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Abstract We study some properties and perspectives of the Hurwitz series ring
HR[[t]], for an integral domain R, with multiplicative identity and zero characteris-
tic. Specifically, we provide a closed form for the invertible elements by means of the
complete ordinary Bell polynomials, we highlight some connections with well–known
transforms of sequences, and we see that the Stirling transforms are automorphisms of
HR[[t]]. Moreover, we focus the attention on some special subgroups studying their
properties. Finally, we introduce a new transform of sequences that allows to see one
of this subgroup as an ultrametric dynamic space.

Keywords Hurwitz series ring · Binomial convolution · Bell polynomials ·
Transforms of sequences

Mathematics Subject Classification 11B75 · 11B73

1 The Hurwitz series ring, transformations of sequences and
automorphisms

Given an integral domain R with multiplicative identity and zero characteristic, let
HR[[t]] denote the Hurwitz series ring whose elements are the formal series
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492 S. Barbero et al.

A(t) :=
+∞∑

n=0

an

n! tn,

equipped with the standard sum and the binomial convolution product. Given two
formal series A(t) and B(t), the binomial convolution product is defined as follows:

A(t) � B(t) := C(t),

where

cn :=
n∑

h=0

(
n

h

)
ahbn−h .

The Hurwitz series ring has been organizationally studied by Keigher [9] and in the
recent years it has been extensively studied, see, e.g., [3–5,7,10,11,13].

The Hurwitz series ring is trivially isomorphic to the ring HR whose elements are
infinite sequences of elements of R, with operations + and �. In the following, when
we consider an element a ∈ HR , we refer to a sequence (an)+∞

n=0 = (a0, a1, a2, ...),
ai ∈ R for all i ≥ 0, having exponential generating function (e.g.f.) A(t). Clearly,
given two sequences a, b ∈ HR , with exponential generating functions A(t) and B(t)
respectively, the sequence c = a � b has e.g.f. C(t) = A(t)B(t). Moreover, fixed any
positive integer n, we can also consider the rings H (n)

R whose elements are sequences
of elements of R with length n.

Remark 1 The binomial convolution is a commutative product and the identity in HR

is the sequence

(1, 0, 0, ...).

Moreover, HR can be also considered as an R–algebra with respect to the map

π : R → HR, π(r) := (r, 0, 0, ...),

for any r ∈ R.

Proposition 1 An element a ∈ HR is invertible if and only if a0 ∈ R is invertible,
i.e.,

H∗
R = {a ∈ HR : a0 ∈ R∗}.

Proof The proof is straightforward. ��
Given a ∈ H∗

R , we can recursively evaluate the terms of b = a−1. Indeed, b0 = a−1
0

and for all n ≥ 1 we have

bn = −a−1
0

n∑

h=1

(
n

h

)
ahbn−h,
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Some combinatorial properties of the Hurwitz series ring 493

since the equality a � b = (1, 0, 0, ...) implies

a0b0 = 1,
n∑

h=0

(
n

h

)
ahbn−h = 0, ∀n ≥ 1.

On the other hand, we can find a closed form for the elements of b by means of the
complete ordinary Bell polynomials [2]. First of all, we recall their definition as given
in [14].

Definition 1 Let us consider the sequence x = (x1, x2, . . .), whose terms xi are some
indeterminates over the domain R. The complete ordinary Bell polynomials are defined
by

B0(x) = 1, ∀n ≥ 1 Bn(x) = Bn(x1, x2, . . . , xn) =
n∑

k=1

Bn,k(x),

where Bn,k(x) are the partial ordinary Bell polynomials, with

B0,0(x) = 1, ∀n ≥ 1 Bn,0(x) = 0, ∀k ≥ 1 B0,k(x) = 0,

and

∀n ≥ k ≥ 1 Bn,k(x) = Bn,k(x1, x2, . . . , xn−k+1)

=
∑

i1+2i2+···+(n−k+1)in−k+1=n
i1+i2+···+in−k+1=k

k!
i1!i2! · · · in−k+1! xi1

1 xi2
2 · · · xin−k+1

n−k+1,

satisfying the equality

⎛

⎝
∑

n≥1

xnzn

⎞

⎠
k

=
∑

n≥k

Bn,k(x)zn .

Then, we introduce the Invert transform (see, e.g., [6] for a detailed survey).

The Invert transform
The Invert transform I maps a sequence a = (an)+∞

n=0 into a sequence I(a) = b =
(bn)+∞

n=0 whose ordinary generating function satisfies

+∞∑

n=0

bntn =
∑+∞

n=0 antn

1 − t
∑+∞

n=0 antn
.
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494 S. Barbero et al.

Barbero et al. [1] highlighted the closed relation between the Invert transform and the
complete ordinary Bell polynomials: given g ∈ HR and h = I(g), we have, for all
n ≥ 0, that

hn = Bn+1(g0, g1, g2, ..., gn). (1)

Now these tools allow us to explicitly find the terms of b = a−1 for every a ∈ H∗
R .

Theorem 1 Let a, b = a−1 ∈ H∗
R be sequences with e.g.f. A(t) and B(t), respectively.

Then we have b0 = 1
a0

and

bn = n!Bn(g0, g1, g2, . . . , gn−1)

a0
,

for all n ≥ 1, where

g = (gn)
+∞
n=0 =

(
− an+1

a0(n + 1)!
)+∞

n=0
.

Proof The ordinary generating function of the sequence g is

Ḡ(t) = 1

t

(
1 − A(t)

a0

)

since

Ḡ(t) = 1

t

(
1 − 1

a0

(
a0 +

+∞∑

n=1

an

n! tn

))
= −1

t

+∞∑

n=1

an

a0n! tn =
+∞∑

n=0

(
− an+1

a0(n + 1)!
)

tn .

Moreover, considering b = a−1, we have

B(t) = 1

A(t)
= 1

a0(1 − t Ḡ(t))
= 1

a0

(
1 + t Ḡ(t)

1 − t Ḡ(t)

)
= 1

a0
(1 + t H̄(t),

where H̄(t) is the ordinary generating function of the sequence h = I(g). Thus
relation (1) holds and, since B0(g) = 1, we obtain

B(t) = 1

a0
(1 + t H̄(t)) = 1

a0

(
1 +

+∞∑

n=0

Bn+1(g0, g1, g2, . . . , gn)t
n+1

)

= 1

a0
+

+∞∑

n=1

Bn(g0, g1, g2, . . . , gn−1)

a0
tn

and the thesis easily follows. ��
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Some combinatorial properties of the Hurwitz series ring 495

Let us note that the recursive formula

bn = −a−1
0

n∑

h=1

(
n

h

)
ahbn−h,

giving the inverse b = a−1 of a, is much easier than the one established in Theorem
1. But the second one has a theoretical importance. It uses the Bell polynomials and
gives the bn in terms of an only.

We point out that some well–studied transforms acting on sequences can be con-
sidered in HR[[t]] as the product (i.e., the binomial convolution) between a suitable
fixed sequence and any sequence belonging to HR . We present two enlightening and
interesting examples.

The Binomial interpolated transform
The Binomial interpolated transform L(y), with parameter y ∈ R, maps any

sequence a ∈ HR into a sequence b = L(y)(a) ∈ HR , whose terms are

bn =
n∑

h=0

(
n

h

)
yn−hah .

For a survey and a detailed study of the action ofL(y) on recurrence sequences we refer
the reader to [1]. The definition of this transform bymeans of the binomial convolution
is straightforward. Indeed, considering the sequence

λ = (yn)+∞
n=0,

we have for any a ∈ HR with e.g.f. A(t)

L(y)(a) = λ � a.

with the corresponding e.g.f. given by the product eyt A(t).

The Boustrophedon transform
If we consider R = Z, the Boustrophedon transform B, introduced and studied in

[12], maps any sequence a ∈ HZ, with e.g.f. A(t), into a sequence b = B(a) ∈ HZ

with e.g.f.

B(t) = (sec t + tan t)A(t).

This transform is closely related to the sequence β = (βn)+∞
n=0 of the Euler zigzag

numbers (see [12]), with e.g.f.

+∞∑

n=0

βn

n! tn := sec(t) + tan(t),
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496 S. Barbero et al.

since for any a ∈ HZ clearly

B(a) = β � a.

The Hurwitz series ring is strictly connected to other well–known transforms. We
consider further twoexamples: the alternating sign transform,which is a little bit trivial,
and the Stirling transform. We also show that are examples of HR–automorphisms.

The alternating sign trasform
The alternating sign transform E maps any sequence a ∈ HR into a sequence

b = E(a) ∈ HR , whose terms are

bn = (−1)nan .

The transform E often appears in studying properties of integer sequences combined
with other transforms. Clearly, we have E = E−1 and it is straightforward to see that,
given any a ∈ HR with e.g.f. A(t), then E(a) has e.g.f. A(−t). Moreover it is easy to
verify that for all sequences a, b ∈ HR

E(a + b) = E(a) + E(b),

and

E(a � b) = E(a) � E(b),

showing that E is an authomorphism of HR .

The Stirling transform
The Stirling transform S maps any sequence a ∈ HR into a sequence b = S(a) ∈

HR , whose terms are

bn =
n∑

h=0

{
n
h

}
ah,

where

{
n
h

}
are the Stirling numbers of the second kind (see e.g. [8], chapter 6,

for definition and properties of Stirling numbers of first and second kinds). Some
properties of this transform are exposed in [6], here we observe that S is a bijection
from HR to itself. The inverse S−1 maps any sequence a ∈ HR into a sequence
b = S−1(a) ∈ HR , whose terms are

bn =
n∑

h=0

(−1)n−h
[

n

h

]
ah,

where
[n

h

]
are the (unsigned) Stirling numbers of the first kind. Moreover, we recall

that for all a ∈ HR with e.g.f. A(t), then b = S(a) has e.g.f. B(t) = A(et − 1). It is
very interesting to observe that, for all a, b ∈ HR , S obviously satisfies
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Some combinatorial properties of the Hurwitz series ring 497

S(a + b) = S(a) + S(b),

but also

S(a � b) = S(a) � S(b).

Indeed, remembering that
{n

h

} = 0 when n < h, and that the e.g.f. of the Stirling

numbers of the second kind is (et −1)n

n! (see [8]) , if we consider the e.g.f. S(t) of
S(a � b), we have

S(t) =
+∞∑

n=0

⎛

⎝
n∑

h=0

{
n

h

}⎛

⎝
h∑

j=0

(
h

j

)
a j bh− j

⎞

⎠

⎞

⎠ tn

n!

=
+∞∑

h=0

⎛

⎝
h∑

j=0

(
h

j

)
a j bh− j

⎞

⎠
+∞∑

n=0

{
n

h

}
tn

n!

=
+∞∑

h=0

⎛

⎝
h∑

j=0

(
h

j

)
a j bh− j

⎞

⎠
(
et − 1

)h

h! = A
(
et − 1

)
B
(
et − 1

)

and A
(
et − 1

)
B
(
et − 1

)
is the e.g.f. of S(a) � S(b). Hence S is an authomorphism

of HR .

2 Special subgroups of H∗
R

The purpose of this section is to highlight some properties of two interesting subgroups
of H∗

R with respect to the binomial convolution product � operation. We also study
their relationship with the transforms presented in the previous section and with other
transforms which we will define in the next.

Definition 2 Let us denote UR and BR the subgroups of H∗
R defined as

UR = {a ∈ H∗
R : a0 = 1}, BR = {a ∈ UR : E(a) = a−1}.

We start considering the subgroup UR and observing that, for all a ∈ HR , we can find
sequences in UR closely related with a, obtained by prepending to a a finite sequence
of 1. Hence, it is natural to consider these sequences as the images of a under the
iteration of the following transform.

The 1–prepending transform V maps a sequence a = (a0, a1, a2, . . .) ∈ HR into
the sequence b = V(a) = (1, a0, a1, a2, . . .) ∈ UR . We denote by Vk the k–times
iteration of V and obviously Vk(a) ∈ UR , for all k ≥ 1. We observe that the action of
Vk on a sequence a ∈ H∗

R corresponds to the k–th iteration of the integral operator

J (·)(t) := 1 +
∫ t

0
(·)du
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498 S. Barbero et al.

on the e.g.f. A(t) of a. In particular,

J k(A)(t) = J ◦ ... ◦ J︸ ︷︷ ︸
k−times

(A)(t) =
k−1∑

h=0

th

h! +
+∞∑

h=k

ah−k
th

h! = V (t),

where V (t) is the e.g.f. of Vk(a), and clearly

V (0) = V ′(0) = · · · = V (k−1)(0) = 1, V (k)(t) = A(t),

being V (k)(t) the k–th derivative of V (t).
Now, we explore some interesting properties of the subgroup BR . We recall that

a formal power series f (t) is called even if f (−t) = f (t) and odd when f (−t) =
− f (t). First of all, we characterize all the elements in BR .

Theorem 2 All the elements in BR corresponds to the sequences of UR whose e.g.f.
A(t) is the solution of {

A′(t) = g(t)A(t)

A(0) = 1
(2)

where g(t) is any fixed even formal power series. Hence, if we consider the formal
exponential operator exp such that exp( f (t)) = ∑+∞

n=0
( f (t))n

n! , the e.g.f. of a ∈ BR

is A(t) = exp(h(t)) where h(t) is an odd formal power series.

Proof It is immediate to see that a ∈ BR if and only if A(t)A(−t) = 1. If we
differentiate this relation with respect to t we obtain

A′(t)A(−t) − A(t)A′(−t) = 0

which is equivalent to

A′(t)
A(t)

= A′(−t)

A(−t)
.

Thus we have g(t) = A′(t)
A(t) where, from the previous relation, g(t) = g(−t), i.e. g(t) is

even, andwemust have A(0) = 1, since, for all sequencesa ∈ UR , A(0) = a0 = 1. It is
straightforward to verify that, given g(t), a formal integration term by term of its power
series corresponds to an odd power series h(t), and consequently A(t) = exp(h(t))
satisfies (2). ��
The transforms Ly, E , and B (when R = Z), act on BR preserving the closure, as we
point out in the following proposition.

Proposition 2 The group BR is closed with respect to the transforms E and L(y), for
any y ∈ R. Moreover, if R = Z, BZ is closed with respect to B.
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Some combinatorial properties of the Hurwitz series ring 499

Proof By definition of BR , it is immediate to check that E(BR) = BR (with this
notation, we say that given any a ∈ BR , then E(a) is still in BR). Given any a ∈ BR ,
with e.g.f. A(t), we have that b = L(y)(a) has e.g.f. e(yt) A(t) and b ∈ BR since

(
eyt A(t)

) (
e−yt A(−t)

) = A(t)A(−t) = 1.

Finally, when R = Z, let us recall that the Euler zig–zag numbers β have e.g.f.
B(t) = sec(t) + tan(t) which satisfies B(t)B(−t) = 1 as a simple calculation shows

B(t) − 1

B(−t)
= 1 + sin(t)

cos(t)
− cos(−t)

1 + sin(−t)
= 1 − sin2(t) − cos2(t)

cos(t)(1 − sin(t))
= 0,

i.e., β ∈ BZ. Hence, given any a ∈ BZ, B(a) = β � a ∈ BZ. ��
Remark 2 The group BR is not closed with respect to the transform S. Indeed, if A(t)
is the e.g.f. of a ∈ BR , the e.g.f. of S(a) is A(et − 1), while the e.g.f. of ε(S(a))

is A(e−t − 1) and in general A(e−t − 1)A(et − 1) �= 1. It would be interesting to
characterize the group S(BR).

Let us examine the structure of a sequence a ∈ BR . From the definition of BR and from
Theorem 2, we can observe that the elements of a sequence a ∈ BR are constrained
to severe restrictions, since the equality E(a) = a−1 must hold. If we pose b = a−1

and c = E(a), we have, for instance,

b0 = 1, b1 = −a1, b2 = 2a2
1 − a2

and

c0 = 1, c1 = −a1, c2 = a2,

i.e., the element a1 of the sequence a can be arbitrary, while a2 must satisfy

a2 = 2a2
1 − a2,

i.e., a2 = a2
1 . By continuing in this way, we can also see, e.g., that a3 can be arbitrary,

while a4 = −3a4
1 + 4a1a3. Thus, any sequence a ∈ BR is completely determined

when we fix the values of a2k−1, k = 1, 2, · · · . Indeed, the following theorem shows
how to evaluate the terms with even positive index as functions of the ones with odd
index, by means of the partial ordinary Bell polynomials described in Definition 1.

Theorem 3 Given any a ∈ BR, we have

a2n = (2n)!
n∑

k=0

( 1
2
k

)
Bn+k,2k(x1, ..., xn−k+1), ∀n ≥ 1,

where xi = a2i−1
(2i−1)! ,

( 1
2
k

) =
∏k−1

j=0

(
1
2− j

)

k! .
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500 S. Barbero et al.

Proof Let A(t) be the e.g.f. of a. Clearly, A(t) = P(t) + D(t), where

P(t) =
+∞∑

n=0

a2n

(2n)! t2n (3)

and

D(t) =
+∞∑

n=1

a2n−1

(2n − 1)! t2n−1 = 1

t

+∞∑

n=1

a2n−1

(2n − 1)! t2n . (4)

Moreover, we have

1 = A(t)A(−t) = (P(t) + D(t))(P(t) − D(t)) = (P(t))2 − (D(t))2,

since A(−t) = P(−t) + D(−t) = P(t) − D(t) and E(a) = a−1. Now, observing
that P(0) = a0 = 1 and D(0) = 0, we obtain from the formal Maclaurin power series

of (1 + X)
1
2 that

P(t) =
(
1 + (D(t))2

) 1
2 =

+∞∑

k=0

( 1
2
k

)
(D(t))2k .

By definition of partial ordinary Bell polynomials we have

(D(t))2k =
+∞∑

m=2k

Bm,2k(x1, ..., xm−2k+1)t
2m−2k .

If we set n = m − k, we get

P(t) =
+∞∑

k=0

( 1
2
k

) +∞∑

n=k

Bn+k,2k(x1, ..., xn−k+1)t
2n

=
+∞∑

n=0

(
n∑

k=0

( 1
2
k

)
Bn+k,2k(x1, ..., xn−k+1)

)
t2n .

From this equality, comparing the coefficients of the respective even powers of t in
(3) we finally obtain

a2n = (2n)!
n∑

k=0

( 1
2
k

)
Bn+k,2k(x1, ..., xn−k+1), ∀n ≥ 1.

��
By Definition 1 and observing that B0,0 = 1, Bh,0 = 0 for h ≥ 1, we have the
following corollary.
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Corollary 1 Given a ∈ BR, we have

a2n = (2n)!
n∑

k=1

( 1
2
k

) ∑

i1+i2+···+in−k+1=2k
i1+2i2+···+(n−k+1)in−k+1=n+k

× (2k)!
n−k+1∏

j=1

1

i j ! ((2 j − 1)!)i j

n−k+1∏

j=1

a
i j
2 j−1.

On the other hand, it is also possible to determine the sequences a ∈ BR , with a2 ∈ R∗
and such that a2 is a square in R, by fixing the terms a2k, k = 1, 2, · · · and finding
the terms with odd index as functions of the ones with even index.

Theorem 4 Given a ∈ BR such that a2 ∈ R∗ and x2 = a2 is solvable in R, we have

a2n+1 = (2n + 1)!
n∑

k=0

a
1
2−k
2

( 1
2
k

)
Bn,k(x1, ..., xn−k+1), ∀n ≥ 0,

where xi = 1
(2i+2)!

∑i+1
k=0

(2i+2
k

)
a2ka2(n−k+1), and a

1
2
2 ∈ R is a solution of x2 = a2.

Proof Let A(t) be the e.g.f. of a, with the samenotation used in the proof of Theorem3,
we have (D(t))2 = (P(t))2 − 1, where D(t) and P(t) as in (4) and (3), respectively.
Since the product P(t) · P(t) is equal to

(P(t))2 = 1 + a2t2 +
+∞∑

n=2

(
n∑

k=0

(
2n

2k

)
a2ka2n−2k

)
t2n

(2n)! ,

we find

D(t) = ta
1
2
2

(
1 +

+∞∑

n=2

a−1
2

(2n)!

(
n∑

k=0

(
2n

2k

)
a2ka2n−2k

)
t2n−2

) 1
2

= ta
1
2
2

(
1 +

+∞∑

n=1

a−1
2

(2n + 2)!

(
n+1∑

k=0

(
2n + 2

2k

)
a2ka2n−2k+2

)
t2n

) 1
2

Then, considering the formalMaclaurin series expansion of (1+X)
1
2 and byDefinition

1, we obtain

D(t) =
+∞∑

n=0

(
n∑

k=0

a1/2−k
2

( 1
2
k

)
Bn,k(x1, ..., xn−k+1)

)
t2n+1.

Now the thesis follows by a comparison of the corresponding coefficients of the odd
powers of t in the expansion (4) of D(t). ��
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Remark 3 When R = Z, BZ contains many well–known and important integer
sequences. We mention here some of them as interesting examples.

We have seen that the Euler zigzag numbers belong to BZ. They are listed in OEIS
[16] as A000111. Thus, all the sequences having as e.g.f. a power of sec(t) + tan(t)
are in BZ.

For instance the sequence A001250 in OEIS, whose n–th element is the number of
alternating permutations of order n, has e.g.f. (sec(t) + tan(t))2.

Moreover, the sequence A000667, which is the Boustrophedon transform of all–1’s
sequence, has e.g.f. et (sec(t) + tan(t)) and belongs to BZ.

Another sequence in BZ is A000831, with e.g.f. 1+tan(t)
1−tan(t) .

The sequences A006229 and A002017 also belong BZ since they have exponential
generating functions of the shape exp( f (t)), with f (t) odd function. Indeed, they
have e.g.f. etan(t) and esin(t), respectively.
Thanks to Theorem 3 and Corollary 1, we have new interesting identities connect-
ing many sequences in OEIS. Furthermore, it is quite surprising that all these (very
different) sequences satisfy the same limiting conditions.

In the following, we will introduce a new transform of sequences that arises from
the study of BR , which will allow us to consider UR as a dynamic ultrametric space.
Given a, b = a−1 ∈ UR , we know that

n∑

h=0

(
n

h

)
ahbn−h = 0, ∀n ≥ 1,

from which it follows that

an = −
n−1∑

h=0

(
n

h

)
ahbn−h, bn = −

n−1∑

h=0

(
n

h

)
bhan−h .

If a ∈ BR , i.e. A(−t) = A(t)−1, then, for all n ≥ 2, we have

−
n−1∑

h=1

(
n

h

)
(−1)hahan−h =

{
0 if n odd

2an if n even
. (5)

Thus it is natural to define the following transform.

Definition 3 The autoconvolution transform A maps a sequence a ∈ HR into a
sequence b = A(a) ∈ HR , where

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

b0 = a0
b2n+1 = a2n+1, ∀n ≥ 0

b2n = − 1
2

2n−1∑
h=1

(2n
h

)
(−1)haha2n−h, ∀n ≥ 1

.

The following proposition is a straightforward consequence.
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Proposition 3 Given any a ∈ UR, we have a ∈ BR ⇔ A(a) = a.

Proof If a ∈ BR , we have b = A(a) = a. Indeed, from Definition 3, we find
b0 = a0 = 1, b2n+1 = a2n+1 and, thanks to relation (5), b2n = a2n . On the other
hand, when a ∈ UR and A(a) = a, if we consider the e.g.f. A(t) of a, we obtain

A(−t)A(t) =
+∞∑

m=0

cm
tm

m! , cm =
m∑

h=0

(
m

h

)
(−1)haham−h,

where c0 = a2
0 = 1 and for all n ≥ 1. Hence

c2n−1 =
2n−1∑

h=0

(
2n − 1

h

)
(−1)haha2n−1−h = 0,

and from Definition 3

c2n =
2n∑

h=0

(
2n

h

)
(−1)haha2n−h = 2a2n +

2n−1∑

h=1

(
2n

h

)
(−1)haha2n−h = 0.

Thus A(−t)A(t) = 1, i. e. a ∈ BR . ��
Finally, we introduce another transform strictly related to A.

Definition 4 The transform U maps a sequence a ∈ HR into a sequence U(a) = b ∈
HR as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

b0 = a0
b2n+1 = a2n+1, ∀n ≥ 0

b2n = (2n)!
n∑

k=0

( 1
2
k

)
Bn+k,2k(x1, ..., xn−k+1), ∀n ≥ 1

,

where xi = a2i−1
(2i−1)! .

Proposition 4 Given any sequence a ∈ UR, we have U(a) ∈ BR, moreover a
sequence a ∈ UR is in BR if and only if a = U(a).

Proof Let us consider the e.g.f. B(t) of b = U(a). FromDefinition 4 and since a ∈ UR

we have

+∞∑

n=0

b2n

(2n)! t2n =
+∞∑

n=0

(
n∑

k=0

( 1
2
k

)
Bn+k,2k(x1, ..., xn−k+1)

)
t2n

=
+∞∑

k=0

( 1
2
k

) +∞∑

n=k

Bn+k,2k(x1, ..., xn−k+1)t
2n
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where, for all i ≥ 1, xi = a2i−1
(2i−1)! = b2i−1

(2i−1)! . Thus if we set m −k = n and we take into

account the formal Maclaurin power series of (1 + X)
1
2 and the definition of partial

ordinary Bell polynomials, as in the proof of Theorem 3, we finally find the relation

+∞∑

n=0

b2n

(2n!) t2n =
⎛

⎝1 +
(+∞∑

n=1

b2n−1

(2n − 1)! t2n−1

)2
⎞

⎠

1
2

or, equivalently,

1 =
(+∞∑

n=0

b2n

(2n!) t2n

)2

−
(+∞∑

n=1

b2n−1

(2n − 1)! t2n−1

)2

=
(+∞∑

n=0

b2n

(2n!) t2n +
+∞∑

n=1

b2n−1

(2n − 1)! t2n−1

)(+∞∑

n=0

b2n

(2n!) t2n −
+∞∑

n=1

b2n−1

(2n − 1)! t2n−1

)

= B(t)B(−t),

i.e. b = U(a) ∈ BR . Therefore if a ∈ UR and a = b = U(a) we have a ∈ BR , and,
from the results of Theorem 3, if a ∈ BR we can find a = U(a). ��
Proposition 5 Given a ∈ HR, with e.g.f. A(t), then U(a) has e.g.f.

U (t) =
(
1 +

(
A(t) − A(−t)

2

)2
) 1

2

+ A(t) − A(−t)

2
.

Proof We can write A(t) = P(t) + D(t), where P(t) and D(t) as in (3) and in (4)
respectively. We have A(−t) = P(t) − D(t) and consequently D(t) = A(t)−A(−t)

2 .
The terms in odd places of U(a) have e.g.f. D(t). By Theorem 3, the terms in the even

places of U(a) have e.g.f P(t) = (1 + (D(t))2
) 1
2 , since U(a) ∈ BR . Thus, we have

U (t) =
(
1 + (D(t))2

) 1
2 + D(t). ��

Given a, b ∈ HR , let us define

δ(a, b) := 2−k,

if ai = bi , for any 0 ≤ i ≤ k −1 and ak �= bk . It is well–known that δ is an ultrametric
in HR . Indeed,

– δ(a, b) = 0 ⇔ a = b,
– δ(a, b) = δ(b, a),
– δ(a, c) ≤ max(δ(a, b), δ(b, c)),

for any a, b, c ∈ HR . Thus, (HR, δ) is an ultrametric space.
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Let us recall that we denote H (n)
R the ringwhose elements are sequences of elements

of R with length n. Similarly,U (n)
R and B(n)

R are the subgroups of H (n)∗
R corresponding

to the subgroups UR and BR of H∗
R , respectively.

Theorem 5 Given any a ∈ UR, we have

δ(An(a),U(a)) ≤ 1

22(n+1)
,

where An = A ◦ ... ◦ A︸ ︷︷ ︸
n−times

.

Proof We prove the thesis by induction.
Let us denote a′ = U(a) and b = A(a). It is straightforward to check that

a′ = (1, a1, a2
1 , a3, ...), b = (1, a1, a2

1 , a3, ...).

Thus, a′ and b coincide at least in the first 4 terms, i.e.,

δ(A(a),U(a)) ≤ 1

24
.

Now, let us suppose that given b = An(a), we have δ(An(a),U(a)) ≤ 1
22(n+1) , i.e.

bi = a′
i for all i ≤ 2n + 1 and consider c = A(b). Since a′ ∈ BR , we remember that

for all n ≥ 2 we have

−
n−1∑

h=1

(
n

h

)
(−1)ha′

ha′
n−h =

{
0 if n odd

2a′
n if n even

.

Thus, by Definition 3, we obtain ci = a′
i for all i ≤ 2n + 3, since (b0, ..., b2n+1) =

(a′
0, ..., a′

2n+1) ∈ B(2n+2)
R by inductive hypothesis. Hence, we have proved that

δ(An+1(a),U(a)) ≤ 1

22(n+2)
.

��
As a consequence of Theorem 5, we can observe that A can be considered as an

approximation of U . Indeed, given a sequence a ∈ UR , sequences An(a) have more
elements equal to elements of U(a) for increasing values of n.

Example 1 Given a = (a0, a1, a2, a3, a4, a5) ∈ U (6)
R , then

U(a) = (1, a1, a2
1 , a3, 4a1a3 − 3a4

1, a5)

and

A(a) = (1, a1, a2
1 , a3, 4a1a3 − 3a2

2 , a5).
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Considering A2, we obtain

A2(a) = (1, a1, a2
1 , a3, 4a1a3 − 3a4

1, a5) = U(a).

In other words, given any sequence a ∈ U (6)
R , A2(a) = U(a) ∈ B(6)

R , i.e., in U (6)
R the

transforms A2 and U are identical.

From Theorem 5 easily follows the next corollary.

Corollary 2 Given any a ∈ U (2n)
R , we have

U(a) = An−1(a).

Moreover, for any a ∈ UR, we have

U(a) = lim
n→+∞An(a).

Clearly, if two sequences a, b ∈ HR coincide in the first k terms, thenA(a) andA(b)

coincide at least in the first k terms. Thus, we have the following proposition.

Proposition 6 Given any a, b ∈ HR, then

δ(A(a),A(b)) ≤ δ(a, b).

By the previous proposition, we have thatA is a contraction mapping on the ultra-
metric space (HR, δ). As a first interesting consequence, we can observe that A is
a continuous function. Moreover, we have that the ultrametric group (UR, �, δ) with
the contraction mapping A is an ultrametric dynamic space, where the set of fixed
points is the subgroup BR . In this way, we have found a very interesting example of
ultrametric dynamic space. Ultrametric dynamics are very studied in several fields,
see [15] for a good reference about dynamics on ultrametric spaces.

Acknowledgements The authors are grateful to the anonymous referee who has carefully read the paper,
providing corrections and suggestions that have improved it.

References

1. Barbero, S., Cerruti, U.,Murru, N.: Transforming recurrent sequences by using the Binomial and Invert
operators. J. Integer Sequences 13, Article 10.7.7 (2010)

2. Bell, E.T.: Partition polynomials. Ann. Math. 29, 38–46 (1928)
3. Benhissi, A.: Ideal structure of Hurwitz series rings. Contrib. Algebr. Geom. 48(1), 251–256 (2007)
4. Benhissi, A.: PF and PP-properties in Hurwitz series ring. Bull. Math. Soc. Sci. Math Roumanie 54(3),

203–211 (2011)
5. Benhissi, A., Koja, F.: Basic properties of Hurwitz series rings. Ricerche diMatematica 61(2), 255–273

(2012)
6. Bernstein, M., Sloane, N.J.A.: Some canonical sequences of integers. Linear Algebr. Appl. 226–228,

57–72 (1995)
7. Ghanem, M.: Some properties of Hurwitz series ring. Int. Math. Forum 6(40), 1973–1981 (2007)

123



Some combinatorial properties of the Hurwitz series ring 507

8. Graham, R., Knuth, D., Patashnik, O.: Concrete Mathematics: A Foundation for Computer Science,
2nd edn. Addison–Wesley, Boston (1994)

9. Keigher, W.F.: On the ring of Hurwitz series. Commun. Algebr. 25, 1845–1859 (1997)
10. Keigher, W.F., Pritchard, F.L.: Hurwitz series as formal functions. J. Pure Appl. Algebr. 146, 291–304

(2000)
11. Liu, Z.: Hermite and PS-rings of Hurwitz series. Commun. Algebr. 28, 299–305 (2000)
12. Millar, J., Sloane, N.J.A., Young, N.E.: A new operation on sequences: the Boustrophedon transform.

J. Comb. Theory Ser. A 76, 44–54 (1996)
13. Paykan, K.: A study on skewHurwitz series ring, Ricerche diMatematica. Ready online (2016). doi:10.

1007/s11587-016-0305-9
14. Port, D.: Polynomial maps with applications to combinatorics and probability theory. Ph.D. Thesis,

MIT. http://dspace.mit.edu/handle/1721.1/28041 (1994)
15. Priess-Crampe, S., Ribenboim, P.: Ultrametric dynamics. Ill. J. Math. 55(1), 287–303 (2011)
16. Sloane, N.J.A.: The on–line encyclopedia of integer sequences, published electronically. http://www.

research.att.com/~njas/sequences (2010)

123

http://dx.doi.org/10.1007/s11587-016-0305-9
http://dx.doi.org/10.1007/s11587-016-0305-9
http://dspace.mit.edu/handle/1721.1/28041
http://www.research.att.com/~njas/sequences
http://www.research.att.com/~njas/sequences

	Some combinatorial properties of the Hurwitz series ring
	Abstract
	1 The Hurwitz series ring, transformations of sequences and automorphisms
	2 Special subgroups of HR*
	Acknowledgements
	References




