Stuart–Landau equations
for the amplitudes Ai of the pattern:
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Fig. 3 Square patterns invading the whole domain. The parameters are chosen as α = 0.5, β = 2.1,
Γ = 9.6568542499, ε = 0.001. The solution of the system (1.1)–(1.2) is shown at: a t = 0, b t = 4000, c
t = 8000, d t = 12000, e t = 19200, f t = 40000

d A1

dT
= σ A1 − L1A3

1 + Ω1A1A2
2,

d A2

dT
= σ A2 − L2A3

2 + Ω2A2
1A2,

(3.6)

where the explicit expressions of the coefficients σ , Li and Ωi are given by (A.1) in
Appendix A.

Theorem 4 Suppose the following hypotheses are satisfied:

(i) the equilibrium Ē is unstable to modes corresponding to a unique eigenvalue kc;
(ii) there exist two couples of integers (mi , ni ) such that (3.3) is satisfied;

(iii) the corresponding φi and ψi satisfy the non resonant conditions (3.5);
(iv) the system (3.6) admits at least one stable equilibrium;

then the emerging pattern solution of the system (1.1)–(1.2) is:

w = ε (A1∞� cos (φ1x) cos (ψ1y) + A2∞� cos (φ2x) cos (ψ2y)) , (3.7)

where (A1∞, A2∞) is the stable equilibrium of (3.6).

The system (3.6) admits the equilibria:

P±
1 ≡

(
±

√
σ

L1
, 0

)
, P±

2 ≡
(
0,±

√
σ

L2

)
,

P±,±
3 ≡

(
±

√
σ (L1 + Ω2)

L1L2 − Ω1Ω2
,±

√
σ (L2 + Ω1)

L1L2 − Ω1Ω2

)
,

(3.8)
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which exist stable if:

P±
1 : if L1 > 0 and L1 + Ω2 < 0; P±

2 : if L2 > 0 and L2 + Ω1 < 0;
P±
3 : if L1L2 − Ω1Ω2 > 0, L1 + Ω2 > 0, L2 + Ω1 > 0

and L1Ω1 + L2Ω2 + 2L1L2 < 0.

Notice that if P±
1 or P±

2 is stable the emerging pattern (3.7) has the rhombic structure
described in the previous Sect. 3.1. If P±

3 is stable, the solution (3.7) is a mixed-mode
pattern. From the expressions of the coefficients σ , Li and Ωi in (A.1) it is easy to
show that if P±

1 and P±
2 exist they are always stable, on the contrary if P±,±

3 exists
it is always unstable. Therefore, from the formula (3.7) it follows that only rhombic
patterns can be supported by the system in this case and no mixed mode patterns can
arise.

In Fig. 4, we show the evolution of the system starting from a random perturbation
of the homogeneous steady state Ē . Choosing the parameters as in the caption of Fig. 4,
in the square domain Lx = L y = 4π the only unstable mode is k2c = 13 and there
exists two couples of integers (m1, n1) ≡ (8, 12) and (m2, n2) ≡ (12, 8) satisfying
the condition (3.3). According to the WNL prediction both P±

1 and P±
2 are stable and

the expected solutions are the following square patterns:

w(1) = ε (A1∞� cos (4x) cos (6y)) orw(2) = ε (A2∞� cos (6x) cos (4y)) . (3.9)

Which one of the above solutions is reached depends on the initial conditions. In
the numerical test given in Fig. 4 the emerging solution is w(2) in (3.9).

In Fig. 5 the system parameters are chosen such that k2c = 80 is the most unstable
mode, therefore in the square domain Lx = L y = 2π , the homogeneous equilibrium
Ē is unstable to the mode pairs (m1, n1) ≡ (8, 16) and (m2, n2) ≡ (16, 8). The WNL
analysis predicts that the equilibria P+

1 and P+
2 exist stable, and the equilibrium P+

3
exists unstable, see Fig. 5c. The solution corresponding to the point P+

3 :

w = ε� (A1∞ cos (4x) cos (8y) + A2∞ cos (8x) cos (4y)) (3.10)

is a particular mixed mode pattern called supersquare. Choosing as initial condition
the supersquare pattern (3.10), in our simulation the emerging solution of the system
(1.1)–(1.2) is the square pattern with amplitude given by the equilibrium P+

2 .

3.3 Target patterns

In the numerical test shown in Fig. 3 we have observed that, until the effect of the
boundary is not relevant, giving a small perturbation of the homogeneous equilibrium
at the center of a square domain as initial condition, a concentric wave radially prop-
agates from the center of the domain. Let us investigate the formation of this type of
axisymmetric patterns, known as target patterns, see Fig. 6.

Target patterns are characterized by an amplitude in the core of the domain signifi-
cantly larger than the one far from the core. This is due to twomain reasons: the region
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Fig. 4 Emerging square patterns. The parameters are fixed as α = 0.2, β = 5.1, Γ = 27.535, ε = 0.01.
The numerical solution of the system (1.1)–(1.2) is shown at different times: a t = 0, b t = 500, c t = 1000,
d t = 2000, e t = 4000, f t = 10000

Fig. 5 The solution of the system (1.1)–(1.2), starting from the predicted unstable supersquare in a, evolves
to the predicted stable square pattern in b. c The phase portrait of the amplitude system (3.6) shows the
basin of attraction of the equilibria P+

i i = 1, 2 corresponding to the square patterns. The parameters are
α = 0.3, β = 3.5, Γ = 175.618, ε = 0.05

Fig. 6 Target pattern. a Axisymmetric initial datum. b Target solution at t = 10. c Profile of the solution at
t = 10. The parameters are: α = 0.5, β = 2.1, Γ = 9.6568542499, ε = 0.1 and Lx = L y = 16π
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of the physical domain close to the initial perturbation is more affected by the pertur-
bation itself; moreover, close to the core, the effects of the curvature of the wave are
not negligible. Introducing the radial coordinate r = √

x2 + y2 and assuming radially
symmetric solution, we perform the WNL analysis to approximate the solution close
to the threshold. Being the domain size large with respect to the characteristic length of
the pattern, we need to consider the slowmodulation of the spatial variable R = εr . In
this way, following a standard procedure, we recover the following Ginzburg-Landau
equation for the amplitude A:

∂ A

∂t
= ν

(
∂2A

∂ R2 + 1

R

∂ A

∂ R
− A

4R2

)
+ σ A − L A3 (3.11)

and the solution at the leading order can be written as:

w = εw1A cos (kcr) + O
(
ε2

)
. (3.12)

At the center of the pattern the curvature of the solution can not be neglected and the
Eq. (3.11) does not hold. It is well known that the solution at the core of the pattern is
proportional to the zeroth-order Bessel function of the first kind and, through a linear
analysis [20,31] we get the following inner solution:

wI = Cw1AJ0 (kcr) , (3.13)

where C is a constant which has to be determined. When r → +∞ the following
approximation holds:

J0 (kcr) = 1√
πkcr

cos (kcr) , (3.14)

thus the inner solution, when r → +∞ should match to the solution (3.12). This
means that C has to be of order ε

1
2 confirming that the amplitude of the solution at the

core is larger than the amplitude far from it.

4 Conclusions

In this paper we have investigated the process of pattern formation in the FN
reaction–diffusion model showing that the emerging pattern-forming solution can be
successfully predicted by the amplitude equation formalism.

Here it follows some of the topics that, in the present paper, we have not addressed
and we believe to be of interest. First we recall that the FN model also exhibits Hopf
bifurcation: to get a better understanding of the FN dynamics it would be crucial to
investigate the competition between theTuring and theHopf instability, as done in [18];
in fact, a detailed study in a small neighborhood of the codimension-2 Turing–Hopf
bifurcation point could reveal the emergence of non stationary patterns and chaotic
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behaviour [1,4,6,13,19,35]. Second, wemention that, in some numerical tests, we have
detected the formation of localized solutions,which have been found to be stationary or
oscillatory [9,25]. This, particularly for an excitable dynamic system like FN, is a very
relevant topic, and a rigorous analysis of these phenomena will be the subject of future
work. Third to study the wave instability arising in the FN model, the corresponding
hyperbolic reaction–diffusion system [2,12,39] will be investigated. Finally, the effect
of cross-diffusion [11,16,32,38,40] on pattern formation will be addressed.
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ADetails of theWNL analysis

The linear problem at O(ε) admits the following solution:

w1 = A1� cos (φ1x) cos (ψ1y) + A2� cos (φ2x) cos (ψ2y) , � =
(

1
Γ −k2c

Γ

)
.

The compatibility condition at O(ε2) is automatically satisfied by imposing T1 = 0
and d(1) = 0 and the solution is w2 = 0. The problem at O(ε3) reads:

L(c)w3 =
{

∂ A1

∂T2
� + A1G(1)

1 + A3
1G(3)

1 + A1A2
2G1

}
cos(φ1x) cos(ψ1y)

+
{

∂ A2

∂T2
� + A2G(1)

2 + A3
2G(3)

2 + A2
1A2G2

}
cos(φ2x) cos(ψ2y) + Ḡ,

where G(1)
1 = k2c D(2)� , D(2) =

(
0 0
0 d(2)

)
and:

G(3)
1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

( 9
16Γ

0

)
if φi �= 0 �= ψi ,

( 9
16Γ

0

)
if ψ2 = 0,

( 3
4Γ

0

)
if φ1 = ψ2 = 0,

G1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

( 3
4Γ

0

)
( 3

2Γ

0

)
( 3

2Γ

0

)

if φi �= 0 �= ψi ,

if ψ2 = 0,

if φ1 = ψ2 = 0,

G(3)
2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

( 9
16Γ

0

)
if φi �= 0 �= ψi ,( 3

4Γ

0

)
if ψ2 = 0,

( 3
4Γ

0

)
if φ1 = ψ2 = 0,

G2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

( 3
4Γ

0

)
( 3

4Γ

0

)
( 3

2Γ

0

)

if φi �= 0 �= ψi ,

if ψ2 = 0,

if φ1 = ψ2 = 0,
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By imposing the compatibility condition the system (3.6) is obtained and the expres-
sion of the coefficients σ, Li and Ωi are:

σ = −< G(1)
1 ,ψ >

< �,ψ >
, Li = < G(3)

i ,ψ >

< �,ψ >
, Ωi = −< Gi ,ψ >

< �,ψ >
. (A.1)
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