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Abstract
In this paper we study the flow dynamics governed by the primitive equations in the
small viscosity regime. We consider an initial setup consisting on two dipolar struc-
tures interacting with a no slip boundary at the bottom of the domain. The generated
boundary layer is analyzed in terms of the complex singularities of the horizontal
pressure gradient and of the vorticity generated at the boundary. The presence of com-
plex singularities is correlated with the appearance of secondary recirculation regions.
Two viscosity regimes, with different qualitative properties, can be distinguished in
the flow dynamics.

Keywords Primitive equations · Zero viscosity limit · Singularity tracking methods

Mathematics Subject Classification 35Q35 · 76F40 · 35A21 · 65M70

1 Intoduction

The primitive equations (PEs) are the fundamental equations governing the atmo-
spheric and oceanic flows, see [43]. The system of the PEs is derived from the
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Boussinesq approximation assuming that the vertical length scale is small compared
to the horizontal one. The relevant difference between the PEs and the usual Boussi-
nesq equations lies in the fact that the momentum equation for the vertical velocity
component is replaced by the hydrostatic balance for the pressure vertical gradient.

The mathematical analysis dealing with the PEs was essentially initiated in the
fundamental works by Lions et al. [33–35], where the authors gave conditions for the
existence of weak and strong solutions. These results where extended in [49] where
the global existence of a weak solution was proved along with the local existence of
a strong solution. In [10,30,31] the authors proved the existence of a unique global
strong solution under different boundary conditions for the velocity components.

The analysis of the zero viscosity limit for the PEs is still challenging. In fact, when
dealing with large scale motion of the ocean and considering the small scale over
which viscosity acts, it is natural to neglect the viscous effect leading to the question
whether the PEs converge to their inviscid counterpart, the hydrostatic Euler equation
[36]. The complication arises because of the interactionwith no slip boundaries and the
consequent boundary layer formation. In [29] the authors investigated the vanishing
viscosity problem for the PEs with no-slip boundary conditions both on the bottom
and on the top, obtaining that, up to boundary layer correctors of order the square
root of the viscosity, the PEs solutions converge to the hydrostatic Euler solution. The
procedure required the expansion of the solution near the boundary with the inclusion
of a corrector term to resolve the boundary layer and interpolate between the no slip
condition and the tangential slip generated by the hydrostatic solution.

It is therefore clear that when solving the zero viscosity limit one needs also to face
the mathematical and physical issues related to the hydrostatic Euler equation. In fact
in [4,25,37] it was given evidence of a possible instability of the solution. Related to
this instability is the possible blow-up of the solution. This was shown in [9], where
the authors considered the 2D inviscid primitive equations and showed the finite time
blow-up of the solution for a certain class of smooth initial data, and in [51] where
the author considered the 3D case and gave evidence of the singularity formation by
constructing self-similar solutions. An open problem is to prove whether the boundary
layer corrector found in [29], develops or not singularity in finite time. In this case one
could face a problem similar to the convergence of the Navier–Stokes solutions to the
Prandtl solution, a long-standing problem which might be crucial to solve in order to
ensure convergence of the Navier–Stokes solutions to the Euler solution outside the
boundary layer. Recent results [23] have shown that the various viscous interactions
developing in high Reynolds number Navier–Stokes solutions are due to the formation
of complex singularities in the NS solutions.

Therefore one should expect that the convergence of the PEs solution to the hydro-
static Euler solution can be also addressed by investigating the presence of complex
singularities in the PEs solution. The main aim of this paper to understand whether the
PEs solutions display complex singularities, and how they move in the complex plane
when viscosity becomes small. This will accomplished by performing the complex
singularity tracking for two relevant quantities obtained from the PEs solution, namely
the vorticity generated at the bottom and the horizontal pressure gradient. This choice
is mainly dictated by the fact that these quantities are commonly used in analyzing
high Reynolds number Navier–Stokes solution see [21,23,24,40,41]. We shall see that

123



Numerical study of the primitive equations in the small… 385

both quantities have complex singularities, and their presence is related to peculiar
physical events manifesting in the flow evolution.

The rest of the paper is organized as follows. In Sect. 2 we shall introduce the
primitive equations andwe shall state the physical problem. In Sect. 3we shall describe
the flow evolution obtained from the numerical solution of the PEs, and we shall
mainly analyze the boundary layer evolution in terms of energy and enstrophy of the
flow. In Sect. 4 we shall briefly review the singularity tracking method, and we shall
explain the numerical procedure used to determine the positions and the character of
the singularities. In Sects. 4.1 and 4.2 we shall present the results of the singularity
tracking applied to the pressure gradient and to the vorticity generated at the bottom
of the domain. Finally in Sect. 5 we shall draw some conclusions.

2 Statement of the problem

The primitive equations for a velocity field u(x, y) = (u(x, y), v(x, y)) driven by the
pressure p(x, y), where (x, y) ∈ D = T × [− h, 0], with h > 0, read as

∂t u + u∂xu + v∂yu + ∂x p = ν
(
∂xxu + ∂yyu

)
, (1)

∂xu + ∂yv = 0, (2)

∂y p = 0, (3)

γ −
D u = γ −

D v = 0, (4)

γ +
N u = γ +

D v = 0, (5)

u(x, y, t = 0) = u0(x, y) , (6)

where we suppose that the velocity components and the pressure are periodic in x ∈ T

and

γ −
D f (x, y) = f (x, y = − h), (7)

γ +
D f (x, y) = f (x, y = 0), (8)

γ +
N f (x, y) = ∂y f (x, y)|y=0. (9)

In the above system, (1) is the equation for the horizontal velocity component u where
ν is the kinematic viscosity of the flow, (2) is the incompressibility condition, (3) is
the condition ensuring that the pressure is constant along the vertical direction, (4) and
(5) are the boundary conditions for the velocity components on the bottom and on the
top, and (6) is the initial condition.

To retrieve the pressure gradient in (1) we need to recover the pressure p. This
is accomplished by deriving (1) with respect to the horizontal x variable and then
averaging along the vertical direction y, obtaining the following equation for p:

∂xx p = 1

h

(∫ 0

−h
∂xxu

2d ỹ − ν[∂xyu]y=0
y=−h

)
, (10)
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The normal velocity is computed from (2)

v(x, y) = −
∫ y

−h
∂xu(x, ỹ)d ỹ, (11)

and in view of (5), we have that

v(x, 0) = −
∫ 0

−h
∂xu(x, ỹ)d ỹ = 0. (12)

Condition (12) is guaranteed for all time if the horizontal and vertical components u
and v of the velocity are respectively even and odd along the extended vertical domain
[− h, h]. The boundary conditions (4) and (5) and the Eqs. (1) and (2) imply that u
and v preserve these symmetries during the dynamics as long as it is satisfied initially.
The choice of using the homogeneous Neumann BC for u at the top reflects the fact
that free slip is the physical condition commonly used for atmospheric and oceanic
flows. To ensure these requests, we put T = [0, 2π ], and consider the following initial
condition for u:

u0(x, y) =
[

e
−

(
y−y0

σ

)2

− e
−

(
y−(−h−y0)

σ

)2]

e−( x−π
σ )

2

,

which satisfies (4) and (5) for sufficiently small σ , and represents a pair of dipolar
structures centered in (π, (− h − y0)) and (π, y0), see Fig. 1a.

2.1 The numerical scheme

The whole system is solved using a spectral numerical scheme based on a fully Fourier
spectral discretization for the x variable and on a collocation Chebyshev discretization
for the y variable. In particular, due to the periodicity of the problem, the spatial
discretization is based on following expressions for the main variables:

u(x, y, t) ≈
k=Mx/2∑

k=−Mx/2

uk(y, t)e
ikx , v(x, y, t) ≈

k=Mx/2∑

k=−Mx/2

vk(y, t)e
ikx , (13)

p(x, t) ≈
k=Mx/2∑

k=−Mx/2

pk(t)e
ikx , (14)

where xk = 2πk/Mx , k = 0, . . . Mx are the Mx + 1 grid points in the horizontal
domain. The grid points in the vertical domain are y j = w j h−h

2 , j = 0, . . . , My ,
where w j = cos

(
π( j/My − 1)

)
are the collocation Gauss–Lobatto points in [−1, 1].

Time-integration is based on a two-stage Runge–Kutta algorithm where the dis-
cretization of the linear part is of the Crank–Nicolson type (see [44]). In particular ,
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each mode k satisfies the following sets of equations in y:

u1k = unk + �t

[
N

(
unk , v

n
k , p

n
k

) + 1

2
L

(
unk

) + 1

2
L

(
u1k

)]
, (15)

un+1
k = unk + �t

2

[
N

(
unk , v

n
k , p

n
k

) + N
(
u1k, v

1
k , p

1
k

)
+ L

(
unk

) + L
(
un+1
k

)]
,(16)

where the superscript indicates the nth time step, and �t is the time step. In (15) and
(16) the linear part is defined as

L(uk) = ν

(
− k2uk + 4

h2
D
2uk

)
,

whereD is the y-derivativematrix operator. Entries ofD are generally defined for func-
tions approximated in the Gauss–Lobatto nodes, and are easily found in the literature
of the spectral methods [3,8,44]. The nonlinear part is defined as

N (uk, vk, pk) = − (u ∗ ux )k −
(
2

h
v ∗ Du

)

k
+ ikpk(t),

where by ∗ we have denoted the (pseudo)spectral multiplication in the x variable,
which is treated with the usual 3/2-method to handle aliasing effects, see [8].

Equations (15) and (16) can be recast in matrix form AU 1,n+1
k = F1,n+1, where

U 1,n+1
k =

(
u1,n+1
k (y0), . . . , u

1,n+1
k (yMy )

)T
, A = (1 + νk2)I − ν 4

h2
D
2 with I the

identity matrix of order (My + 1) × (My + 1). The vector F1,n+1 contains in the first
and last entry γ −

D u and γ +
N u, and in the interior entries the terms of (15) and (16)

treated explicitly. To take into account the boundary conditions (4) and (5) for the
velocity component u, the first and the last row ofA are expressed according the well
known collocation formulas found for instance in [44].

In the above terms, the vertical velocity component v is retrieved from (11) through
the spectral Chebyshev integration along the vertical variable (see [50]), while each
mode pk is retrieved from the elliptic problem (10) according to the following straight-
forward spectral integration:

pk(t) = −
(∫ 0

−h −k2(u ∗ u)kdy + ikν[ 2hDuk]y=0
y=−h

)

2k2h
, k �= 0 (17)

p0(t) = 0. (18)

We observe that the pressure is independent on the vertical variable, and therefore
it is expressed only in terms of Fourier modes. Hence we do not have any spurious
mode arising when we solve spectrally the elliptic problem (10) (see [2,8] for detailed
discussions on this numerical issue in the general case in which the pressure is y-
dependent).

123



388 F. Gargano et al.

Fig. 1 Vorticity ω at various time for ν = 0.01. The initial vorticity consists in a pair of dipolar structures
centred in y = − 8 and y = − 2. At subsequent times vorticity is generated at the bottom, due to the no-slip
boundary condition for the horizontal velocity component

3 Physics of the flow

In this section, we shall describe the main physical events characterizing the early flow
evolution governed by the PEs, where we have fixed h = 10, y0 = −2, σ = 1/4 in
the initial condition (13). The physical events arising during the flow evolution will
be described for two different viscosity regimes, the moderate–high regime ν ≥ 0.01,
and the low regime ν < 0.01. We shall mainly describe the flow in term of vorticity
evolution ω(x, y, t) = − ∂yu(x, y, t), vorticity generated at the bottom ωb(x, t) =
ω(x, y = − h, t), pressure gradient ∂x p, energy E = 1

2‖u‖2
L2(D)

and the enstrophy

E = ‖ω‖2
L2(D)

. All the above quantities are relevant and have been used to describe
the various interactions leading to the onset of turbulence especially in boundary layer
flows (see results on high Reynolds number Navier–Stokes solutions [13,21,23,27]).

The moderate–high viscosity regime, represented by the case ν = 0.01, is strongly
affected by the high dissipative effects induced by the viscosity. Vorticity evolution is
shown in Figs. 1 and 2b at different times. The pair of dipolar structures centered in
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Fig. 2 Vorticity ω at t = 1 for ν = 0.1 and ν = 0.01
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Fig. 3 Vorticityωb produced at the bottom y = − h at various time (increments of�t = 0.05) for ν = 0.01,
representing the moderate–high viscosity regime, and ν = 0.001, representing the low viscosity regime

y = − 8,− 2 are rapidly stretched along the horizontal direction.During the clockwise
rotation of the dipolar structures, a boundary layer attached to the bottom forms due to
the no-slip boundary condition, and two recirculation eddies having opposite rotation
are generated. They are barely visible at t = 0.2 in Fig. 1d, while the vorticity ωb

generated at the bottom is shown at different times in Fig. 3a (the eddies generated at
the bottom are better visible in Fig. 2 for ν = 0.1 and ν = 0.01 at time t = 1). One
can see that ωb(x) ≤ 0 for x � π while ωb(x) ≥ 0 for x � π . The different sign is
justified by the sign variation in x ≈ π observed in ∂x p (see Fig. 4b at t = 0), which
accelerates flow particles for x � π whereas decelerates them for x � π . As time
passes, the eddies thicken essentially along the horizontal direction, and spikes in ωb

and ∂x p form at t ≈ 0.1 (see Figs. 3a, 4b). After t ≈ 0.1,ωb and ∂x p begin to weaken,
and the eddies generated at the bottom continue to have small vertical extension and
low strength. The weak vorticity production and the weakness of the eddies generated
at the bottom can also be inferred by enstrophy time evolution (Fig. 5a) which, despite
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Fig. 4 a The horizontal pressure gradient ∂x p for various ν at t = 0.2, with a magnification in the inset,
b time evolution of ∂x p for ν = 0.01 from t = 0 up to t = 0.25 (time increments of �t = 0.05) and at
t = 0.5
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Fig. 5 a Time evolution of the Enstrophy E for various ν, from t = 0 up to t = 1. Only for the low viscosity
regime (ν = 0.002, 0.001) the vorticity production at the bottom leads to the enstrophy growth, b time
evolution of the Energy E for various ν, from t = 0 up to t = 1

the vorticity generated at the bottom, is always decreasing for all time. Subsequent
flow evolution shows no relevant physical phenomena, and due to the high dissipative
effects the flow tends to the rest with almost vanishing energy (see Fig. 5b).

The low viscosity regime, represented by the case ν = 0.001, shows some physical
phenomena already observed in moderate–high regime. In fact a boundary layer con-
sisting in two eddies forms at the bottom, although the lower viscosity effects allow
for a higher production than in the moderate–high regime case. Secondary recircula-
tion regions form in time, and they can be deduced by the change in the sign of ωb

observed for t ≈ 0.2 at x ≈ 2.76, 3.52 in Fig. 3b. The secondary recirculation regions
formation are mainly due to the strong variations observed in the pressure gradient
∂x p. In fact in correspondence of the points where secondary recirculation regions
form, the pressure gradient becomes adverse (the change of sign is visible in Fig. 4a)
with respect to the flow direction between the primary recirculation region and the
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bottom. This variation in the pressure gradient sign is concentrated in a very narrow
horizontal zone and, depending on the sign, induces a strong acceleration/deceleration
which eases the formation of a new recirculation regions.

The relevant difference with respect to the moderate–high regime lies in the E
growth observed as ν decreases (Fig. 5a), mainly due to the high vorticity production
at the bottom. E is a main responsible of dissipation of energy (see energy evolution
in Fig. 5b). In fact, standard computations allow to write the energy equation dE(t)

dt =
−ν

(
E(t) + ‖∂xu(t)‖2

L2(D)

)
, from which one can observe how E induces a decay in

the energy E . After t ≥ 0.15, when the secondary recirculation region is forming, the
enstrophy begins to decrease, and no other peak is observed. The enstrophy growth has
been observed in our simulations only for ν ≤ 0.002. The enstrophy growth in the low
viscosity regime is typical of the flows characterized by the formation of the boundary
layer, and has been observed for a wide class of high Reynolds number boundary layer
flows: for the rectilinear vortex case [21,24], for the impulsively started disk [23], and
for the dipole-vortex flow [14,15].

4 Singularity tracking

One of the main goal of our investigation is to analyze the singular character of the
solution of the PEs in the zero viscosity limit. This is accomplished by performing the
singularity tracking in the complex plane. Singularity tracking has been widely used
to analyze loss of analyticity in many equations arising in fluid dynamics: Euler flow
[5,6,12,18,38,42], boundary layer flow [16,17,20,23,24], Camassa-Holm equations
[17], KdV equation [19,26], vortex-sheet flow [1,7,22,28,47,48].

Here we apply the singularity tracking to the vorticity generated at the boundaryωb

and the horizontal pressure gradient ∂x p obtained from the numerical solution of the
PEs. The choice of tracking the singularities of ωb, ∂x p relies on the fact that in many
low viscosity/high Reynolds number flows, some of the relevant physical phenomena
of the boundary layer have been successfully described and understood in terms of the
character of the vorticity generated on a rigid boundary and of the pressure gradient
(see in particular [23] and the analysis done on the viscous-inviscid interactions ruling
the zero viscosity limit in boundary layer flow).

The singularity tracking is based on the asymptotic properties of the spectrum of an
analytic function. In particular, suppose that u(z) is a real function having a complex
singularity in z	 = x	 + iδ and that u(z) ≈ (z − z	)α+iτ . Using a steepest descent
argument one can show that the asymptotic (in k) behaviour of the spectrum uk of
u(z) is the following (see [11]):

uk ≈ C |k|−(1+α)e−δ|k| sin(kx	 + τ log(k) + φ). (19)

The estimation of δ and x∗ gives the complex location of the singularity z	, while
determining the rate of algebraic decay 1 + α and the rate of oscillatory behaviour
τ allows to classify the character of the singularity. C and φ are constants related to
the strength and phase of the singularity. To apply the singularity tracking method
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to ωb, ∂x p, we actually consider that they are even function, so that it is enough
to apply (19) to the Fourier expansions ωb(x, t) = ∑

k≥0 ωk(t) sin kx, ∂x p(x, t) =∑
k≥0 pk(t) sin kx, with x ∈ [0, π ]. Hence, for symmetry reasons, for any singularity

placed z	1 = x	 + iδ there will be another singularity placed in z	2 = 2π − x	 + iδ
having the same character of z	1.

To find, at each time, the parameters in (19), we consider that they should be in
principle independent on the wavenumber k, although in practice they are k dependent
and are better determined in specific band of k. Hence, following [1,22], we impose
that (19) holds point-wise for each k, and for each k we equate six consecutive modes
uk−5, uk−4, uk−3, uk−2, uk−1, uk to the form in (19), obtaining a nonlinear system for
the parameters C, α, δ, x	, τ, φ whose solution returns the k-dependent values of the
parameters. Specific band of k in which the parameters C, α, δ, x	, τ, φ are actually
k independent are typically the first 80 wavenumbers although the amplitude of this
band depends also on how many modes are affected by the roundoff errors of the
machine. Hence at each time we assume as values for the various parameters in (19)
those obtained in the range of wavenumbers where they are k independent.

4.1 Singularity of@xp

We first discuss the results for ∂x p, and in particular how the viscosity ν influences
the singularity analysis. In Fig. 6a–c we show the results coming from the numerical
fitting of (19) for k ≤ 80 and for various ν at t = 0.2, when the secondary recirculation
regions have been formed for all ν considered.

We first notice that in all cases and for each time, the evaluation of the character
of the complex singularities of ∂x p has always returned a real value, due to vanishing
of the complex part τ of the character We observe from Fig. 6a that the character
α∂x p is in each case negative, compatible with a blow up of the complexification of
∂x p close x	

∂x p
+ iδ∂x p and the consequent eruptive behaviour observed in Fig. 4a for

the pressure gradient. Although α∂x p is shown only for t = 0.2, also for subsequent
times its value remains essentially the same, showing some instability only when the
singularity is quite far from the real domain, because in (19) the exponential decay
e−δ∂x pk dominates over the algebraic decay given by k−(1+α∂x p).

The effect of decreasing ν strongly influences the character α∂x p, especially when
passing from the moderate–high viscosity regime to the low regime. In fact, for
ν ≤ 0.002, the character α∂x p abruptly decreases with ν, expressing the fact that
the complex singularity has a stronger character. The real part x	

∂x p
of the complex

singularity location well agrees with the position in which ∂x p has an eruptive behav-
ior (see Fig. 4a). However the most striking effect of a decreasing viscosity shows on
the distance of the singularity from the real domain: from Fig. 6c we can observe that
it diminishes for decreasing ν, meaning that for ν → 0 the pressure gradient becomes
less regular, a condition which is compatible with the abrupt eruptive behaviour which
characterizes ∂x p for small ν values.

In Fig. 6d we show the tracking of the complex singularity x	
∂x p

+ iδ∂x p in the
complex plane for various ν from t = 0.05 up to t = 0.5. At each time the singularity
is closer to the real domain as ν decreases, and in all cases the singularity, after
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Fig. 6 Results of the numerical fitting of (19) applied to the horizontal pressure gradient ∂x p at t = 0.2 for
various ν. a Fitting of the real character α∂x p , b fitting of the width of analyticity δ∂x p , c fitting of the real
part x	

∂x p
of the position of the singularity, d tracking in the complex plane of the singularities x	

∂x p
+ iδ∂x p

and x	
ωb

+ iδωb of ∂x p and ωb for various ν and from t = 0.05 (right) up to t = 0.5 (left), time increments
of �t = 0.05. The two singularities share the same positions in the complex plane. For symmetry reasons
there are also the singularities 2π − x	

∂x p
+ iδ∂x p and 2π − x	

ωb
+ iδωb

reaching a minimal distance from the real domain, begins to travel away from the real
axis. This expresses the fact that, after the time in which this distance is minimal, ∂x p
acquires a smoother behavior and the amplitude of its peaks diminishes as shown for
instance in Fig. 4b for the case ν = 0.01. In all cases the time of minimal distance
of the singularity from the real domain is essentially coinciding with the time when
the secondary recirculation region forms in the boundary layer. This is reminiscent of
what we have observed in the previous section, i.e. a smoother flow evolution after the
formation of the secondary recirculation region.

123



394 F. Gargano et al.

Fig. 7 Numerical evaluation
trough (19) of the real character
αωb of the main singularity of
ωb at t = 0.2 for various ν
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4.2 Singularity of!b

The singularity tracking method applied to ωb has returned results that share simi-
larities with the same analysis performed for ∂x p. From the evolution of ωb visible
in Fig. 3a, b one can easily observe that the eruptive behaviour, especially visible for
ν = 0.001, forms in the same positions where ∂x p has its main peaks (see Fig. 4a
and the case ν = 0.001). Therefore one can expect that this reflects the presence of
singularities also in ωb, having the same position of the singularities of ∂x p in com-
plex plane. This is actually what we have obtained from the numerical evaluation of
x	
ωb

+ i xδ
ωb

(and of the symmetric singularity 2π − x	
ωb

+ i xδ
ωb
): the tracking of the

singularity x	
ωb

+ i xδ
ωb

in the complex plane is essentially the same of x	
∂x p

+ i xδ
∂x p

,
and it is shown in Fig. 6d.

Regarding the character of the singularity, also in this case the imaginary part is
almost negligible, and αωb obtained from the fitting of the form (19) is shown in Fig. 7
for various ν at t = 0.2. The obtained values are almost k-independent in the first 80
wavenumber, with values in each case negative. This reflects that the complexified ωb

blows up close to the singularity, and ωb consequently shows the eruptive behaviour
visible in Fig. 3b for ν = 0.001. Also for ωb we have obtained that αωb remains
almost the same for subsequent time. With respect to ∂x p, ωb has a slightly more
regular behavior, due to the fact that for all ν we have obtained αωb ≥ α∂x p.

5 Conclusions

We have computed the solutions of the two-dimensional primitive equations in
moderate–lowviscosity regime. Imposing the no-slip boundary condition at the bottom
of the domain leads to a boundary layer development, with high vorticity production
and formation of high horizontal gradient in the pressure. In the low viscosity regime,
typically ν ≤ 0.002, small scale phenomena, supporting the formation of secondary
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recirculation regions in the boundary layer, have been observed. These phenomena
are related to the high vorticity production at the boundary, an event leading also to
the global growth of the enstrophy in the early flow evolution. For moderate–high
viscosity, ν ≥ 0.01, the evolution is characterized by a weak vorticity production,
with no growth of the enstrophy in time.

The two viscosity regimes have been also analyzed in terms of complex singularities
of the horizontal pressure gradient ∂x p and the vorticity ωb generated at the bottom.
The main results is that both quantities have complex singularities which are closer to
the real domain as ν decreases. All the singularities tracked show negative characters,
stronger in the low viscosity regime. This reflects the eruptive behavior observed in
∂x p and ωb. In al cases the singularities reach, at a specific time, a minimal distance
from the real domain and, after this event, they begin to depart from the real domain.
This expresses that the width of the analyticity of the solution becomes larger, and the
overall flow evolution becomes smoother; it is easy to guess that, asymptotically, the
flow reaches a rest state, an event which can be predicted by the decay of the energy.

The numerical solutions we have obtained share some similarities with the high
Reynolds number Navier–Stokes solutions analyzed in different configurations, see
[15,21,23,39–41]. In fact, high Reynolds number flows present the typical small scale
phenomena here observed in the PEs solutions, as well as the presence of complex sin-
gularities in the solution which are precursor of the interactions between the boundary
layer and inviscid outer flow. In [23] it was reported a comparison between the com-
plex singularities of the Navier–Stokes solution and the Prandtl singularity, showing
how NS solutions have a much richer singular structure which, apparently, cannot be
approximated by the Prandtl singularity. We plan to perform a similar investigation
for the PEs. Moreover, it would be interesting to study the asymptotic behavior of the
solutions of the PEs using the Fourier Splitting technique, see [45], in analogy to what
recently proposed in [46] for the shallowwater model with varying bottom topography
proposed in [32]. This is a work in progress that will appear elsewhere.
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