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Abstract The one-dimensional motion of magnetic domain walls in a thin ferromag-
netic nanostrip sandwiched between a heavy metal and a metal oxide is investigated
analytically in the framework of the extended Landau–Lifshitz–Gilbert equation.
The trilayer system under investigation exhibits structural inversion asymmetry and
exploits the combined effects of spin-transfer-torque and spin-orbit-torque to opti-
mize the domain-wall propagation along the nanostrip. Through the traveling-wave
formalism, an explicit expression for the key features involved in both steady and
precessional regimes is provided, with a particular emphasis on the role played by the
two spin-orbit-torque contributions, Rashba and Spin-Hall. In particular, it is shown
how the domain-wall velocity and mobility, the direction of propagation, the depin-
ning threshold and theWalker breakdown can be controlled via a suitable combination
of Rashba and Spin-Hall coefficients. A comparison between analytical results and
numerical data extracted from literature is also addressed revealing a qualitative agree-
ment between them.Additional information on spin-orbit-torque-drivenDWdynamics
is extracted from such an analysis and, in particular, a linear dependence between the
spin-Hall angle and the azimuthal angle is outlined as a possible mechanism respon-
sible for the reversal of propagation direction.
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1 Introduction

Investigations on nanoscale magnetic materials devoted to the design of high-
performance spintronic devices have increased significantly in the last decades. Today,
applications range from biosensors to microwave emitters and receivers, from logic
devices to data storage media [1–13]. In particular, the possibility of controlling the
propagation of magnetic domain walls (DWs) in ferromagnetic nanostrips has been
receiving a lot of interest from both theoretical and technological viewpoints [5–19].

DWs are local deformations of the magnetization which originate between two
uniformly and oppositely magnetized regions. Under the action of external driving
sources, such as magnetic fields or electric currents, a domain may undergo an expan-
sion at expenses of the other that causes, in turn, the shift of the DW location along the
nanostrip axis. However, the DWmotion along single-layer nanostructures encounters
some difficulties. Among them, the DW displacement is not always reproducible, the
depinning from a thermally stable position is difficult and the maximum achievable
velocity (in the low field or current regime) is limited by structural instability, gen-
erally referred to as Walker breakdown. A strategy recently used to overcome these
problems consists of exploiting the combined effects of spin-transfer-torque (STT) and
spin-orbit-torque (SOT) that have been found to simultaneously occur in trilayer sys-
tems heavy-metal/ferromagnet/metal-oxide traversed by a longitudinal electric current
[11]. The STT originates when a spin-polarized current crosses a DW and transfers its
angular momentum to the internal structure of the DW, thereby pushing it along the
direction of the current flow [17–19].

On the other hand, spin-orbit interactions are caused by structural inversion asym-
metry (SIA) and may give rise to different phenomena, such as Rashba and spin-Hall
effects. In detail, the Rashba effect takes place when electrons flowing through a ferro-
magnet experience an electric field generated by an asymmetric crystal-field potential
profile that originates when the ferromagnetic film is sandwiched between nonmag-
netic high-Z metals (such as Pt, Au, or Pd) and a metal oxide (such as MgO or AlOx).
From the reference frame of the electrons, this electric field translates into a magnetic
field (the so-called Rashba field) due to relativistic effects. The Rashba field creates
a non-equilibrium spin density of conduction electrons in the ferromagnet that, via
exchange interactions, couples with the magnetic moment generating a torque.

The Spin-Hall effect originates when unpolarized electrons, flowing through a
material characterized by a very high spin-orbit coupling (such as a heavy metal),
undergo a separation across the thickness of the layer according to the direction of
spin-polarization. Such a phenomenon, that leads to an accumulation of spins of oppo-
site signs on opposing lateral boundaries, implies the conversion of a charge current
into a transverse spin current. The absorption of this spin current by the adjacent fer-
romagnetic layer results in an additional transfer of spin-torque to the ferromagnet
[9–13].

The capability of manipulating DW structures in trilayers with SIA has several
advantages: facilitated depinning, higher stability and wider high-mobility regime.
However, while these results have been proved experimentally [11], very few analyt-
ical results are available in literature [20]. In fact, the complexity of the governing
Extended Landau–Lifshitz–Gilbert (ELLG) equation [14–16,21,22] generally pre-
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Modeling magnetic domain-wall evolution... 1003

vents the possibility of obtaining exact analytical solutions. Therefore, the problem is
generally tackled by using semi-analytical approaches [20] and/or numerical simula-
tion tools [23].

The purpose of this work is to investigate analytically the DW dynamics in the
abovementioned trilayer systems with SIA in order to provide an explicit (even though
approximate) expression for the key quantities involved into the two characteristic
dynamical regimes of DW motion, steady and precessional, taking place at low and
high values of the external driving sources, respectively.

In our approach we make use of several simplifying hypotheses: the DWmotion is
one-dimensional and takes place along themajor nanostrip axis; theRashba effect gives
rise to a field-like term and a spin-torque-like term whereas the Spin-Hall effect enters
the equation via a spin-torque term only; the amplitudes of both Rashba and Spin-Hall
effects are conceived to be small in such a way that the classical Walker solution is
recovered [24] and, at the same time, the DW width is treated as a constant; effects
arising from external magnetic fields and magnetoelastic interactions are neglected;
dissipative effects are taken into account via a classical linear Gilbert damping term
and a nonlinear rate-independent dry-friction term. In particular, this latter contribution
allows the characterization of realistic magnetic devices as it mimics pinning effects
arising from structural disorder (such as inhomogeneities, impurities, dislocations and
crystallographic defects) [14–16,25].

The manuscript is organized as follows.
In Sect. 2 we build up a 1Dmodel based upon the ELLG equation for the description

of the current-driven DW motion occurring in a thin ferromagnetic layer sandwiched
between a heavy metal and a metal oxide. Particular emphasis is given to the role
played by the abovementioned STT and SOT effects in both steady and precessional
regimes.

InSect. 3,we address numerical investigations in order to enable a direct comparison
with literature data and to gain more insights into the observed DW dynamics.

Some concluding remarks are addressed in the last section.

2 The mathematical 1D micromagnetic model

Let us consider a ferromagnetic (FM) nanostrip integrated in a trilayer structure
exhibiting SIA, as sketched in Fig. 1. The sizes of the ultrathin elongated FM layer,
length L , width w and thickness d, satisfy the constraint L >> w > d. This layer
is traversed by an electric current density J that flows along the major axis ex and
is assumed to be constant in time and uniform in space. The proximity of the FM
with a heavy metal also generates a high perpendicular magnetocrystalline anisotropy
which favors an out-of-plane magnetization configuration. As a consequence of that,
we assume that two magnetic domains pointing along ± ez are nucleated at the edges
of the FM layer and the position of the resulting Bloch-type DW can be shifted along
the nanostrip axis ex via the electric current (because of the geometrical confinement,
we do not expect any variation along ey and ez). In other words, denoting withm the
unit magnetization vector, we look for solutions of the form:
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1004 G. Consolo

Fig. 1 Schematics of the trilayer system consisting of a thin ferromagnetic nanostrip placed between a
heavy metal and a metal oxide. Reference axes and geometrical sizes are also depicted

m = m(x, t)

lim
x→±∞m = ∓ez

(1)

where x is the nanostrip axis coordinate and t is the time.
To model the overall effects of the electric current on the magnetization, we thus

consider a 1D model based upon the Landau–Lifshitz–Gilbert equation that includes,
besides the usual precessional and damping terms, the current-induced STT and SOT
contributions [14–16,20–22]:

•
m= tPRE + tDISS + tSTT + tSOT (2)

where the over-dot denotes the partial time derivative.
The first term on the right-hand side of (2), tPRE, defines the undamped preces-

sional torque induced by the effective magnetic field which, in turn, accounts for
the contributions arising from demagnetizing hdmg, exchange hexc and perpendicular
magneto-crystalline anisotropy hani fields:

tPRE = γ
(
hdmg + hexc + hani

)
∧ m (3)

where γ = MSμ0γe is a constant expressed in terms of saturation magnetization MS ,
magnetic permeability of the vacuumμ0 and gyromagnetic ratio γe = ge/me, being g
the Landè factor, e the electron charge and me the electron mass. The fields appearing
in (3) can be written as:

hdmg = −Nx (m · ex ) ex − Ny
(
m · ey

)
ey − Nz (m · ez) ez

hexc = A
∂2m
∂x2

hani = β (m · ez) ez

(4)
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where:

Nx + Ny + Nz = 1, A = 2Aex

μ0M2
S

, β = 2ku
μ0M2

S

(5)

being Nx , Ny and Nz the demagnetizing factors, whereas Aex and ku represent the
exchange and the anisotropy constants of the material, respectively. In this model, we
do not take into account effects arising from magnetostriction and external magnetic
fields, because they do not contribute to SOT effects. An analysis of domain wall
dynamics driven by these latter fields can be found in Refs. [8,14–16].

The second term in (2), tDISS, accounts for the intrinsic dissipative phenomena.
As widely discussed in previous works [14–16,25], it includes the classical Gilbert
damping torque [22] augmented by a non linear contribution arising from a rate-
independent dry friction, namely:

tDISS = αG

(
m ∧ •

m
)

+ m ∧
(
γαD| •

m|−1 •
m

)
(6)

where the phenomenological dimensionless parameters αG and αD describe the
strength of linear and nonlinear dissipation, respectively.

The third term appearing in (2), tSTT, accounts for the classical spin-transfer torque
generated by the current flow. Even in the case of negligible interfacial effects, tSTT

includes adiabatic and non-adiabatic contributions responsible for the DW distortion
and motion, respectively [17,18]. It reads:

tSTT =
(

−∂m
∂x

− η
∂m
∂x

∧ m
)
u0 J (7)

with u0 = gμB P/ (2eMs), being η the phenomenological non-adiabatic parameter,
μB the Bohr magneton and P the polarization factor of the current.

The last term in (2), tSOT, describes the two spin-orbit couplingmechanisms (Rashba
and Spin-Hall) which take place in such structures [9–13,23]:

tSOT = γ J
[̃
αRA

(
ey ∧ m

) + (
η α̃RA + h̃SH

)
m ∧ (

m ∧ ey
)]

(8)

where:

α̃RA = αR P

μ0μBM2
S

, h̃SH = μBθSH

γ eMSd
(9)

In detail, theRashba effect enters the governing equationboth as afield-like termand
as a spin-transfer-torque-like term, whereas the Spin-Hall effect acts as a spin-transfer-
torque-like term only. In (9), αR is the parameter that measures the strength of the
Rashba spin-orbit-torque and θSH represents the spin-Hall angle which parameterizes
the ratio between the spin current and the charge current [23].

To analytically gain insight into the 1Dmotion of domain walls in such a nanostrip,
we substitute the explicit expressions of the above defined torques into the Landau–
Lifshitz–Gilbert equation (2) which, in polar coordinates, becomes:
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sin θ
•
ϕ −

[
αG + γαD

(•
θ
2
+ sin2 θ

•
ϕ
2
)−1/2

]
•
θ

= γ

{
−A

∂2θ

∂x2
+ A sin θ cos θ

(
∂ϕ

∂x

)2

− α̃RA J cos θ sin ϕ +
(
β + Nx cos

2 ϕ + Ny sin
2 ϕ − Nz

)
sin θ cos θ

− (
ηα̃RA + h̃SH

)
J cosϕ

} − u0 J sin θ
∂ϕ

∂x
+ ηu0 J

∂θ

∂x[
αG + γαD

(•
θ
2
+ sin2 θ

•
ϕ
2
)−1/2

]
sin θ

•
ϕ + •

θ

= γ

{
A sin θ

∂2ϕ

∂x2
+ 2A cos θ

∂θ

∂x

∂ϕ

∂x

+ (
Nx − Ny

)
sin θ cosϕ sin ϕ − (

ηα̃RA + h̃SH
)
J cos θ sin ϕ + α̃RA J cosϕ

}

− ηu0 J sin θ
∂ϕ

∂x
− u0 J

∂θ

∂x
(10)

where θ and ϕ are the polar and azimuthal angles, respectively, so that the unit mag-
netization vector m is expressed as m = (cosϕ sin θ, sin ϕ sin θ, cos θ).

It is known that DW dynamics in a nanostrip can be classified into two regimes,
steady and precessional, occurring, respectively, below and well above a given critical
value of the driving source [referred to as Walker Breakdown (WB)]. Such a WB
condition also delineates the stability of the wall structure [26]. For the sake of clarity,
we will analyze these regimes separately.

2.1 The steady regime

This dynamical regime is characterized by a steady motion of the DW along the
nanostrip axis ex with constant velocity v. Because of that, let us introduce a travelling
wave ansatz for the polar angle θ = θ (x − vt)whereas the azimuthal angle is assumed
to be constant in time and uniform in space ϕ = ϕ0 [24].

Under these assumptions, the system (10) reduces to:

[αGv − ηu0 J ] θ
′ + α̂D = γ

{
− Aθ ′′ − α̃RA J cos θ sin ϕ0 +

− (
ηα̃RA + h̃SH

)
J cosϕ0 + sin θ cos θ

[
β + Nx cos

2 ϕ0 + Ny sin
2 ϕ0 − Nz

] }

(u0 J − v) θ ′ = γ
{
α̃RA J cosϕ0 − (

ηα̃RA + h̃SH
)
J cos θ sin ϕ0

+ (
Nx − Ny

)
sin θ cosϕ0 sin ϕ0

}
(11)

where the prime denotes the derivative with respect to the travelling wave variable
ξ = x − vt and α̂D = γαDsign

(
vθ ′). We recast Eq. (11)2 as:
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θ ′ = Γ
(
sin θ + Γ̃ cos θ + Γ̂

)
(12)

with:

Γ = γ

u0 J − v

(
Nx − Ny

2

)
sin 2ϕ0 (13)

Γ̃ = −
(
ηα̃RA + h̃SH

)
(
Nx − Ny

)
cosϕ0

J = −˜̃Γ J (14)

Γ̂ = α̃RA(
Nx − Ny

)
sin ϕ0

J = ̂̂Γ J (15)

whereΓ −1 has the dimension of length whereas Γ̃ and Γ̂ are dimensionless quantities
(˜̃Γ and ̂̂Γ are (current densities)−1).

Then, inserting (12) into (11)1, after some algebra, we end up with the following
trigonometric equation:

P sin θ + Q cos θ + R sin θ cos θ + S sin2 θ + T = 0 (16)

where:

P =Γ (αGv − ηu0 J ) − γ AΓ 2Γ̂ Γ̃

Q =Γ Γ̃ (αGv − ηu0 J ) + γ
(
AΓ 2Γ̂ + α̃RA J sin ϕ0

)

R =γ
[
AΓ 2

(
1 − Γ̃ 2

)
− β + Nz − Ny sin

2 ϕ0 − Nx cos
2 ϕ0

]

S = − 2γ AΓ 2Γ̃

T =Γ Γ̂ (αGv − ηu0 J ) + α̂D + γ
[
AΓ 2Γ̃ + (

ηα̃RA + h̃SH
)
J cosϕ0

]

(17)

The expression of the DWwidth is given by δ = Γ −1 and, in agreement with some
previous results [14–16], it is obtained by imposing the condition R = 0. It leads to:

δ2 = Γ −2 = A
(
1 − Γ̃ 2

)

β + Nx cos2 ϕ0 + Ny sin2 ϕ0 − Nz
(18)

Comparing (18) with the expression found in [16], we notice that the presence of
Rashba and Spin-Hall contributions reduces, via the coefficient Γ̃ , the DW width.

A meaningful solution of Eq. (12) satisfying the symmetry condition θ(0) = π/2
can be obtained if the dimensionless quantities Γ̂ and Γ̃ verify the constraint(
Γ̂ 2 − Γ̃ 2

)
< 1. Under such hypotheses, the solution can be expressed as:

θ (ξ) = 2 arctan
f2K exp

(
Γ

√
1 + Γ̃ 2 − Γ̂ 2ξ

)
− f1

K exp
(
Γ

√
1 + Γ̃ 2 − Γ̂ 2ξ

)
− 1

(19)
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with:

K = 1 + (
Γ̂ − Γ̃

) (
1 − Γ̃

) − (
Γ̂ − Γ̃ + 1

) √
1 + Γ̃ 2 − Γ̂ 2

(
Γ̂ − Γ̃

) (
Γ̂ + 1

)

f1 = −1 +
√
1 + Γ̃ 2 − Γ̂ 2

Γ̂ − Γ̃
, f2 = −1 −

√
1 + Γ̃ 2 − Γ̂ 2

Γ̂ − Γ̃

(20)

In the limit
∣∣Γ̃ ∣∣ → 0,

∣∣Γ̂ ∣∣ → 0, we recover the classical Walker solution rep-
resenting a 180◦ Bloch DW with θ (ξ) � π for ξ → +∞ and θ (ξ) � 0 for
ξ → −∞ [24]. For this reason, hereafter we consider the assumptions

∣∣Γ̃ ∣∣ � 0
and

∣∣Γ̂ ∣∣ � 0 that can be easily achieved by using realistic parameter values.
Consequently, the DW width (18) can be safely approximated by δ = Γ −1 ≈[
A/

(
β + Nx cos2 ϕ0 + Ny sin2 ϕ0 − Nz

)]1/2
, namely its value will only depend on

exchange constant, perpendicular anisotropy and demagnetizing factors. We there-
fore assume the DW width to be independent of SOT effects, as usual in literature
[11,14–16,20,23].

To derive the expression of the steady DW velocity, we average the equation (16)
over the range 0 ≤ θ ≤ π , taking into account that the coefficients P ,Q,S and T (17)
do not depend on θ . We obtain:

v =
̂̂Γ

(
πδηu0 − 2γ A˜̃Γ

)
J 2 + [

2ηu0 − πδγ cosϕ0
(
ηα̃RA + h̃SH

)]
δ J − πδ2α̂D

αGδ
(
2 + π ̂̂Γ J

)

(21)
From a direct inspection of (21), we notice that, owing to the presence of dry-

friction (proportional to α̂D), the DW velocity does not cross the origin of the J − v

plane: this feature allows to take into account the above-mentioned pinning effects
due to crystallographic disorder. We also point out that the source of nonlinearity
between DW velocity v and electric current J lies in the Rashba effect only. In fact, in

the absence of this contribution
(̂̂Γ = 0

)
, the Spin-Hall effect would not lead to any

nonlinearity:

v = 2ηu0 − πδγ cosϕ0 h̃SH
2αG

J − πδ

2αG
α̂D (22)

and the DW would shift along the nanostrip axis with a spin-Hall-dependent mobility
∂v/∂ J = (

2ηu0 − πδγ cosϕ0h̃SH
)
/2αG .

However, if we also neglected the spin-Hall effect
(̃
hSH = 0

)
, the sign of the DW

mobility (which determines the direction of DWmotion), the value of the propagation
threshold (also referred to as depinning threshold) and the upper limit of the steady
motion (the Walker breakdown) would be fixed by the geometrical sizes and the
chemical composition of the materials, making quite hard the process of optimization
of steadyDWdynamics. On the contrary, applications nowadays ask for the possibility
tomanipulate the direction ofmotion, to reduce the depinning thresholds and to achieve
larger propagation velocities. As proven by experiments [11], SOT effects contribute
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significantly in this direction, since they provide additional degrees of freedom (the
parameters α̃RA and h̃SH) which can be suitably designed for these purposes.Moreover,
the inspection of (21), (22) reveal that different scenarios may occur depending also
on the value of the azimuthal angle ϕ0 which, as it will be shown, plays a fundamental
role in such dynamics.

To analyze it in more detail, let us consider two representative cases: 0 < ϕ0 < π/2
and π/2 < ϕ0 < π . In addition, hereafter we will assume the difference Nx −Ny to be
positive and, for simplicity, we will also consider a positive current polarity (J > 0)
only. Let us notice that, if 0 < ϕ0 < π/2 (π/2 < ϕ0 < π ), the denominator of (21) is
positive (negative), so that the direction of steady DW motion is entirely ruled by the
sign of the numerator (the opposite sign of the numerator). By inspecting the solutions
of the quadratic function at the numerator of (21), we get:

J1,2 =
{
γπδ cosϕ0

(
ηα̃RA + h̃SH

) − 2ηu0

±
[(

γπδ cosϕ0
(
ηα̃RA + h̃SH

) − 2ηu0
)2 + 4πδ2α̂D

̂̂Γ
(
ηπδu0 − 2γ A˜̃Γ

)]1/2 }

×
[
2̂̂Γ

(
ηπδu0 − 2γ A˜̃Γ

)]−1
(23)

By reminding the hypothesis on the smallness of the quantities ˜̃Γ and ̂̂Γ , we con-
clude that the two roots (23) are always real and distinct. Let us introduce the depinning
threshold as JDEP =max(J1, J2). This quantity reflects the physical constraint that a
net DWmotion cannot originate if the amplitude of the electric current does not allow
to overcome the pinning effect due to the static friction, i.e. v = 0 for J ≤ JDEP. We
can therefore summarize the steady DW dynamics obtained for J > JDEP as follows:

for 0 < ϕ0 < π/2 ⇒
if ηα̃RA + h̃SH < h∗ ⇒ v > 0 (forward) (case I)

if ηα̃RA + h̃SH > h∗ ⇒ v < 0 (backward) (case II)

for π/2 < ϕ0 < π ⇒
if ηα̃RA + h̃SH < h∗ ⇒ v < 0 (backward) (case III)

if ηα̃RA + h̃SH > h∗ ⇒ v > 0 (forward) (case IV)

(24)

being h∗ = [
ηπδu0

(
Nx − Ny

)
cosϕ0

]
/ (2γ A). In such an analysis, we remind that

the spin-Hall angle, and thus h̃SH, may assume negative values. On the contrary, the
Rashba contribution α̃RA is always positive.

The upper bound of the range in which a steady motion occurs, the WB current,
can be deduced from (13) and leads to the following restrictions to the DW velocity:

u0 J−γ δ

2

(
Nx − Ny

) ≤ v ≤ u0 J + γ δ

2

(
Nx − Ny

)
(25)
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Therefore, by comparing (21) with (25), we deduce the WB values for current
density:

JW B = δ
{
2πδγ cosϕ0

(
ηα̃RA + h̃SH

) ± πδαGγ ̂̂Γ (
Nx − Ny

) − 4u0 (η − αG)±

±
{[

2πδγ cosϕ0
(
ηα̃RA + h̃SH

) ± πδαGγ ̂̂Γ (
Nx − Ny

) − 4u0 (η − αG)
]2

+16̂̂Γ [
πα̂D ± αGγ

(
Nx − Ny

)] [
πδu0 (η − αG) − 2γ A˜̃Γ

]}1/2

×
{
4̂̂Γ

[
πδu0 (η − αG) − 2γ A˜̃Γ

]}−1
(26)

where the plus (minus) sign holds for forward (backward) motion.
As it can be noticed from (23), (24), (26), Rashba and spin-Hall effects affect the

direction of motion, the depinning threshold and theWalker breakdown, so confirming
that current-induced SOT effects may be properly used to manipulate and to optimize
the overall steady dynamical regime.

2.2 The precessional regime

Let us now investigate the regime of precessional dynamics observed far above the
WB condition. As known, this regime takes place for very large values of the driving
source [violating condition (25)] and is characterized by a periodic oscillation of the
DW structure between Bloch and Neel configurations so that the corresponding DW
velocity can be only expressed in terms of an average velocity over the period of
precession.

To describe such dynamics analytically, we assume that the precession occurs at

microwave frequency with a constant angular speed
•
ϕ = ω0 and that the traveling

wave profile given by (19) is unchanged [26].
To deduce an approximate expression of the DW velocity, we evaluate all the

quantities at the center of the DW (θ = π
2 ). The equations (10) can be rewritten in the

form:

ω0 +
[
αG + γαD

(
v2

δ2

(
1 + ̂̂Γ

)2 + ω2
0

)−1/2
]

v

δ

(
1 + ̂̂Γ J

)

= − γ J

[
A

δ2
˜̃Γ

(
1 + ̂̂Γ J

)
+ (

ηα̃RA + h̃SH
)
cosϕ

]
+ ηu0 J

δ

(
1 + ̂̂Γ J

)

[
αG + γαD

(
v2

δ2

(
1 + ̂̂Γ

)2 + ω2
0

)−1/2
]

ω0 − v

δ

(
1 + ̂̂Γ J

)

= γ
[(
Nx − Ny

)
sin ϕ + α̃RA J

]
cosϕ − u0 J

δ

(
1 + ̂̂Γ J

)
(27)
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Then, by performing the average of the equations (27) over a period of precession,
under the further (physical) restriction v/δ << ω0, we deduce:

δω0 + αGv − ηu0 J = 0

v − u0 J = (αGω0 + γαD) δ (28)

which leads to the following expression for the averageDWvelocity in the precessional
regime:

v = (1 + αGη) u0
1 + α2

G

J + γ δαD

1 + α2
G

(29)

As it can be noticed, differently from the steady regime, SOT effects do not formally
alter the structure of the classical solution as well as do not modify the DWmobility, in
agreementwith someprevious results [16,20]. For this reason, no further investigations
will be addressed in this regime.

3 An illustrative comparison with literature data

The analytical results derived in the previous section are now evaluated numerically
in order to enable a direct comparison with data extracted from literature. To this
aim, we consider the setup proposed in [23], where the roles of Rashba and Spin-Hall
effects were investigated by integrating numerically the governing equation (2) via a
finite-differences tool [27]. In detail, the ferromagnetic layer of such a heterostructure
has length L = 2.1µm, width w = 120 nm and thickness d = 3 nm so that the
constraint L >> w > d is satisfied. The parameters used to describe DW dynamics
are: saturationmagnetizationMS = 3×105 A/m, exchange constant Aex = 1×10−11

J/m, dimensionless Gilbert damping constant αG = 0.5, dry-friction coefficient αD =
0.01, demagnetizing factors Nx = 0.9091, Ny = 0.0021 and Nz = 0.0888, current
polarization factor P = 0.5, non-adiabatic coefficient η = 0.04, Rashba parameter
αR = 10−31 Jm. According to this set of parameters, the DW width is δ = Γ −1 ≈ 7
nm.

Firstly, we analyze the travelling wave profile in order to preliminarily verify the
consistency of our previous assumptions. In particular, in Fig. 2a we depict the dimen-
sionless parameters Γ̃ and Γ̂ , defined in (14)–(15), for a fixed value of the spin-Hall
angle: θSH = 0.05. As it can be noticed, these quantities satisfy the required constraint(
Γ̂ 2 − Γ̃ 2

)
< 1 and also approximate sufficiently well the limit

∣∣Γ̃ ∣∣ � 0,
∣∣Γ̂ ∣∣ � 0.

By using the parameter values extracted from such a figure, we can compute the trav-
eling wave profile θ (ξ) for two different values of the input current density (J = 0.5
A/µm2 and J = 2.5 A/µm2). Results shown in Fig. 2b denote that the analytical
solution approximates satisfactorily well the classical Walker profile in both cases.
This confirms the validity of our approach and allows us to get more insights into DW
dynamics.

In particular, we now focus our attention on the results reported in Fig. 3a of [23]
which depict the steady DW velocity obtained by fixing the Rashba field and varying
the spin-Hall angle. In more detail, those numerical results indicate that the direction
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Fig. 2 a Dependence of the dimensionless quantities Γ̃ (dashed line) and Γ̂ (solid line) on current density
J , for a fixed value of the spin-Hall angle θSH = 0.05. b Travelling wave profile obtained for J = 0.5
A/µm2 (solid line) and J = 2.5 A/µm2 (dashed line) by using the parameters values extracted from (a)

Fig. 3 a Steady DW velocity v as a function of the input current density J for different values of the
Spin-Hall angle θSH. Symbols denote results of numerical finite-differences simulations, whereas lines
represent analytical results. b Dependence of the azimuthal angle ϕ0 as a function of the Spin-Hall angle
θSH. Symbols denotes the numerical data whereas the dash-dotted line represents the best linear fit. The
linear fit crosses the value ϕ0 = π/2 at θ∗

SH � 0.13 that separates the regime of forward motion from the
backward one

of DW propagation may undergo an abrupt reversal if the spin-Hall angle exceeds a
critical value.Our analysis aims at providing amathematical, andphysical, justification
of the mechanisms governing this phenomenon.

The comparison between analytical results and numerical data arising from micro-
magnetic simulations is summarized in Fig. 3a. Such an analysis reveals that, for
θSH = 0, no DW motion takes place because the depinning threshold (related to dry-
friction) is beyond the range of current density here considered. For θSH = 0.05 and
0.10 , the DW velocity is negative, which reflects a backward propagation (along the
− ex axis), i.e. a DW motion against the electron flow. Moreover, the increase of the
spin-Hall angle leads to an overall increase (in absolute value) of the DWmobility. At
θSH = 0.15 the DW velocity has undergone an abrupt transition towards positive val-
ues. In this case, the DWmoves forward (along the + ex axis), i.e. the DW propagates
in accordance with the electron flow.
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It is interesting to notice that our analytical approach (solid lines) is able to capture
qualitatively well the behavior reported by such micromagnetic simulations (sym-
bols). Moreover, we may also reproduce the above-mentioned abrupt transition by
considering a correlation between the azimuthal angle ϕ0 and the spin-Hall angle θSH.
This assumption is consistent with the fact that the increase of the spin-Hall strength
tilts the magnetization away from its equilibrium direction and pushes it towards the
ey axis [see Eq. (8)]. Interestingly, results of our investigations reported in Fig. 3b
reveal that the azimuthal angle depends almost linearly upon the spin-Hall angle and
crosses the value π/2 at θ∗

SH which falls within the interval [0.10, 0.15], in agreement
with the numerical simulations [23]. In other words, from the analytical viewpoint, it
implies that dynamics observed for θSH < θ∗

SH (θSH > θ∗
SH) correspond to the case

II (IV) described in Eq. (24). Through a linear fit of the data, we extract the relation-
ship ϕ0 = 0.21π + 2.25πθSH which may be therefore considered as the mechanism
responsible for the reversal of propagation direction.

Finally, let us comment on the discrepancies resulting from the comparison between
numerical and analytical data. As it can be noticed from Fig. 3a, once the Spin-Hall
coefficient θSH is fixed, numerical data indicate a linear dependence of velocity v on
current density J , whereas analytical results report a nonlinear behavior. We believe
that the origin of such a partial disagreement could arise from the too restrictive
assumption that, in the presence of SOT effects, the analytical solution still satisfies
the classical Walker-like travelling-wave profile. In fact, when SOT effects become
non-negligible, the equilibrium configuration close to the boundaries of the nanostrip
deviates away from the ez axis and, at the same time, the magnetization within the DW
region exhibits variations along the ey axis that cannot be included into the present
1D model (as also mentioned in [23]).

4 Conclusions

The propagation of a magnetic DW in a thin ferromagnetic layer interposed between a
heavymetal and ametal oxide has been here analyzed in the framework of theExtended
Landau–Lifshitz–Gilbert equation. The geometry under investigation exhibits struc-
tural inversion asymmetry and allows to combine two current-induced effects, the
spin-transfer-torque and the spin-orbit-torque, the latter being in turn associated to
Rashba and Spin-Hall effects.

In order to describe the DW dynamics observed in both steady and precessional
regimes, some simplifying assumptions have been taken into account. Among the
most significant ones, we recall: (i) owing to the thin and elongated geometry, the
magnetization is assumed to vary along the nanostrip axis only and, thus, a 1D model
is developed; (ii) the strengths of Rashba and Spin-Hall effects are considered to be so
small that the constraint

∣∣Γ̂ 2 − Γ̃ 2
∣∣ < 1 holds true, the classical Walker-like solution

is still valid and the DW width is independent of SOT effects; (iii) the presence of
crystallographic defects is modelled via an additional dry-friction damping torque
term.

These hypotheses have allowed to deduce approximate analytical expressions for
the key physical quantities involved in such dynamics: DW velocity and mobility,

123



1014 G. Consolo

direction of propagation, depinning threshold and Walker breakdown. In particular,
their functional dependence on the strength of both SOT effects has been pointed out.
To the best of our knowledge, such an investigation has been so far undertaken via
numerical simulation tools only.

Our results have shown that, in the absence of SOT effects, the DWvelocity exhibits
the expected linear dependence on the driving source (the electric current). However,
while this dependence is not altered by the sole Spin-Hall effect, it can be made
nonlinear via Rashba contribution. In both cases, SOT terms introduce additional
degrees of freedom which can be efficiently used to control and to optimize the DW
dynamics occurring within the steady dynamical regime, whereas they play no role in
the precessional one.

Finally, by enabling a direct comparison between analytical and numerical data, we
have been able to gainmore insights into such SOT-drivenDWdynamics. In particular,
our investigation has allowed to establish a possible linear relationship between the
azimuthal angle ϕ0 and the spin-Hall angle θSH which could justify the reversal of
propagation direction observed at the critical value θ∗

SH.

Acknowledgements This work was supported by INdAM-GNFM. The results contained in the present
paper have been partially presented in Wascom 2017. The author gratefully acknowledges discussions with
Eduardo Martinez (University of Salamanca) and Giovanna Valenti (University of Messina).

References

1. Madami, M., et al.: Direct observation of a propagating spin wave induced by spin-transfer torque.
Nat. Nanotechnol. 6, 635–638 (2011)

2. Demontis, F., Vargiu, F.: Nonsmooth spin densities for continuous Heisenberg spin chains. Ricerche
Mat. 65, 469–478 (2016)

3. Consolo, G.: Onset of linear instability driven by electric currents in magnetic systems: a Lagrangian
approach. Ricerche Mat. 65, 413–422 (2016)

4. Consolo, G., Currò, C., Valenti, G.: Quantitative estimation of the spin-wave features supported by a
spin-torque-driven magnetic waveguide. J. Appl. Phys. 116, 213908 (2014)

5. Allwood, D.A., et al.: Magnetic domain-wall logic. Science 309, 1688 (2005)
6. Parkin, S.S.P., et al.: Magnetic domain-wall racetrack memory. Science 320, 190 (2008)
7. Lei, N., et al.: Strain-controlled magnetic domain wall propagation in hybrid piezoelec-

tric/ferromagnetic structures. Nat. Commun. 4, 1378 (2013)
8. Consolo, G., Currò, C., Valenti, G.: Curved domain walls dynamics driven by magnetic field and

electric current in hard ferromagnets. Appl. Math. Model. 38, 1001–1010 (2014)
9. Xu, Y., et al.: Self-current induced spin-orbit torque in FeMn/Pt multilayers. Sci. Rep. 6, 26180 (2016)

10. Pylypovskyi, O.V., et al.: Rashba torque driven domain wall motion in magnetic helices. Sci. Rep. 6,
23316 (2016)

11. Miron, I.M., et al.: Fast current-induced domain-wall motion controlled by the Rashba effect. Nat.
Mater. 10, 419–423 (2011)

12. Manchon, A., et al.: New perspectives for Rashba spin-orbit coupling. Nat. Mater. 14, 874 (2015)
13. Haazen, P.P.J., et al.: Spin-orbit torque in a bulk perpendicular magnetic anisotropy Pd/FePd/MgO

system. Nat. Mater. 12, 299–303 (2013)
14. Consolo, G., et al.: Mathematical modeling and numerical simulation of domain wall motion in mag-

netic nanostrips with crystallographic defects. Appl. Math. Model. 36, 4876–4886 (2012)
15. Consolo, G., Valenti, G.: Traveling wave solutions of the one-dimensional extended Landau–Lifshitz–

Gilbert equation with nonlinear dry and viscous dissipations. Acta Appl. Math. 122, 141–152 (2012)
16. Consolo, G., Valenti, G.: Analytical solution of the strain-controlled magnetic domain wall motion in

bilayer piezoelectric/magnetostrictive nanostructures. J. Appl. Phys. 121, 043903 (2017)

123



Modeling magnetic domain-wall evolution... 1015

17. Zhang, S., Li, A.: Roles of nonequilibrium conduction electrons on the magnetization dynamics of
ferromagnets. Phys. Rev. Lett. 93, 127204 (2004)

18. Thiaville, A., et al.: Micromagnetic understanding of current-driven domain wall motion in patterned
nanowires. Europhys. Lett. 69, 990–996 (2005)

19. Koyama, T., et al.: Observation of the intrinsic pinning of a magnetic domain wall in a ferromagnetic
nanowire. Nat. Mater. 10, 194 (2011)

20. Seo, S.M., et al.: Current-induced motion of a transverse magnetic domain wall in the presence of
spin-Hall effect. Appl. Phys. Lett. 101, 022405 (2012)

21. Landau, L.D., Lifshitz, E.: On the theory of the dispersion of magnetic permeability in ferromagnetic
bodies. Phys. Z. Sowjet 8, 153–169 (1935)

22. Gilbert, T.L.: A Lagrangian formulation of the gyromagnetic equation of the magnetic field. Phys. Rev.
100, 1243 (1955)

23. Martinez, E., Finocchio, G.: Domain wall dynamics in asymmetric stacks: the roles of Rashba field
and the spin Hall effect. IEEE Trans. Magn. 49, 3105 (2013)

24. Schryer, N.L., Walker, I.R.: The motion of 180 domain walls in uniform dc magnetic fields. J. Appl.
Phys. 45, 5406 (1974)

25. Baltensperger, W., Helman, J.S.: A model that gives rise to effective dry friction in micromagnetics. J.
Appl. Phys. 73, 6516 (1993)

26. Mougin, A., et al.: Domain wall mobility, stability andWalker breakdown in magnetic nanowires. Eur.
Phys. Lett. 78, 57007 (2007)

27. Romeo, A., et al.: A numerical solution of the magnetization reversal modeling in a permalloy thin
film using fifth order Runge–Kutta method with adaptive step size control. Physica B 403, 464–468
(2008)

123


	Modeling magnetic domain-wall evolution in trilayers with structural inversion asymmetry
	Abstract
	1 Introduction
	2 The mathematical 1D micromagnetic model
	2.1 The steady regime
	2.2 The precessional regime

	3 An illustrative comparison with literature data
	4 Conclusions
	Acknowledgements
	References




