
Ricerche mat. (2018) 67:347–360
https://doi.org/10.1007/s11587-018-0372-1

Set-valued Brownian motion

Domenico Candeloro1 · Coenraad C. A. Labuschagne2 ·
Valeria Marraffa3 · Anna Rita Sambucini1

Received: 14 July 2016 / Revised: 11 September 2017 / Published online: 23 February 2018
© Università degli Studi di Napoli "Federico II" 2018

Abstract Brownian motions, martingales, and Wiener processes are introduced and
studied for set valued functions taking values in the subfamily of compact convex
subsets of arbitrary Banach spaces X . The present paper is an application of the paper
(Labuschagne et al. in Quaest Math 30(3):285–308, 2007) in which an embedding
result is obtained which considers also the ordered structure of the family of compact
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convex subsets of a Banach space X and of Grobler and Labuschagne (J Math Anal
Appl 423(1):797–819, 2015; J Math Anal Appl 423(1):820–833, 2015) in which these
processes are considered in f-algebras. Moreover, in the space of continuous functions
defined on a Stonian space, a direct Levy’s result follows.

Keywords Brownian motion · Rådström embedding theorem · Vector lattices ·
Marginal distributions · Generalized Hukuhara difference

Mathematics Subject Classification 60J65 · 58C06 · 46A40

1 Introduction

It is well known that the concept of Brownian motion is one of the most important
in probability theory and its applications as Stock Market, Financial Mathematics,
Mathematical Statistics, Uncertainty, Decision Making, Fractal Analysis in Medical
Imaging.

The starting point of the present research are the papers [2,13,14,16,17,22,24,
27,30] in which stochastic integration is studied in partially ordered spaces or in the
fuzzy set valued case. The literature in this field is rich, we can cite for example
[4–9,15,18–20,23,26,28,29,33].

Here the notion of set valued Brownian motion is introduced and studied for the
case of compact convex subsets of a Banach space X . By considering the scalar valued
case,multiplication and subtraction have a prominent role in the definition ofBrownian
motion. In the set valued case, multiplication provides a problem as we are not aware
of a canonical multiplication of convex compact sets that yields a set with the same
properties. There are, however, known canonical subtraction operators for such sets
([25] and the references therein). Subtraction thus seems easier to deal with. Our study
is motivated by the facts that very little is known about Brownian motion in the set
valued case, and the known examples of set valued stochastic integration do not really
deal with set valued Brownian motion, as would be a canonical analogue of the scalar
valued case.

The paper is organized as follows: in Sect. 2 the basic properties of the hyperspace
ck(X) and its embedding in C(K ) are introduced. Since, in order to properly define
a set valued Brownian motion, a difference and a multiplicative structure are needed,
the embedding and the Riesz structure of C(K ) are used. For this reason the theory of
integration in vector lattice is very important and useful, see for example [3,11,30–32].

In Sect. 3 examples of ck(X)-valued Brownianmotion are given together with some
properties andwith some characterizations involving pointwisemartingales andGaus-
sian processes. Moreover the quadratic variation is introduced and a Levy’s reverse
result is obtained. In Sect. 4 a possible extension to arbitrary Banach lattices is given:
this is done in the more abstract framework of [16,17], with the purpose to compare
the two types of construction in the particular case here discussed, where the Banach
lattice is C(K ). In this last case, when K is Stonian, moreover a direct Levy’s result
follows. In the appendix a characterization of the generalized Hukuhara difference
which extends [25] is introduced.
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Set-valued Brownian motion 349

2 Preliminaries

We recall from [10, Chapter II] the following notations that will be used in the present
paper. Let X be a Banach space with its dual X∗ and let ck(X) be the subfamily of
2X\∅ of all compact, convex subsets of X .

As in [10] for all A, B ∈ ck(X) and λ ∈ R the Minkowski addition and scalar
multiplication are defined as

A + B = {a + b : a ∈ A, b ∈ B}, and λA = {λa : a ∈ A} (1)

Let H be the corresponding Hausdorff metric on ck(X), i.e.

H(A, B) = max(ed(A, B), ed(B, A))

where the excess ed(A, B) of the set A over the set B is defined as

ed(A, B) = sup{d(a, B) : a ∈ A} = sup{ inf
b∈B d(a, b) : a ∈ A}.

It is known that the family ck(X) endowed with the Hausdorff metric is a complete
metric space. For every C ∈ ck(X), the support function of C is denoted by s(·,C)

and is defined by s(x∗,C) = sup{〈x∗, c〉 : c ∈ C} for each x∗ ∈ X∗.
Clearly, the map x∗ �−→ s(x∗,C) is sublinear on X∗ and

−s(−x∗,C) = inf{〈x∗, c〉 : c ∈ C}, for each x∗ ∈ X∗.

The following theorem holds:

Theorem 2.1 ([21, Theorem5.7])Let X be aBanach space; then there exist a compact
(Stonian) Hausdorff space K and a map j : ck(X) → C(K ) such that

(2.1.a) j (αA + βC) = α j (A) + β j (C) for all A,C ∈ ck(X) and α, β ∈ R
+,

(2.1.b) dH (A,C) = ‖ j (A) − j (C)‖∞ for every A,C ∈ ck(X),
(2.1.c) j (ck(X)) is norm closed in C(K ),
(2.1.d) j (co(A ∪ B) = max{ j (A), j (C)}, for all A,C ∈ ck(X).

The Rådström embedding ˜j (ck(X)) of ck(X) is given by j : ck(X) → ˜j (ck(X)),

where j (C) = s(·,C) for all C ∈ ck(X) and ˜j (ck(X)) is the closure of the span of
{s(·,C) : C ∈ ck(X)} in (C(BX∗), σ (X∗, X)). Here C(BX∗) = { f : BX∗ → R :
f is continuous}, BX∗ denotes the unit ball of X∗ and σ(X∗, X) denotes the weak∗
topology on X∗.

The bounded-weak-star (bw*) topology is the strongest topology of BX∗ with coin-
cides with the weak∗ topology of BX∗ on every ball Br

X∗ := { f ∈ BX∗ : ‖ f ‖ ≤ r}.
Let B(ck(X)) be the Borel σ -algebra on (ck(X), dH ).

In order to define Brownian multivalued motion a multiplication and a difference
in ck(X) are needed. For what concerns the difference see the Appendix (however
we shall always consider the difference B1 − B2 of two convex and compact sets
as the element j (B1) − j (B2) in C(K )), while to access the averaging properties of
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conditional expectation operators a multiplicative structure is needed. In the Riesz
space setting the most natural multiplicative structure is that of an f-algebra (see for
example [1]). This gives a multiplicative structure that is compatible with the order
and additive structures on the space.

The ideal, Ee, of E generated by e, where e is a weak order unit of E and E is
Dedekind complete, has a natural f-algebra structure. This is constructed by setting
(Pe) · (Qe) = PQe = (Qe) · (Pe) for band projections P and Q, and extending to
Ee by use of Freudenthal’s Theorem. In fact this process extends the multiplicative
structure to the universal completion Eu , of E . This multiplication is associative,
distributive and is positive in the sense that if x, y ∈ E+ then xy > 0. Here e is the
multiplicative unit.

Thus the multiplication operation · : ck(X) × ck(X) → C(K ) can be defined by:

A · B = j (A) · j (B).

If X is finite dimensional then j (BX ) · j (B) = j (B), and BX · B exists not only in
C(K ) but also in ck(X) (and of course coincides with B).

3 ck(X)-valued Brownian motion

Now we shall introduce a Brownian motion taking values in the space ckr (X), where
X is any general Banach space. (Here the notation ckr (X) means all the indicator
functions of the type r1B , as r varies in R and B in ck(X)).

In order to do this, let us denote by e the unit function in C(K ). In case X is
finite-dimensional, e = j (BX ), the corresponding element of the unit ball of X .

Definition 3.1 Let S denote the hyperspace we are interested in, i.e. ckr (X), and let
(Bt )t be a process taking values in S, namely for every t ≥ 0 Bt : Ω → S ⊂ C(K ).
This process will be called set-valued Brownian motion if the following conditions
are satisfied:

(3.1.1) There exists an f -algebra L such that Bt (ω) ∈ L for each ω ∈ Ω and each
t > 0;

(3.1.2) Bt , B2
t are C(K )-valued Bochner integrable functions for each t > 0;

(3.1.3) For every evaluation functional f ∈ C(K )∗, the process f (Bt )t is a standard
real Brownian motion.

We recall that an evaluation functional f associates to every x ∈ C(K ) the value x(k)
for some fixed k ∈ K .

Example 3.2 The following is an example of a set-valued Brownian motion, when X
is finite-dimensional: (Bt )t = (Wte)t where (Wt )t is the standard scalar Brownian
motion, and e is the unit ball in X . Then for every f ∈ C(K )∗ such that f (e) = 1 it
is
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f (Wte)t = (Wt f (e))t = (Wt )t .

So for every elementary event ω

Bt (ω) =
{
Wt (ω) j (BX ) j (S) Wt (ω) > 0
−|Wt (ω)| j (BX ) otherwise

So Bt (ω) ∈ j (S) if Wt (ω) > 0, while Bt (ω) ∈ − j (S) othewise.
Next, for every real number t and every element B ∈ ck(X), the notation t B

represents the indicator function t1B .
Finally, if (Wt )t>0 denotes the standard Brownian motion, and if we set Vt := Wte

for each positive t , then we have shown that (Vt )t>0 is a Brownian motion taking
values in S := ckr (X) (or in j (S) after embedding).

From now on, let (Ω,A, P) denote any fixed probability space, with a σ -algebra A
and a countably additive probability measure P .

Definition 3.3 Let Γ : Ω → ck(X) be a measurable function. Define

PΓ (B) = P(Γ (ω) ⊂ B) for all B ∈ B(ck(X))

and

FΓ (Y ) = P(Γ (ω) ⊂ Y ) for all Y ∈ ck(X).

Then PΓ : B(ck(X)) → [0, 1] is a probability measure (the probability distribution
of Γ ), and FΓ : ck(X) → [0, 1] is its distribution function.
Proposition 3.4 Let Γ : Ω → ck(X) be a measurable set-function. Then

FΓ = Fj◦Γ ( j (·)).

Proof It is

FΓ (Y ) = P(Γ ⊂ Y ) where Γ ⊂ Y ⇐⇒ j (Γ ) ≤ j (Y )

FΓ (Y ) = P(Γ ⊂ Y ) = P( j (Γ ) ≤ j (Y )) = Fj (Γ )( j (Y )).

��
Example 3.5 Let us assume that X1 and X2 are two real-valued random variables,
X1 ≤ X2, and consider the variable Γ := [X1, X2] taking values in the hyperspace
ck(R). Now, when Y is an element of ck(R), i.e. Y = [y1, y2], the condition Γ ⊂ Y
means [X1 ≥ y1, X2 ≤ y2], and so

FΓ (Y ) = P([y1 ≤ X1 ≤ X2 ≤ y2]).
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On the other hand, in this situation, the unit sphere of the dual space of R is simply
the set {−1, 1}, and, for every set [a, b] ∈ ck(R), one has

s(x∗, [a, b]) =
⎧⎨
⎩

−a, x∗ = −1

b, x∗ = 1

Hence, one can write j ([a, b]) = (−a, b) as soon as a, b ∈ R, a ≤ b. Then j (Γ ) =
(−X1, X2) and j (Y ) = (−y1, y2): the condition j (Γ ) ≤ j (Y ) now means

−X1 ≤ −y1, X2 ≤ y2

and again one has

Fj (Γ )( j (Y )) = P([y1 ≤ X1 ≤ X2 ≤ y2]) = FΓ (Y ).

Let X1, Z be two independent random variables with distribution Γ (1, λ), and denote
X2 := X + Z .

Then clearly 0 ≤ X1 ≤ X2, and X = [X1, X2] defines a ck(R)-valued variable.
In order to compute its distribution function, fix arbitrarily y1 and y2 in R, with
0 ≤ y1 ≤ y2. Then

FX ([y1, y2]) = P([y1 ≤ X1 ≤ X2 ≤ y2]) =
∫ y2

y1

(∫ y2−x

0
fZ (z)dz

)
fX1(x)dx

= λ2
∫ y2

y1

∫ y2−x

0
e−λx e−λzdzdx .

Simple computations give finally

FX ([y1, y2]) = e−λy1 − e−λy2 + λ(y1 − y2)e
−λy2

= F(−X1,X2)(−y1, y2).

In Figure Fig. 1 the plot of the the distribution function of FX for λ = 1 is given.
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Fig. 1 Plot of the distribution
function of FX

In [27] the set valued Gaussian distribution is defined to satisfy the condition FΓ =
Fj◦Γ ( j (·)).
Theorem 3.6 Assume that Wt : Ω → ck(X) is a weakly continuous L-valued func-
tion of t ≥ 0 that satisfies W0 = 0. Moreover suppose that Wt and W 2

t are Bochner
integrable for each t. Let {t0, . . . tm} be such that 0 = t0 < t1 < · · · < tm.

Then (Wt )t is a Brownian motion if and only if one of the following statements
holds for any evaluation function f ∈ C(K )∗:
(3.6.i) The increments f (Wt1 −Wt0), f (Wt2 −Wt1), . . . , f (Wtm −Wtm−1) are indepen-
dent and each of these increments is normally distributed with null mean and variance
equal to ti+1 − ti
(3.6.ii) The random variables f (Wt1), f (Wt2), . . . , f (Wtm ) are jointly normally dis-
tributed with means equal to zero and co-variance matrix V given by

V =

⎛
⎜⎜⎜⎝
t1 t1 · · · t1
t1 t2 · · · t2
...

...
...

t1 tm · · · tm

⎞
⎟⎟⎟⎠

(3.6.iii) The random variables f (Wt1), f (Wt2), . . . , f (Wtm ) have the joint moment-
generating function given by

ϕ(u1, . . . , um) = exp
{1
2
u2m(tm − tm−1)

}
· · · exp

{
(u1 + u2 + · · · + um)2t1

}
,

for every u1, . . . , um ∈ R.
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Proof Let {t0, . . . tm} be fixed with 0 = t0 < t1 < · · · < tm and consider an evaluation
function f . By 3.6.i) it is

ti+1 − ti = Var( f (Wti+1) − f (Wti )) = Var( f (Wti+1 − Wti ))

= E[( f (Wti+1 − Wti )
2] = E[ f 2(Wti+1 − Wti )]

= E[ f 2(Wti+1) + f 2(Wti ) − 2 f (Wti+1) · f (Wti )]
= E[ f 2(Wti+1) − f 2(Wti )]

Now, for every evaluation function f the process f (Wt )t is a scalar Brownian motion
and so all the three conditions are equivalent thanks to [24, Theorem 3.3.2] since

V =

⎛
⎜⎜⎜⎝

E[ f (W (t1))2] E[ f (W (t1)) f (W (t2))] · · · E[ f (W (t1)) f (W (tm))]
E[ f (W (t2)) f (W (t1))] E[ f (W (t2))2] · · · E[ f (W (t2)) f (W (tm))]

...
...

...

E[ f (W (tm)) f (W (t1))] E[ f (W (tm)) f (W (t2))] · · · E[ f (W (tm))2]

⎞
⎟⎟⎟⎠

and

ϕ(u1, . . . , um) = E

[
exp

{
um f (W (tm)) + um−1 f (W (tm−1)) + · · · + u1 f (W (t1))

}]

= E

[
exp

{
um f (W (tm) − W (tm−1)) + (um−1 + um) f (W (tm−1) − W (tm−2))

+ · · · + (u1 + u2 + · · · + um) f (W (t1))
}]

= E

[
exp

{
um f (W (tm) − W (tm−1))

}]
· · · · · E

[
exp

{
(u1 + u2 + · · · + um) f (W (t1))

}]

= exp
{1
2
u2m(tm − tm−1)

}
· · · exp

{
(u1 + u2 + · · · + um)2t1

}
.

So, by Definition 3.1, (Wt )t is a Brownian motion. ��
Definition 3.7 For every Bochner integrable set-valued function W , the conditional
expectation E(W |F) of W with respect to a sub σ -algebra F ⊂ A is a Bochner
integrable function with respect to (Ω,F , λ) such that for every evaluation function
f ∈ C(K )∗ it is

E( f (W )|F) = f (E(W |F)).

Definition 3.8 A set valued process (Mt )t is a pointwise martingale if

(3.8.1) Mt is Bochner integrable for every t ;
(3.8.2) E(Mt |Fs) = Ms , for every s < t where (Fs)s is the natural filtration of (Mt )t .

Then every Brownian motion (Mt )t is a pointwise martingale.

Theorem 3.9 Assume that (Bt )t is a set-valued Brownian motion, taking values in L.
Then whenever 0 < s < t are fixed in R, one has

E(B2
t |Fs) = B2

s + (t − s)e.
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Proof Let f be any evaluation functional. Then we have

E( f (B2
t )|Fs) = E(( f (Bt ))

2|Fs) = f (B2
s ) + t − s = f (B2

s + (t − s)e)

by the usual properties of scalar Brownian motion and multiplicativity property of f .
So, by arbitrariness of f , this leads to the assertion. ��
Clearly, this result means that, under the stated hypotheses, the sequence (B2

t − te)t
is a pointwise martingale.

The last theorem can be reversed, in some sense: more precisely,

Theorem 3.10 Let (Bt )t be a weak set-valued Gaussian process with homogeneous
increments, such that B0 = 0. If (B2

t − te)t is a pointwise martingale, then (Bt )t is
a Wiener process (therefore, assuming also that the trajectories of (Bt )t are weakly
continuous, one can conclude that (Bt )t is a set-valued Brownian motion).

Proof Indeed, from the martingale condition, one can deduce that E(B2
t − te) is

constant with respect to t , and therefore null, since B0 = 0. So, E(B2
t ) = te for all t .

Now, if 0 < s < t , thanks to the homogeneity property:

E( f (2Bt Bs) = E

(
f
[
B2
t + B2

s − (Bt − Bs)
2
])

= E

([
f (B2

t ) + f (Bs)
2 − f (B2

t−s)
])

= t + s − t + s = 2s

and this is precisely the defining property for a (weak) Wiener process. ��
Let (Mt )t≥0 be an L-valued adapted process, then

∑n−1
i=0 [Mtj+1 − Mtj ]2 ∈ C(K ) for

every partition π = {0 = t0 < t1 < · · · < tn = T } of [0, T ], T > 0.

Definition 3.11 The quadratic variation [Mt , Mt ] of an L-valued adapted process
(Mt )t , when it exists, is given by the following limit

lim‖π‖→0
‖ f ([Mt , Mt ](T )) − f

(
n−1∑
i=0

[Mtj+1 − Mtj ]2
)

‖2 = 0

for every evaluation function f ∈ C(K )∗ and every T > 0.

Theorem 3.12 (Theorem of Levy) Let Mt be a martingale relative to a filtration Ft

with M0 = 0. Assume that Mt has weakly continuous paths and [Mt , Mt ](T ) = T
for all T ≥ 0. Then (Mt )t is a set-valued Brownian motion.

Proof From the assumptions on Mt , we get that, for each evaluation function f ∈
C(K )∗, f (Mt ) is a martingale with f (M0) = 0, f (Mt ) has continuous paths and
[ f (Mt ), f (Mt )](t) = t for all t ≥ 0. Thus, f (Mt ) is a Brownian motion and so Mt

is a set valued Brownian motion. ��
Definition 3.13 A set valued process (Wt )t is integrable with respect to a Brownian
motion (Bt )t if for every T > 0 there exists an element IT ∈ C(K ) such that:
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(3.13.1) (IT )T is a martingale with respect to (Bt )t ;
(3.13.2) for every evaluation function f ∈ C(K )∗ it is

f (IT ) = (I )
∫ T

0
f (Wt )d( f Bt )

where the last integral is in the Ito sense.

For instance, the process (Bt )t is integrable, with IT = B2
T −T
2 ; more generally, if (Bt )t

takes values in an f -algebra L , then the process (Bk
t )t is integrable for every positive

integer k, and the usual Ito formula holds.

4 Brownian motion in vector lattices

In this sectionwegeneralize the notions ofBrownianMotion introducedbefore, replac-
ing the space C(K ) with a particular Riesz space E having an order unit e.

Definition 4.1 ([17, Definition 3.6]) Let (Bt ,Ft ) be an adapted stochastic process in
the Dedekind complete Riesz space E with conditional expectation F and unit element
e. The process is called an F-conditional Brownian motion in E if for all 0 ≤ s < t
we have

(4.1.1) B0 = 0;
(4.1.2) the increment Bt − Bs is F-conditionally independent of Fs ;
(4.1.3) F(Bt − Bs) = 0;
(4.1.4) F[(Bt − Bs)

2] = (t − s)e;
(4.1.5) F((Bt − Bs)

4] = 3(t − s)2e.

Remark 4.2 It was noted in [13, page 901] that the definition of a Brownian motion in
the Riesz space setting yields a Brownian motion in the classical case of real valued
Brownian motion; i.e., a real valued stochastic process satisfies conditions (4.1.1)–
(4.1.5) if and only if it is a Brownian motion.

Theorem 4.3 Let Bt be a set valued stochastic process. Then Bt is a Brownian motion
if and only if for any evaluation function f ∈ C(K )∗ and every pair (s, t) of positive
real numbers with s < t:

(4.3.1) f (B0) = 0;
(4.3.2) the increment f (Bt ) − f (Bs) is (F f )-conditionally independent of f (Fs);
(4.3.3) F( f (Bt ) − f (Bs)) = 0;
(4.3.4) F[( f (Bt ) − f (Bs))

2] = (t − s) f (e);
(4.3.5) F(( f (Bt ) − f (Bs))

4] = 3(t − s)2 f (e).

Proof We note that Bt is a Brownian motion if and only if f (Bt ) is a Brownian
motion for each evaluation function f ∈ C(K )∗ which is equivalent to the conditions
(4.3.1)–(4.3.5) by the Remark 4.2. ��
As a consequence of Theorem 4.3, when E = C(K ), with K Stonian and e is the unit
function in C(K ), we have:
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Set-valued Brownian motion 357

Corollary 1 Let (Bt )t be a F-conditional Brownian motion then, in the L2-norm,

[Bt , Bt ](T ) = T e.

Proof Let Π := {t0, . . . tm} be fixed with 0 = t0 < t1 < · · · < tm and let δ(Π) =
sup j<m{t j+1 − t j }. Since

E

[(
Bt j+1 − Bt j

)2] = Var
[
(Bt j+1 − Bt j )

] = (t j+1 − t j )e,

then

E

⎡
⎣m−1∑

j=0

(Bt j+1 − Bt j )
2

⎤
⎦ =

m−1∑
j=0

E

[
(Bt j+1 − Bt j )

2
]

= T e.

Moreover

Var
[
(Bt j+1 − Bt j )

2
]

= E

[
(Bt j+1 − Bt j )

4
]

− (t j+1 − t j )
2e = 2(t j+1 − t j )

2e

and

Var

⎡
⎣m−1∑

j=0

(Bt j+1 − Bt j )
2

⎤
⎦ =

m−1∑
j=0

Var
[
(Bt j+1 − Bt j )

2
]

= 2
m−1∑
j=0

(t j+1 − t j )
2e

≤ 2T eδ(Π)

and this implies that

lim
δ(Π)→0

Var

⎡
⎣m−1∑

j=0

(Bt j+1 − Bt j )
2

⎤
⎦ = 0

and so

lim
δ(Π)→0

∥∥∥∥∥∥
m−1∑
j=0

(Bt j+1 − Bt j )
2 − T e

∥∥∥∥∥∥
2

= 0.

��

5 Appendix

At the beginning of the paper we have claimed that, in order to introduce a notion of
Brownian motion in this context, a kind of difference between sets is necessary. Here,
following [25], for every A ∈ ck(X) let −A be the opposite of the set A, namely
−A = {−a : a ∈ A} and consider the following difference between sets:
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Definition 5.1 ([25, Definition 1]) For every A, B ∈ ck(X) the generalized Hukuhara
difference of A and B (gH-difference for short), when exists, is the set C ∈ ck(X)

such that

A �g B := C ⇐⇒
{

(i) A = B + C, or
(i i) B = A + (−C).

(2)

Remark 5.2 By [25, Propositions 1,6 and Remarks 2-5] if the set C exists it is unique
and coincides with the Hukuhara difference between A and B. Moreover a necessary
condition for the existence is that either A contains a traslate of B or B contains a
traslate of A. If equations (2.i) and (2.ii) hold simultaneously then C is a singleton.
Finally

(5.2.1) A �g B ∈ ck(X) then B �g A = −(A �g B);
(5.2.2) A �g A = {0},
(5.2.3) (A + B) �g B = A, A �g (A − B) = B, A �g (A + B) = −B.

If A is compact and convex subset of X then it is characterized by its support function
sA by Hahn-Banach theorem (see for example [10, Proposition II.16]). It is possible
to express the gH-difference of convex compact sets using support functions.

Given A, B,C ∈ ck(X) let s(·, A), s(·, B), s(·,C), s(·,−C) be the support func-
tions of A, B,C,−C respectively.

Again by [10, Propositions II-19] themap A �→ s(·, A) is injective, s(x∗, A+B) =
s(x∗, A) + s(x∗, B), s(x∗, λA) = λs(x∗, A) for every non negative λ, while

s(x∗,−A) = sup{< x∗,−x >, x ∈ A} = sup{< −x∗, x >, x ∈ A}
= s(−x∗, A) ≥ −s(x∗, A)

And the equality in the last line holds when the opposite of A is a set C ∈ ck(X)

such that A+C = {0}, namely s(x∗,�g A) = −s(x∗, A). So in general s(−x∗, A) ≥
−s(x∗, A) and the equality holds when equation (2.i) holds.

We recall some well-known facts concerning Banach spaces.

Theorem 5.3 [12, Theorem 2.3] Let X be any Banach space and H : BX∗ → R be
any mapping. Then H is the support function of a convex compact subset of X if and
only if H is bw∗-continuous, subadditive and positively homogeneous.

A consequence of this result can be stated in the following way.

Proposition 5.4 Let (Bt )t := (Wte)t be the example of Brownian motion in a finite-
dimensional space X, given above in the Example 3.2. Then, for each positive t , the
function j (B2

t − ∫ t
0 2BτdBτ ) is (bw∗)-continuous, subadditive and positively homo-

geneous.

Proof Clearly, since
∫ t
0 2BτdBτ = B2

t − te, it follows that the difference B2
t −∫ t

0 2BτdBτ is a positive multiple of e, i.e. a convex compact set. The conclusion then
follows from Theorem 5.3. ��
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The generalized Hukuhara difference can be expressed by means of the support func-
tions as in [25, Proposition 8] in the following way:

Proposition 5.5 Let s(·, A), s(·, B) be the support functions of A, B ∈ ck(X) and
denote by s1 := s(·, A) − s(·, B), s2 = s(·, B) − s(·, A). Then only four cases may
occur:

(5.5.a) if s1, s2 are bw*-continuous and subadditive then A�g B ∈ ck(X) and A�g B
is a singleton;

(5.5.b) if only s1 is bw*-continuous and subadditive then equation (2i) holds and
s(·,C) := s1;

(5.5.c) if only s2 is bw*-continuous and subadditive then equation (2ii) holds and
s(·,C) := s(·, B) − s(·,−A);

(5.5.d) if none of them is bw*-continuous or subadditive then A �g B does not exist.

Proof The proof of the first statement is the same as in [25, Proposition 8] since it
depends only on the subadditivity of si , i = 1, 2 and the fact that in this case A, B are
each one a traslate of the other, the bw*-continuity of s1, s2 implies again by Theorem
5.3, that A �g B ∈ ck(X).

As to the second statement observe that by [12, Theorem2.3] there existsC ∈ ck(X)

such that s1 = s(·,C), so (2.i) is valid.
In the third case the same can be done for s2, so there exists D ∈ ck(X) such that

s2 = s(·, D). Set now C = −D, the rest of the proof follows as in the quoted [25,
Proposition 8].

Finally since [12, Theorem 2.3] is a necessary and sufficient condition that there
exist no C ∈ ck(X) such that A = B + C or D ∈ ck(X) such that B = A + D , so
A �g B does not exists. ��
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