
Ricerche mat. (2018) 67:175–204
https://doi.org/10.1007/s11587-018-0363-2

Complementarity between term-time forcing and
delayed vaccination response in explaining irregular
dynamics in childhood diseases

John C. Eckalbar1 · Walter L. Eckalbar2

Received: 6 July 2016 / Revised: 10 July 2017 / Published online: 5 February 2018
© Università degli Studi di Napoli "Federico II" 2018

Abstract This paper investigates an SIR model with the following properties: (i)
demographics are present. (ii) The fraction vaccinating at any time is dependent on
past levels of disease prevalence with distributed delay. (iii) The maximum fraction
vaccinating is bounded below one bymedical contraindications or unshakeable beliefs
among a sub-set of the population that the vaccination is not beneficial. (iv) Disease
transmissibility is higher when school is in session than when it is not. Our main
findings are that the time series of prevalence can exhibit irregular inter-epidemic
intervals, and the profile of outbreaks can be highly variable over time—sometimes
exhibiting single large peaks and sometimes clusters of closely-spaced lesser peaks.
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1 Introduction

Relatively simple epidemiological models typically either: (i) converge without oscil-
lation to a disease-free equilibrium, (ii) spiral into an endemic equilibrium from most
initial points, or (iii) move away from most initial points near either equilibria toward
a periodic orbit. It has long been noted that historical disease data does not suggest
that any of the above are typical. (See Brauer et al. [1] and Manfredi and d’Onofrio
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[2].) Many researchers, both theoretical and empirical, have introduced “extensions”
to the simple models to explain observed irregular periods and amplitudes in disease
outbreaks.

There have been many avenues of approach, including the introduction of: (i) age
structure, following Schenzle [3], Bolker and Grenfell [4], Bolker [5]; (ii) sinusoidal
seasonal forcing, which began in 1929 with the work of Soper [6] and is still active
today in the work of Bartlett [7], Bailey [8], Aron and Schwartz [9], Acedo et al. [10],
Billings and Schwartz [11], Katriel and Stone [12]; (iii) school term-time forcing, Earn
et al. [13], Keeling et al. [14], Rohani et al. [15], Olinky et al. [16], Diedrichs et al. [17];
(iv) stochasticity, Bartlett [7], Zhao [18]; and delays from various sources, including
(v) vaccination demand responding with delay to outbreaks, Buonomo et al. [19,20],
d’Onofrio et al. [21,22]; (vi) vaccination giving temporary immunity, with recovered
returning to susceptibility after delay, Greenhalgh et al. [23], and (vii) changes in
peoples’ contact rates in response to the history of disease prevalence, d’Onofrio and
Manfredi [24]. See [1,2] for a more extensive review.

Researchers working on both sinusoidal seasonal forcing and discrete school-
related term-time forcing models have found that irregular periods/amplitudes can
exist when the forcing is strong, e.g., transmissibility must be much higher when
school is in session than when it is not [4,11,12,14,15]. At the same time, simple
distributed delay models including vaccination demand based on past prevalence with
“weak” Erlangian kernels do not appear to give rise to irregular dynamics, though
higher order Erlang functions (or discrete delay systems) can produce chaos when
delay is long [25,26]. Hence, either model extension can yield exotic dynamics, but
onlywith strong forcing or long delay. In the present paperwe are interested in combin-
ing discrete school-related term-time forcingwith high order distributed delay between
disease outbreaks and the vaccination demand to see if a model containing both effects
yields irregular dynamics with more moderate levels of forcing strength and delay.

We are not the first to examine a SIR model with delay and temporal forcing. In
2009 d’Onofrio and Manfredi [24] modeled a SIR system where the contact rate is
influenced by past levels of disease prevalence, and they mention at the end that chaos
was found when sinusoidal seasonal forcing is attached to the resulting contact rate.
And in 2013, d’Onofrio,Manfredi, andSalinelli [27]modelled aSIR systememploying
several different means of linking current vaccinations to past values of prevalence
and with the contact rate incorporating sinusoidal forcing, noting “how complex the
interplay between infection transmission and vaccinating behaviour might be” [2,
p. 287]. We see our present work as an extension of the two previously mentioned
papers [24,27] to discrete term-time forcing and high-order distributed delay. Our
main finding is that when both delay and term-time forcing are included in an SIR
model, irregular dynamics occur with much lower values of both term-time forcing
strength and delay duration.

In Sect. 2, we describe the SIRmodel used and give some general results. In Sect. 3,
we look at equilibrium and stability issues. Section 4 contains numerical results. We
explore a pure term-time forcing model in Sect. 4.1 and a pure delay model in 4.2.
These provide a baseline for Sect. 4.3, in which we activate both factors and find
irregular dynamics with moderate forcing strength and more reasonable mean delay
durations. Section 5 offers conclusions.
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2 The model

The general topic of temporal forcing has been studied for years in mathematical
epidemiology. There are twomain branches: sinusoidal forcing and term-time forcing.
Sinusoidal forcing has been studied extensively [6–12]. In sinusoidal forcing models,
we see equations for the transmission term at time t , λ(t), typically in the form λ(t) =
λ0(1 + λ1 cos( 2π

365 t)), for an annual forcing with t measured in days. This would be
the natural way to include effects from mean area temperature, hours of daylight, and
other smooth events which repeat annually. The second branch of temporal forcing
is typically called “term-time forcing,” and it generally employs a step function, like
f (t) below, to model the contact rates, with high rates when school is in session and
low rates when it is not [3,13–17].

In the following formulation, time, t , is continuous, and the model is calibrated in
days.We assume that t = 0 occurs on the first moment of the first day of the first (arbi-
trarily chosen) reference year. We further assume that a year is exactly 365 days long.
If we let �x� denote the largest integer less than or equal to x , then �mod(t + 1, 365)�
maps all t onto the set of integers between 1 and 365. To illustrate: if t = 17.65,mod(t
+ 1, 365)=18.65, and we are 65% of the way through day 18 in first year; and 950
years later, when t = 346,768, we are again in the 18th day of the year. It is handy to
have a notation signifying the day of the year. We will use T ∈ {1, 2, . . ., 365}. Sub-
scripts under T will denote specific days of interest. Our term-time forcing function
is given as follows:

f (t) =
{

λ2 i f mod (t + 1, 365) ∈ [TSb, TSe] ∪ [TFb, TFe]
λ1 i f mod (t + 1, 365) /∈ [TSb, TSe] ∪ [TFb, TFe]

.

The function f assigns either the disease transmission value λ1 or λ2 to every value
of t, depending upon whether or not school is in session. We assume that the Spring
school term is in session between the days of the year TSb and TSe and Fall term is
in session between TFb and TFe. When school is in session, the transmission term
is λ2. When school is not in session, the transmission term is λ1. Weekends during
the school term are counted as school time. For convenience, we assume, 0 < TSb <

TSe < TFb < TFe < 365.Be sure to note that t is a continuous real variable increasing
smoothly as time advances, while T is taken from the sub-set of the natural numbers
between 1 and 365 designating to the day of the year.

The term-time forcing function is now embedded in an SIR model of childhood
vaccination, where the vaccination uptake rate follows prior levels of disease preva-
lence with distributed delay. This follows Buonomo et al. [19,20] and d’Onofrio et al.
[21,22].

dS(t)

dt
=bN − bN min[k1+k2

1

N

∞∫
0

I (t − τ)G(τ )dτ, Vm]− f (t)
S(t)I (t)

N
−bS(t)

d I (t)

dt
= f (t)

S(t)I (t)

N
− γ I (t) − bI (t)

dR

dt
= γ I (t) + bN min[k1 + k2

1

N

∞∫
0

I (t − τ)G(τ )dτ, Vm] − bR(t).

(System 1)
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S, I, and R give the number of persons in the susceptible, infectious and recovered
classes, respectively. N = S+ I +R is the population size. It is easy to verify that N is
fixed, so we can drop R from the dynamic analysis, solving for R whenever interested
by using R = N − S − I . Parameter b is the birth rate; γ is the recovery rate; k1 is
the fraction that vaccinates regardless of past levels of prevalence; k2 determines (in
part) the size of the endogenous vaccination response to past prevalence; and Vm is a
limiting value on the fraction of newborns that can (or will) vaccinate. The function
G(τ ) comes about as follows: One can imagine different individuals with varying per-
sonal delay durations (τi , τ j , etc.) between a disease outbreak and their vaccination
responses. These differences may be due to the dissimilarities in the timeliness of
their receipt of information on outbreaks of disease, their personal risk assessments,
proclivity to procrastinate, and many other factors. G(τ ) is the probability distribu-
tion characterizing the array of personal delay times over the whole population. The

expression
∞∫
0
I (t − τ)G(τ )dτ in the above set of integro-differential equations has

G(τ ) assigning weights to all past levels of disease prevalence according to how long
ago (τ ) that prevalence level existed.We assume thatG(τ ) is an Erlang function, which
is given by

G(τ ) = anτ n−1e−aτ

(n − 1)! .

Here, τ is a delay interval, e is the base of the natural logs, n is a positive integer called
the “shape” parameter, and a is a positive number often called the “rate.” Parameters a
and n determine the position of the distribution. The mean delay is given by n/a, and
the standard deviation is

√
n/a. The coefficient of variation, the ratio of the standard

deviation to the mean, is then given by1/
√
n.Thus, n determines the concentration

about the mean.
For concreteness, Fig. 1 plots three different Erlang specifications with the same

mean delay, 90 days. We use n = 1, 3, and 64, adjusting parameter a to ensure
n/a = 90. In the case of n = 1, Erlang reduces to an exponential distribution,
G(τ )=ae−aτ . In this case, we have G(0)=a > 0, and G ′(τ ) < 0. Thus, today’s
prevalence has the largest impact on today’s vaccination uptake, and the longer the
delay (the larger is τ ), the smaller is the influence on vaccination. Ruan [28] has
referred to these models as having a “weak kernel,” and the n=1 case is also often
described as displaying “fadingmemory.” As n rises above one, the Erlang distribution
becomes more Gaussian-looking and is more tightly packed around the mean. Further,
when n > 1, the current state of I has no impact on current vaccination, sinceG(0)=0
for all n > 1. When n → ∞, the Erlang distributed delay system approaches the
discrete delay formulation.

Our preference in modelling the delayed response of vaccination to past prevalence
is to employ n > 1. If it takes time for people to recognize that a disease outbreak
is underway, and more time to respond by obtaining a vaccination, then we would
rather not use the n=1 case, where G(0) > 0. Almost all of what follows uses n=3
or n=64. From a theorist’s point of view, it is significant that as n increases from
one, the delay system quickly gets very challenging to analyze. Numerically, this
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Fig. 1 This shows three Erlang distributions, all with mean delay of 90 days. The values of n are shown in
the figure, and parameter a is adjusted to ensure that n/a (mean delay) is 90

is not an insurmountable problem (though the programing and machine time grow),
but analytically the challenge is daunting. The n=1 case (“weak kernel or fading
memory”) has been thoroughly studied in the context of delayed vaccination response
to disease outbreaks, though discrete school-related term-time forcing is not present
in the models. See Buonomo et al. [19,20] and d’Onofrio et al. [21,22]. In the interest
of linking with those results, we do look briefly at the n=1 case with moderate levels
of delay and term-time forcing. The result, as we will see, can be chaos.

Thanks to thework ofMacDonald [29], System (1) can be reduced, via the so-called
“linear chain trick,” to the ordinary differential equations shown here:

d I (t)dt = f (t)
S(t)I (t)

N
− γ I (t) − bI (t)

dY 0(t)dt = a(I (t)−Y 0(t))

dY j(t)dt = a(Yj(t) − Yj+1(t)) j = 0, 1, . . . , n − 1

dS(t)dt = bN − bNmin[k1+k2
Yn−1(t)

N
, Vm]

− f (t)
S(t)I (t)

N
− bS(t). (System 2)

The Y terms here are synthetic variables. See Smith [30]. Note that the fraction vac-
cinating at time t , which we call V (t), is given by V (t) = min[k1+k2

Yn−1(t)
N , Vm].

System (2) is a hybrid dynamical system, where the differential equation driving S
and I (and the synthetic variables) switch for two different types of reasons: (1) There
is term-time forcing where f (t) switches the transmission term between λ1 and λ2
four times per year. (2) The min function in the dS/dt equation means that the rate of
change in S is sometimes governed by Vm and sometimes by Yn−1, depending upon
the state of the system. These issues, together with the relatively high dimensionality
of the system, present serious obstacles to a complete general analysis, as has been
noted by many others working in this general area [3,4,10,14].
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3 Equilibria and stability

Before we begin the equilibrium/stability analysis, we will collect a few assumptions.
First, there are standard sign restrictions for these sorts of models

b, λ1, λ2, γ, k1, k2, a, n, N , Vm > 0, (A1)

to which we add

λ1 ≤ λ2, k1 < Vm≤1, Vm < V ∗
m . (A2)

The assumption that λ1≤ λ2 means that the transmission rate during the school term
is (at least weakly) higher than when school is out. Since k1 is the fraction of new-
borns vaccinating regardless of the past prevalence, and Vm is the maximum possible
vaccination fraction, we get k1 < Vm≤1. The inequality Vm < V ∗

m rules out a type of
endemic equilibrium where vaccination is at it ceiling value. We leave this possibility
aside for reasons of space. (See [25,26] for coverage.)

Let us define the weighted transmission rate λw = w1λ1 + w2λ2, where w2 =
(TSe − TSb + TFe − TFb) /365 and w1 = 1 − w2. Thus, λw combines λ1 and λ2,
weighing each according to how many days it applies over the year. We also define
quasi-basic reproduction numbers:

R0(λw) = λw

b + γ
and (1)

R′
0(λw) = λw(1 − k1)

b + γ
. (2)

Equation (1) applies to systems without vaccination and (2) takes account the fixed
fraction vaccinating. We use R0(λw) and R′

0(λw), not to explain system behavior, but
to constrain us as we consider various combinations of λ1 and λ2. For instance, if we
fix values for Tse, Tsb, T f e, and T f b, and if we assume R0(λw)=16, when we pick
a value for λ2, the value for λ1 is implied, since λw is a convex combination of λ1
and λ2. We further assume both R0(λw) > 1 and R′

0(λw) > 1. Our intent is to study
systems where the disease persists. Finally, it is sometimes convenient to express λ2as
a multiple of λ1. Thus, we define m = λ2/λ1.

3.1 Disease-free equilibrium

System (2) will always have a disease-free equilibrium, E0. This is easily seen by
setting I and all the time derivatives to zero. Holding notation down by assuming
n = 3, the result is:

E0 = (S0, I0,Y0,0,Y1,0,Y2,0) = (N (1 − k1), 0, 0, 0, 0),

where, for example, Y1,0 gives the disease-free equilibrium value for Y1.
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Note that any equilibrium must have I = Y0 = Y1 = Y2. When we feel that no
confusion will result, we will write E0 simply using (S0, I0)= (N (1 – k1), 0). Note
that the term-time forcing presents no obstacle with respect to the determination of E0,
since the same values for S0 and I0 result, regardless of whether school is in session
or not, i.e., as far as the value of the E0 equilibrium is concerned, λ1 and λ2 play no
role.

Stability of E0 is more complicated, however. Suppose that instead of f (t) in
System (2), we had either λ1 or λ2, but no term-time switching. Referring to either λ1
or λ2 as λi , this specification will be defined as the “pure λi sub-system” of System
(2). Then it is not hard to show (see [25], Theorem 1) that the Jacobian of System (2)
evaluated at E0 would be

J (E0) =

⎛
⎜⎜⎜⎜⎝

−b − γ + (1 − k1)λi 0 0 0 0
a −a 0 0 0
0 a −a 0 0
0 0 a −a 0

−(1 − k1)λi 0 0 −bk2 −b

⎞
⎟⎟⎟⎟⎠ ,

and the eigenvalues would be –a (multiplicity 3), – b, and – b – γ + λi (1 – k1). Clearly,
E0 would be stable if – b – γ +λi (1 – k1) < 0. If we defineR′

0(λi ) = λi (1−k1)
b+γ

, then – b –
γ + λi (1 – k1) < 0 is equivalent toR′

0(λi ) < 1. Under our assumptions that R′
0(λw) >

1 and λw is a convex combination of λ1 and λ2, both of the R′
0(λi ) cannot be less than

1. But withm(:= λ2/λ1) sufficiently large, meaningm > (R′
0(λw)−w1)/(1−w1) :=

mc, we can get R′
0(λ1) < 1and R′

0(λ2) > 1. If this is the case, then under the hybrid
given by System (2), during vacations the system would move on a path that would
ultimately take it arbitrarily close to the disease-free equilibrium, if the vacation period
did not end; but before the path could get to E0, school would re-start and the path
would abandon the approach toE0 and come under the influence of the pure λ2 sub-
system, which does not approach E0. The end result is:

Theorem 1 Unless the hybrid System (2) has an initial pointwith I= 0, if R′
0(λw) > 1,

it cannot converge to a disease-free equilibrium

Hybrid systems are capable of strange things. Two stable sub-systems can “paste
together” forming a hybrid that is unstable, and two unstable sub-systems can join to
form a stable hybrid system. See Branicky [31] for an introduction. As we see next,
the hybrid System (2) will have no endemic equilibria at all.

3.2 Endemic equilibria

Our assumption that R′
0(λw) > 1, forces R′

0(λ2) > 1. For sufficiently small values of
m, meaning m < mc, we also have R′

0(λ2) > 1. We look at this case now. A pure λi
sub-system would have an endemic equilibrium given by

E1 (λi ) = (S1 (λi ) , I1 (λi )) =
(
N (b + γ )

λi
,
bN (−b − γ +λi (1 − k1))

λi (b (1 + k2) + γ )

)
i =1, 2.
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Notice that I1(λi ) = bN(R′
0(λi )−1)

λi (b(1+k2)+γ )
, so I1(λi ) > 0 if and only if R′

0(λi ) > 1. In
the case under consideration, both pure sub-systems will have endemic equilibria. In
contrast with the pure λ1 or λ2 sub-systems, the full hybrid System (2) is periodically
turning one sub-system off and another on via f (t). When f (t) turns on a sub-system,
say, the λ2 sub-system, the flow will temporarily go toward, away from, or around
E1(λ2), depending on the stability properties of E1(λ2) in the λ2 sub-system. In a
sense,E1(λi ) is relevant in the hybrid, but it is not an equilibrium. Some authors call
it a “ghost” (Crommelin [32]) or “phantom” equilibrium. That is because, even if the
hybrid system were to arrive at E1(λ2), when f (t) switches the active sub-system
(with λ1 
= λ2), the path leavesE1(λ2). It is not a “rest point.” Still, it can be handy to
think of the flow of the hybrid in light of the positions and properties of these phantom
equilibria. The result of this section is:

Theorem 2 If m > mc, both pure sub-systems have “phantom” endemic equilibria,
but there is no endemic equilibrium for the hybrid system.

Not all the news is odd, however. Using hybrid System (1), it is not hard to show:

Theorem 3 If the initial conditions (S(0),) I(0)) are in the closed bounded set � =
{(S, I )|S, I ≥ 0, S + I ≤ N }, then the positive semi-path from that point remains
in �.

Proof We check the flow of System (1) on the border of � and verify that it is never

outward. (i) If S = 0, dS/dt = bN − bN min[k1 + k2
1
N

∞∫
0
I (t − τ)G(τ )dτ, Vm] >

0, since min[.] is a positive fraction. (ii) If I = 0, dI /dt = 0. (iii) If S + I = N , then
R must be zero. If so, the last line of System (1) shows that dR/dt is positive, which
causes S + I to fall. �
To summarize this section so far: We see that unless the initial value is E0, we can
expect positive semi-paths to always be moving in Ω . We might see relatively simple
periodic orbits or chaos, but not convergence to an equilibrium unless I (0) = 0 and
the path slides toward E0. Also, since System (1) does not have a continuous vector
field, we do not have access to the Poincare-Bendixson theorem, and we cannot be
surprised to see a positive semi-path crossing itself as time advances. A segment of
the path driven by the λ1 pure sub-system will not cross another segment driven by
the same sub-system, but it can cross a segment driven by the λ2 pure sub-system, and
vice versa.

We end this section with one more general result that is useful in the following
section. The stability of the pure λi sub-systems is easy to check numerically using
results from [25]. Employing Routh–Hurwitz, Lienard–Ghipart, and the assumptions
here, E1(λi ) is stable in the pure λi sub-system iff det(H4) > 0, where det(H4) =
c1c2c3c4 − c23c4 − c21c

2
4 − c1c22c5 + c2c3c5 + 2c1c4c5 − c25, and

c1 = 3a + b + g(k2)
c2 = 3a2 + 3a(b + g(k2)) + (b + γ )g(k2)
c3 = a3 + 3a2(b + g(k2)) + 3a(b + γ )g(k2)
c4 = a3(b + g(k2)) + 3a2(b + γ )g(k2)
c5 = a3(b + bk2 + γ )g(k2),

123



Complementarity between term-time forcing and delayed… 183

and g(k2) = b(R′
0−1)(b+γ )

b+bk2+γ
.

This determinant is employed to some advantage in the following simulations.

4 Numerical results

Our strategy in the simulations is to hold most parameters constant throughout the
series of cases as we vary the mean delay duration, n/a, and the strength of term-time
forcing as measured by m= λ2/λ1.

We fix the following parameters in all of the subsequent exercises: The Spring
school term starts on day 3 and ends on day 153, and the Fall term starts on day 244
and ends on day 354. Thus, w1 = 105/365 and w2 =260/365. The birth rate, b, is
1/25,000, making the mean lifespan about 68.5 years. The recovery rate, γ , is 7/100,
so on average one is infected for about 14 days. Vm , the ceiling on the vaccination
fraction, is .95. The population is 1× 106. Parameter k1, which gives the fraction who
get vaccinated regardless of the past values for the disease, is 1/5. Another “constant”
is that initial conditions are always (S(0), I (0), Y0(0), …, Yn−1(0)) = (60,000, 10,
10,…, 10). For ease in future discussion, we collect these assumptions in (A3).

w1 = 105/365, w2 = 260/365, b = 1/25,000, γ = 7/100,

Vm = .95, N = 1m, k1 = 1/5, and

R0(λw) > 1. Initial conditions are

(S(0), I (0),Y0(0), . . .,Yn−1(0)) = (60, 000, 10, 10, . . ., 10). (A3)

Other parameters are set for various situations and used for a sequence of exercises.
For example, parameter k2, which is a metric for the strength of the delay effect, is
usually set to 1800, except that we set it to zero when we look at the effect of turning
delay off in order to isolate term-time forcing strength. The parameter n of the Erlang
function is usually 3, though we give some examples of n=64 and n=1. Once these
parameters are set, we consider variations in mean delay, n/a, and term-time forcing
strength, m = λ2/λ1.

Our plan is to look first at a model with term-time forcing but no delay. We then
look at delay without term-time forcing, and finally, we examine a combined system
with both term-time forcing and delay. We are particularly curious about the sizes of
m and n/a required to induce chaos. We compare the required sizes of these terms
in System (2) when both delay and term-time forcing exist, when only delay exists,
and when only term-time forcing exists. All simulations were run under Mathematica
version number 10.3.1.0.

4.1 Term-time forcing, but no delay

We now consider a case where term-time forcing is included, but delay is turned off in
the hybrid System (2). A SIR or SEIR system with term-time forcing like this has been
studied by others, though not with vaccination in the model [3,4,13–15]. There are
several options available for removing, or nearly removing, delay: (i)Sincemean delay
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is given by n/a, delaywill approach zero as parametera becomes large. Thus,wewould
“almost” eliminate delay by employing large a terms. In the hope of having a more
complete break with delay, we do not use this option. (ii) We could retain the notion of
prevalence demand while removing delay by linking the fraction vaccinating at time t ,
V (t), to contemporaneous prevalence, I (t). As a result, we would re-write System (1)
usingmin[k1+k2 I (t)/N , Vm] rather thanmin[k1+k2

1
N

∫ ∞
0 I (t − τ)G(τ )dτ, Vm] for

the V (t) component. This was the prevalence demand approach pioneered byGeoffard
and Philipson [33]. The idea of prevalence demand has shed a lot of light on the
difficulty of eradicating disease in that as prevalence approaches zero, the demand for
vaccination diminishes (or vanishes, if k1 =0) in this construct.Nevertheless,we prefer
not to use this form, feeling uncomfortable with the circularity of the idea that those
making the decision to vaccinate predicate their choice on current prevalence, while
current prevalence itself depends upon their choices. This model is, however, quite
tractable, and can be shown to have the same R0 values and stability conditions (though
not the same paths) as we find when employing our preferred option, which follows.
(iii) We choose to turn delay off by setting the endogenous response variable, k2, to
zero. (Setting n=0would have an identical effect.) In this case the fraction vaccinating
is given simply by V (t) = k1. Setting k2 =0, like our previously discussed options,
effectively collapses System (2) to two dimensions, since the synthetic variables Y0,
Y1,…,Yn−1 no longer play a role. In this special case, we have

dS(t)
dt = bN − bNk1 − f (t) S(t)I (t)

N − bS(t)

d I (t)
dt = f (t) S(t)I (t)

N − γ I (t) − bI (t).
(System 3)

The equilibria for System (3) are the same as those discussed above under System (2),
but stability of the pure λi sub-systems is much easier to investigate. The Jacobian of
the pure λi sub-system evaluated under System (3) at (S, I ) is now given by

Jsys3 =
⎛
⎝−b − λi I

N −λi S
N

λi I
N

λi S
N − b − γ

⎞
⎠ .

If we evaluate the Jacobians at (S,I ) = E0 and (S,I ) = E1, then use R′
0(λi ) =

λi (1−k1)
b+γ

, we can write the traces and determinants of Jsys3 at the two equilibria as
follows:

at E0: tr(Jsys3) = −b + (b + γ )(R′
0(λi ) − 1) and det(Jsys3) = −b(b + γ )

(R′
0(λi ) − 1)

at E1: tr(Jsys3) = −bR′
0(λi ) and det(Jsys3) = −b(b + γ )(1 − R′

0(λi ).)

Recall that both sub-systems have the same disease-free equilibrium and that a positive
endemic equilibrium only exists for a λi sub-system if R′

0(λi ) > 1. It follows from
application of Routh-Hurwitz to Jsys3 that if R′

0(λi ) < 1 for the pureλi sub-system, the
disease-free phantom equilibrium, E0, will be attracting the path of the hybrid system
when sub-system λi is in force. Similarly, if R′

0(λi ) > 1 for the pure λi sub-system,
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the endemic phantom equilibrium, E1, will be attracting the path of the hybrid system
when sub-system λi is operative.

The two pure λi sub-systems of System (3) can be configured in two ways: (i) If
m > mc, then R′

0(λ1) < 1. In this case, the pure λ1 sub-system, when it is active, will
be attracted to E0. And a positive E1(λ1)will not exist. As for the pure λ2 sub-system,
(A3) implies that R′

0(λ2) > 1, so paths will be attracted to a positive E1(λ2) when
that sub-system is operative. R′

0(λ2) > 1 also implies that E0 is unstable for the pure
λ2 sub-system. (ii) If m < mc, then R′

0(λ1) > 1, and a positive E1(λ1) exists. This
is locally asymptotically stable by Routh-Hurwitz. And E0 is unstable in this case.
Again, the pure λ2 sub-system will be attracted to E1(λ2) when it is switched “on.” In
either case, as the positive semi-path of the hybrid system moves through time and the
operative sub-systems switch, it will be attracted alternately by two different phantom
“equilibrium” points.

In addition to the parameters in (A3), we assume for this section:

R0(λw) = 24 and R′
0(λw) = 19.2. (A4)

This assumption is weakened when delay is included in the following two sections.
Assumption (A3) fixesmc = 26.55. Most pure temporal forcing models that find chaos
use large values for R0. (Katriel et al. [12] use 40; Olinky et al. [16] use 24) Most
studies of this sort also find chaos or irregular dynamics only when the strength of
forcing (m in the present paper) is high. The simulation in this section can be regarded
as a benchmark for the following sections of the paper, where we find that irregular
dynamics can occur with much lower values than needed here for R0 and forcing
strength.

If m = 1, there is no term-time forcing, and the hybrid under the above parameters
converges to a single E1-type endemic equilibrium. To include term-time forcing we
consider cases where m >1.

We begin with the modest case ofm=1.1, i.e., when school is in session, the trans-
mission rate, λ2, is 10% higher than it is during school breaks, when λ1 is relevant.
Under our assumption that R0(λw)= 24, we get (λ1, λ2)= (1.57, 1.73), implying
R0(λ1)=22.40 and R0(λ2)=24.64, and giving R′

0(λ1)=17.92 and R′
0(λ2)=19.72

Thus, the disease-free equilibrium, which always takes the same value for both
sub-systems, is unstable. The pure sub-system endemic equilibria are given by
E1(λ1)= (44634.7, 431.4) and E1(λ2)= (40577, 433.7). Given our results on Jsys3
above, we find both pure λi sub-systems are stable.

The long term result is an orbit with a 1-year period, which is shown in Fig. 2.
This periodic orbit is attractive, given the initial conditions shown in assumption (A3).
Notice in the figure that when the summer and Christmas breaks begin, the prior
upward movement in prevalence immediately changes to a decline.

We can build a tool to help us see this convergence in both the 2-D case here and
more complicated settings soon to follow. Define ψ(t ; ψ(0)) to be the solution path of
System (2) from initial conditions ψ(0) = (S(0), I (0),Y0(0), . . ., Yn−1(0)). (In the
present case, ψ(0) = (S(0), I (0))). If ψ(0) is a point on a periodic orbit of p-year
duration, thenψ(t;ψ(0)) = ψ(t+365p;ψ(0)), and p is the smallest natural number
satisfying this condition.
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Fig. 2 One year cycle with m=1.1. Plot runs over 200,000 days, beginning at t =3.8 m days (in year
10411). Assumptions (A3) and (A4) apply, and k2 = 0. Parameters n and a are not relevant

It is not hard to show:

Theorem 4 If a periodic orbit exists, its period will be p years, with p a natural
number

Proof Let � be a generic periodic orbit in (S, I ) space as shown in Fig. 3. (The graph
is a heuristic sketch. Paths actually bend sharply at the “dots.”) Let ψ(t0) be a point
on this orbit. Without loss of generality, we set ψ(t0) at the first day of the Spring
term (day TSb) in a reference year we call y0. On the outside of the cycle, this point is
labeled TSb,y0and on the inside of the orbit byψ(t0). Time advances counterclockwise
around the orbit, and as it does, ψ(t) passes dots marking the beginnings and ends
of the school term over successive years. Starting at TSb,y0we move along the path
passing “signposts” for TSe,y0, TFb,y0, TFe,y0, TSb,y1, … By construction, TFeis
always the last signpost before TSb. Hence, the incoming path to TSb,y0which closes
the cycle, must be coming from the TFe point furthest around the cycle downstream
of TSb,y0.Since we are assuming there is a periodic orbit, the path from TFe,ypunder
the pure λ1 sub-system must terminate at TSb,y0 = TSb,yp, with p ∈ {1, 2, . . .} being
the natural number of years to complete one orbit. �

Now suppose ψ(0) is not a point on a periodic orbit, and consider the Euclidean
distance between ψ(t;ψ(0)) and ψ(t + 365p;ψ(0)) for some particular value for
p. Write this distance as the function dis(ψ(t;ψ(0)), ψ(t + 365p;ψ(0))). We know
under the present example, thatψ(t;ψ(0)) cannot converge to an equilibrium point as
t → ∞, since E0 is unstable and the endemic equilibria are phantoms. If, as t → ∞,
dis(.) → 0 for a given p, then ψ(t;ψ(0)) is approaching a periodic orbit with period
p years. Working numerically, this convergence is not hard to examine, and it is useful
both for finding the period and for “seeing” the convergence in a high dimensional
system. This distance function is depicted in Fig. 4, for the case of m = 1.1.

As we increase m beyond 1.1, we initially see annual cycles of the same general
shape increasing in amplitude until m ≈ 1.8. A sample of these is seen in Fig. 5.

When m = 1.9, the system has a 2-year cycle. The 2-year cycles are then observed
untilm ≈ 8, when 4-year cycles appear. The 4-year cycles last untilm ≈ 12. Between
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Fig. 3 A heuristic to support the argument that a closed orbit has a period which is an integer multiple of
365 days

Fig. 4 Convergence to a 1-year cycle with m=1.1. This shows the Euclidian distance between ψ(t) and
ψ(t + 365p), (i.e., dis(ψ(t), ψ(t + 365p))), going to zero over time when p=1. Parameters same as in
Fig. 2

m = 14 and m = 15, we have 8-year cycles. But simple period doubling toward
chaos does not happen from then on. An 11-year cycle occurs atm = 16. The cycle at
m = 16 is shown in Fig. 6, using Log(I ) and S. Each dot in the figure marks the 153rd

day of the year, i.e., the end of the Spring term. Notice that there are long periods of
timewhen I is very close to zero (below 10−5), and there are four substantial outbreaks
in an 11 year period. Notice further that the path of the hybrid intersects itself several
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Fig. 5 This shows growth in amplitude of annual cycles as m increases from 1.1 to 18. Parameters same
as in Fig. 2

Fig. 6 An 11 year cycle running from t =3,651,098 to t = 3,655,113, with m=16. Dots mark the end of
the spring school term each year. Other parameters same as in Fig. 2

times during the periodic orbit, even though the path is continuous and 2-dimensional.
Neither of the two pure sub-systems will cross themselves, but one sub-system path
can cross the path of the other sub-system, e.g., a “school-was-is-in” path can cross a
“school-was-is-out” path.

Chaos arrives at m ≈17. The time series of I (t) over 70 years is shown in
Fig. 7. Note the uneven interval spacings and magnitudes of outbreaks. Some of
the relevant values at m = 17 are: (λ1, λ2)= (0.14, 2.31); (R0(λ1), R0(λ2))= (1.94,
32.91); (R′

0(λ1), R
′
0(λ2))= (1.55, 26.33); E1(λ1) = (516553, 161.88); and E1(λ2) =

(30385.4, 439.529). It follows (usingtr(Jsys3) and det(Jsys3) conditions) that both pure
λi sub-systems have positive and stable phantom endemic equilibria. Nevertheless, the
hybrid formed from the two sub-systems is chaotic. See Branicky [31].

Figure 8 shows a close-up of two very different outbreaks that are highlighted in
the box in Fig. 7. The dots (marked A to G) are placed at the start of each spring term.
Figure 9 shows S and Log(I ) for the same time interval. The two graphs should be
examined together. The letters in both figures identify the same points in (t , S, I )-
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Fig. 7 Term-time forcing but no delay. Time runs for 70 years, from t=2,870,000 to t=2,895,550 days.
Parameterm=17. Other parameters same as in Fig. 2. The boxed area is discussed in the text and following
two graphics

Fig. 8 Close-up of the boxed area in Fig. 7

space. Note that for long periods of time prevalence is miniscule. The high amplitude
outbreak on the left (beginning at point A) peaks prior to the end of the spring term,
and “burns out” many susceptibles prior to the start of the Summer break at point 1
in Fig. 9. Prevalence then falls to very low values during the succeeding fall term and
Christmas break. Disease prevalence in near zero for the 3 years running from B to
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Fig. 9 Alternative view of the boxed area in Fig. 7 using Log(I) and S. Solid lines indicate school is in,
and dotted lines are drawn when school is out

E. Another outbreak begins at E, which is 4 years after A. Notice from Fig. 9 that
both I and S are lower at point E than point A. This gives a weaker initial outbreak,
which ends at the start of summer vacation (point 2), and then takes off again in the
fall (point 3). Following the Christmas break (ending at F), prevalence initially rises
slightly, while the susceptible class falls dramatically. This causes prevalence to begin
falling in the spring term. Point 4 marks the beginning of the summer break, and
prevalence again falls to very low levels for the next few years.

Three comments: (i) The low amplitude, multiple closely-spaced peaks that are
seen in the sim between E and G, are also observed in the classic childhood disease
data. See Fig. 10 below, which shows monthly measles data for New York. Note the
timing of the double peaks starting in 1943. (ii) Note from Fig. 7 that these twin peaks
can be quite common in the model. (iii) Interestingly, if one measures the number of
cases in the two years between points A and C (the single large outbreak case) by

forming γ
C∫
A
I (t)dt , the result is 52926, while integrating between E and G (the “twin

peak” case) gives γ
G∫
E
I (t)dt= 55059, a roughly 4% difference. Katriel and Stone [12],

who modeled attack rates using sinusoidal forcing, showed something related to this,
finding that attack rates over long time spans were very close whether or not seasonal
forcing is included.

A bifurcation summary diagram is shown in Fig. 11. The diagram is generated as
follows: Simulations are run from t = 0 to t = 4 × 106 for a multitude of values of
m, from m=1 to m=50. Values of I are then taken over a 400 year interval between
t =3,651,248 and 3,797,248, and a dot is generated on the last day of the spring term
for each year. If the system has a stable p-year cycle, p different dots appear. For
example, if System (2) has a stable annual cycle, the algorithm will generate 400 dots,
but they will all be the same. This would happen if the case shown in Fig. 2 cycled
400 times. When p is large, there may be a stable long-period cycle, or there may be
chaos.
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Fig. 10 Monthly data onmeasles inNewYork. Source: http://ms.mcmaster.ca/~bolker/measdata/nycmeas.
dat

Fig. 11 Bifurcation diagram for pure term-time forcing under assumptions of Fig. 2

As m rises past 17, we continue to see chaos through at least m = 50. We are not
aware of empirical studies that establish reasonable bounds for m in a SIR structure
with vaccination, but we note that London andYorke’s [34] measles study had ratios of
high to low contact rates for measles, chickenpox, andmumps on the order of 1.7. Fine
and Clarkson [35] found the ratios of contact rates for measles in the range of 2–3. See
Keeling andRohani [36] for further discussion.This sectionhas a slight twist (inclusion
of vaccination) on established results for term-time forcing models. Our admittedly
arbitrary justification for not going past m=50 is the following: When m increases
S1(λ1) rises and I1(λ1) falls, with I1(λ1) reaching 0, whenλ1 = b+γ

1−k1
= .08755 under

our present parameters. This in turn requires m=26.55, which eliminates a positive
E1(λ1) and gives stability to E0(λ1). This, in turn, would mean the disease would
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ultimately disappear if school were never in session. Though we can’t rule this out,
we feel that roughly doubling m = 26.55 to m = 50, will cover our area of interest.

We have examined this “no-delay” case in order to provide a benchmark for results
we get later in this section, where we have both term-time forcing and delay in the
response of vaccination demand to past prevalence. The key point so far from this
section is that chaos can result from term-time forcing when both R0(λw) and m are
“large” (24 and 18, respectively).

4.2 Delay, but no term-time forcing

In this sectionwe look at two closely related SIRmodelswith distributed delay between
disease outbreaks and vaccination response, but without term-time forcing. We retain
all assumptions in (A3), except that we now set k2 = 1800 and reduce R0(λw) to 16.
For ease of reference, we write this as

k2 = 1800, R0(λw) = 16. (A5)

We retain (A5) through the remainder of the paper. The idea in this section is to check
the effects of delay in the absence of term-time forcing. This section provides a second
benchmark prior to our results in the next section, where delay and term-time forcing
are modeled together.

The first model of this section sets the degree of the Erlang function at n = 3, and
the second uses n = 64. Recall that n (along with parameter a) gives the shape of
Erlang function, which assigns weights to all past values of prevalence, and which
then (along with parameters k1 and k2) determines the current fraction demanding
vaccination. The mean delay duration of the Erlang distribution is given by n/a, and
the standard deviation of the distribution is

√
n/a. Thus, the ratio of the standard

deviation to the mean delay is 1/
√
n, and the dispersion about a given mean falls as

n increases. For example, if we are interested in a mean delay of 180 days, then if
our model sets n at 3, the standard deviation around 180 will be 103.9 days, but if we
model the same mean delay with n = 64, the standard deviation would be 22.5 days.

4.2.1 n=3.

We start with the n = 3 case, assuming there is no term-time forcing, (i.e., λ1 =
λ2 = 1.12). Other parameters are as given in (A3) and (A5). After many simulation
runs using various delay durations, we get the bifurcation diagram shown in Fig. 12.
Mean delay increases to the right along the horizontal axis. The vertical axis shows:
(i)I1 as a solid line, if E1 is stable; (ii) I1 as a dashed line, if E1 is unstable; and (iii)
the maximum and minimum values of I (noted Imax and Imin , respectively) along a
periodic orbit at various values for mean delay. For better optics, we use Log10(I ) of
all I values.

To the far left of Fig. 12, when mean delay is between 0 and about 16 days, E1 is
locally stable. Beyond a mean delay of about 1151 days, E1 is again locally stable.
The “orbit” drawn is just a sketch indicating that periodic orbits form. The transition
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Fig. 12 Equilibrium values for Log 10(I1) when E1 is stable, or the maximum and minimum of Log
10(I1) when E1 is unstable, shown as a function of the mean delay interval. There is no term-time forcing.
Parameters from (A3) and (A5)

points, where mean delays are about 16 and about 1151, are found by numerically
solving det(H4(a)) = 0 for any real and positive roots. In this case, there are two
real positive a values giving det(H4(a)) = 0; these define the mean delay times
where stability switches occur. We call them aL and aH , for lower and higher, respec-
tively. det(H4(a)) > 0 and E1 is stable for a < aL and for a > aH . Otherwise
det(H4(a)) < 0 and E1 is unstable. The expression n/a then gives the associated
mean delay, where n = 3 in this case. Notice in Fig. 12 that as mean delay increases,
Imax grows. This is to be expected, since delayed vaccination response allows the dis-
ease to proliferate. It is also the case that the interval between peak outbreaks rises as
mean delay increases. The periods are shown as a function of mean delay in Fig. 13.
As delay increases, the intensity of the outbreaks rise, while their frequency falls.
This raises the question about the long term impact of the disease as the mean delay
rises. We check this looking at γ

∫ t j
ti

I (t)dt over a long interval, where ti = 3 × 106

and t j = 4 × 106 days. This gives the total number of cases (divided by 107 in
the figure) during a million-day span. These results are also displayed in Fig. 13.
(Data in both Figs. 12 and 13 are discrete, but presented continuously to enhance
optics.)

Figure 14 shows a typical sim result projected to (S, I ) space, where mean delay
is 90 days. One sees a path spiraling out from an initial point near the unstable E1
and moving toward an orbit which is shown running from 3.9 × 106 to 4.0 × 106

days. Notice that we do not get irregular dynamics. Depending upon the value of
mean delay, we see either convergence to E1 or to various sized cycles. After doing
extensive simulations with plausible parameter sets, we have not been able to generate
irregular dynamics with Erlang parameter n = 3 and no term-time forcing. Of course,
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Fig. 13 This shows the period of oscillations and the total number of cases (divided by 107) over a million
day interval as functions of mean delay. Parameters from (A3) and (A5)

Fig. 14 Mean delay is 90 days and n = 3. A path is spiraling is out from an unstable E1 toward a periodic
orbit. The inset shows prevalence levels/3000 for scaling (brown) and delayed vaccination response (blue)

a finite number of trials does not establish impossibility. We will now see that irregular
dynamics follows easily when higher levels of n are used.

4.2.2 n = 64.

While retaining for the moment our temporary assumption of no term-time forcing,
we leave the parameters above intact, except that we increase n to 64. This allows
us to tighten the standard deviation around the mean delay. As expected, this system
yields a locally stable E1 for low values (about two weeks) of mean delay. With delay
durations above (roughly) two weeks, E1 is unstable and approaches a periodic orbit
much like that shown in Fig. 14. These cycles are at first single peaked, and on a period
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Fig. 15 Time series for various delay durations, with n =64, no term-time forcing, and parameters in
(A3) and (A5)

of a little more than 2000 days. But as mean delay rises past about 950 days, the post
outbreak interval begins to show, at first, a wiggle and then a minor secondary peak.
This secondary peak grows in size without substantially increasing the duration of the
periodic orbit—it goes from about 2100 days at mean delay of 950 to about 2560 days
with mean delay 1100 days. See Fig. 15.

Bymean duration delay of 1110 days, the period has roughly doubled to about 5200
days with 4 prevalence peaks appearing in the periodic orbit. This period doubling
happens again as the mean delay hits about 1144 days. There are now 8 distinct peaks
in a roughly 10,700 day periodic orbit. A cascade has begun, and by mean delay
1150 days, there are 16 prevalence peaks on a periodic orbit 21,712 days long. This is
roughly the same length as the mean lifespan. See Fig. 16, where we show prevalence,
I (t), and the fraction vaccinating, V (t), over 25,000 days, ending at day 2×106. Here
the reader can see the fraction vaccinating reaching its ceiling value of 0.95 following
large outbreaks.

Longer delays produce chaotic-looking outcomes, one of which we illustrate in
Fig. 17. Here mean delay is 1160 days. The variable Y64 is one of the synthetic
variables used with the linear chain trick.

This and the previous section were meant to establish two benchmarks. In Sect. 4.1
we showed that, in the absence of delay, term-time forcing could cause irregular
dynamics if the forcing is “strong,” i.e., a large difference between disease transmission
parameters when school is out versus in. The main results of the numerical exercise in
present sub-section are: (i) When term-time forcing is not present, the SIRmodel with
vaccination responding to past prevalence under Erlang distributed delay with n = 3
appears to give orderly dynamics for all values of mean delay. (ii) Chaotic dynamics
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Fig. 16 Mean delay is 1150, with n =64, no term-time forcing, and parameters in (A3) and (A5). A cycle
of duration 21,712 days having 16 different prevalence peaks occurs

are found to be possible without term-time forcing when n is large and mean delay
is “long.” In the next section we investigate a model with both term-time forcing and
delay.

4.3 Both term-time forcing and delay

Following in the path of d’Onofrio, Manfredi, and Salinelli [24,27], who explored the
combination of sinusoidal forcing of contact rates and prevalence induced vaccination
choices of various forms,we nowexamine System (2)with both discrete school-related
term-time forcing and distributed delay under a range of Erlangian parameters.

Recall from the discussion of Fig. 14 that when λ1 = λ2, (equivalently, when
m = 1), and there is no term-time forcing, we get a simple periodic orbit when: the
Erlang parameter n = 3, mean delay is 90 days, and both assumptions (A3) and (A5)
hold. We also learned there that in order to get more exotic dynamics n needs to be
larger as does the mean delay. We begin this section using the result displayed in
Fig. 14 as a baseline and introducing term-time forcing by gradually increasing m,
while holding n = 3 and mean delay equal to 90 days.

We hold all other parameters as they were, and we continue to constrainR0(λw) to
16. Thus, the weighted average of λ2 and λ1 is fixed.

Consider first the case where λ2 is just 10% above λ1, i.e., m=1.1. Recall that the
two pure λi sub-systemsmight have endemic equilibria, but the full hybrid systemwill
not. Nevertheless, the positions and stability properties of the “phantom” equilibria
are of interest. In the present case, E1(λ1) = (66952.1, 206.434) and E1(λ2) =
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Fig. 17 Mean delay is 1160, with n = 64, no term-time forcing, and parameters in (A3) and (A5). Time
runs from t = 1.8 × 106 to 2 × 106

(60865.5, 208.148). In general, the two points separate asm increases beyondm = 1.
This can be seen by noting that

E1(λi ) = (S1(λi ), I1(λi )) =
(
N (b + γ )

λi
,
bN (−b − γ + λi (1 − k1)

(b + bk2 + γ )λi

)
i = 1, 2.

SinceR0(λw)is a convex combination ofλ1 andλ2,whenλ2 increases,λ1 falls. Further,
when the value of λ2 rises, it is obvious that S1(λ2) falls and I1(λ2) rises. Similarly,
when λ1 falls, S1(λ1) rises, and I1(λ1) falls. It follows that when m increases from
m = 1, these changes cause E1(λ1) and E1(λ2) to move apart.

In the present example, both the pure λ1 and λ2 sub-systems are locally unstable.
This is verified using det(H4). The result with m = 1.1 is the 5-year periodic orbit
shown in Fig. 18.
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Fig. 18 Assumptions (A3) and (A5) hold. Mean delay is 90 days, m =1.1, and n =3. Time runs once
through a 5-year periodic orbit starting at t =3,987,043. Dots mark the last day of the Spring term

Fig. 19 Here we see period doubling beginning at about m =1.2 with 90 day mean delay and n = 3.
Other parameters are given in (A3) and (A5). Time runs for 10 years beginning at t =3,907,843. Dots
mark the end of each Spring term. There are 10 dots, the ones at the bottom nearly overlap

We now set λ2 20% above λ1. The result is that the full hybrid system under-
goes a period doubling bifurcation, as see in Fig. 19. The two phantom equilibria
are E1(λ1)= (71404.1, 205.2) and E1(λ2)= (59503.4, 208.5). Both are unstable.
The obvious kinks in the trajectory are due to the temporal forcing events, but
the trajectory will also bend perceptibly when the vaccinating fraction switches
betweenmin[k1 + k2Y2/N , Vm]=k1 + k2Y2/N and the ceiling value min[.]=Vm , as
Y2(t) moves through the state space under System (2). The path in Fig. 19 appears
to cross itself, but it actually does not. The figure is really just a 2-D slice of a 5-D
system.

We continue boosting the strength of the term-time forcing by increasing λ2
modestly from 20% above λ1 to 22% above λ1. (Since we are holding λw

and R0(λw) constant, λ1 falls slightly as λ2 increases.) The result is shown in
Fig. 20. Both phantom endemic equilibria (the two dots in the figure) are unsta-
ble. The hybrid system has undergone another period doubling bifurcation, with
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Fig. 20 Another period doubling with forcing strength now at m =1.22 with 90 day mean delay and
n =3. Other parameters are given in (A3) and (A5). Time runs for 10 years beginning at t =3,911,390

the period now 20 years long and with major outbreaks still occurring every 5
years.

Withm = 1.225, there is another period doubling bifurcation, with a 40 year period
and 5 year intervals between outbreaks. Increasing m to 1.23, the hybrid begins to
look chaotic. Figure 21 shows a 3-D slice of the hybrid (including one of the synthetic
variables, Y2) with time running from t = 2.8 × 106 to 3.0 × 106 days.

When m = 2, the chaos is much more evident. This is seen in the two following
time series plots of I (t) shown in Figs. 22 and 23. The first spans 200,000 days
following t = 3.8 × 106, and the second gives better resolution at a shorter time
span.

Figure 23 gives the fine structure of the time path of I , with t running from3,806,000
to 3,825,000 days. The period between outbreaks is irregular, and the outbreaks them-
selves vary greatly in the height of the major peaks and in the number and arrangement
of lesser peaks. Notice that we again see a mix of large outbreaks and closely-packed,
relatively low amplitude peaks, as we did in Fig. 8.

Before we look at our final example, we recap the results of the previous sections.
(i) In Sect. 4.1 we saw that term-time-generated changes in contact rates can engender
irregular cycles in the absence of vaccination demand delay when both R0(λw) and the
forcing strength are high. Specifically, we found this when R0(λw)=24 and m=17.
(ii) In Sect. 4.2 we saw that when delay is employed, but term-time forcing is off,
we cannot find irregular dynamics without employing high degree Erlang functions
(n = 64 in the case examined) and long (1150 day) mean delay, though we did get
this result with R0(λw) equal to a more modest 16. (iii) So far in Sect. 4.3, where
we have combined term-time forcing and vaccination response delay, we have found
chaos with relatively low levels of term-time forcing strength (m equal 2 or less) and
90 day mean delay. We have shown this with Erlang distributions with n equal to 3.
But the next example shows that moderate term-time forcing (m = 2) coupled with
reasonable mean delay (90 days) can also produce chaos in the n = 1 case. That
is, term-time forcing substantially reduces the demands on the delay structure and
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Fig. 21 Chaos starts at about m =1.23 with 90 day mean delay and n =3. Other parameters are given in
(A3) and (A5). Time runs for 200,000 days beginning at t =2.8 m

moderate delay reduces the demands on term-time forcing strength in order to obtain
irregular dynamics. Hence, the word “complementarity” in the title.

In Sect. 2 we gave reasons for thinking that values for n above one are more appro-
priate for vaccination delay. Our reasons were that: First, today’s level of prevalence
should not be used to explain today’s vaccination demand, as it does when n = 1.
And second, a “bell-shaped” distribution seems reasonable, in that we conjecture that
a few people respond quickly to an outbreak, then as the delay time rises, more people
will respond, and then response trails off. But there is no denying that working with
n = 1 is more likely to yield analytical results, thanks to the work of Buonomo et al.
[19,20], d’Onofrio et al. [21,22]. And empirically the n = 1 case may produce good
results.

With n = 1 and all other parameters unchanged (except that parameter a is adjusted
to maintain mean delay of 90 days), we again see irregular periods and amplitudes
plus a mix of large single peaked outbreaks and longer-running multi-peak events.
The example is shown in Fig. 24.
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Fig. 22 Here term-time forcing strength is given by m =2. There is 90 day mean delay with n =3. Other
parameters are given in (A3) and (A5). Time runs for 200,000 days beginning at t =3.8×106

Fig. 23 Parameters same as in Fig. 22, except time interval shown is only about 50 years, starting at
t =3,806,000

5 Conclusion

Many researchers have made a strong case for term-time forcing. There is little doubt
that the congregation of students during the school term enhances disease transmissi-
bility. It seems undeniable, also, that individuals contemplating vaccination respond
with a delaywhen a disease outbreak occurs. It also seems clear empirically that disease
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Fig. 24 Term-time forcing coupledwith delaywith the “weak kernel.”Here n =1,m =2,mean delay=90
days, and both (A3) and (A5) hold. Themain graph shows sixmajor outbreaks over a 50 year interval starting
at t =3,145,573, the first day of the Spring term of reference year 8618. The inset shows a longer time
span (about 300 years) surrounding the main graph

dynamics are irregular in the sense that neither convergence to an endemic equilibrium
nor a simple periodic orbit is the norm. Researchers working with temporal forcing
(both sinusoidal and discrete) in otherwise conventional SIR models have found that
only “strong” forcing can bring about irregular dynamics. Similarly, delay models of
many sorts seem to lead to irregular dynamics only when delay is “long” (See Buric
and Todorovic [37], Canabarro et al. [38], Hao et al. [39], Jiang et al. [41], Mackey and
Glass [40], and Vasegh et al. [42]). This exercise, along with [24,27] has shown that
models with both term-time forcing and vaccination delayed response to prevalence
can display irregular dynamics with moderate forcing strength and reasonable mean
delay durations.

Purely analytical result have been elusive in both simple term-time forcing models
and simple delay models. No doubt that will change in time, but at the moment we can
show numerically how the combination of forcing and delay can work with commonly
used population/disease parameters. This may be helpful in statistical modelling, but
that will be another story.
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