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Abstract If a group G is ‘restricted’ modulo its hypercentre, then to what extent
does G have an equally restricted normal subgroup L with G/L hypercentral? We
consider these questions where restricted means finite-π , Chernikov, locally finite-π ,
polycyclic or polycyclic-by-finite.
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1 Introduction

For any group G denote its centre by ζ1(G) and its hypercentre by ζ(G). If t is a
positive integer, say t = Π primes p pe(p), let e(t) denote the maximum of the e(p) (so
e(1) = 0) and h(t) the sum of all the e(p). Set a(t) = [e(t)/2]+ 1, where [r ] denotes
the integer part of a real number r , and set b(t) = t (e(t)+1)/2. Obviously b(t) ≤ ta(t).
The following variant of theorems of Schur and Baer was essentially proved by de
Falco et al. [2].

Theorem A (cf. [2,5]) Let G be a group with G/ζ(G) finite of order t . Then G has a
normal subgroup L with G/L hypercentral and with L of finite order dividing ta(t)+1

and at most b(t)t .
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de Falco et al. [2] gives no specific bounds. The later paper [5] by Kurdachenko et
al. contains two proofs of Theorem A, one shorter with no bounds and one with just
a bound for |L| slightly larger than b(t)t .

There are variants of the classical Schur and Baer theorems where finite is replaced
by notions like Chernikov, polycyclic or locally finite, see [7], especially Page 115.
Here we consider corresponding questions in the context of TheoremA. The following
is the main result of this paper.

Theorem B Let G be a group with G/ζ(G) a Chernikov group. Then G has a normal
Chernikov subgroup L with G/L hypercentral.

A minor variation to our proof of Theorem B gives yet another short proof of
Theorem A. In fact we prove Theorem A with rather better bounds than those stated
above, but with bounds less briefly explained. Let Z be a central subgroup of a group
G of finite index dividing t . Then (Schur’s theorem) the order |G ′| of the derived
subgroup of G is finite and in fact boundedly so (e.g. the easy proof of [11] 1.18,
yields that logt |G ′| ≤ (t − 1)2 + 1. Given t define the integers c(t) and d(t) as
follows: c(t) is the least integer such that for any G and Z as above (but with fixed t),
|G ′| divides tc(t) and d(t) is the least integer with |G ′| ≤ d(t). Notice that if s divides
t , then c(s) ≤ c(t) and d(s) ≤ d(t). By Theorem 1 of [12] we have c(t) ≤ [e(t)/2]+1
and d(t) ≤ t (e(t)+1)/2. Hence Theorem A follows from the following.

Theorem C Let G be a group with Z = ζ(G) of finite index in G dividing t. Then G
has a normal subgroup L with G/L hypercentral and with L of finite order dividing
tc(t)+1 and at most d(t)t .

Wiegold [13] has a different type of bound for d(t). Assume t > 1, let q be the least
integer to divide t and set t ′ = logq t and t ′′ = [t ′]; clearly e(t) ≤ h(t) ≤ t ′′ ≤ t ′ ≤ t .
Then Wiegold proves that d(t) ≤ t (t

′−1)/2. In fact one can do a little better than this
(see [12] Theorems 2 and 3), namely that c(t) ≤ [t ′′/2] and d(t) ≤ t (t

′′−1)/2 unless
t = peq or pqe with p > q primes and e ≥ 1 when c(t) ≤ [t ′′/2] + 1. Further if
t = pqe with e ≥ 2 or if t = peq with pe > qe+1, then d(t) ≤ t (t

′′−1)/2. With the
exceptional t = peq (e.g. t = 6) we have of course Wiegold’s bound d(t) ≤ t (t

′−1)/2.
The obvious analogues of Theorem B, with Chernikov replaced by polycyclic or

polycyclic-by-finite, are false, seeExample 1 below.Wedohowever have the following
easier result.

Theorem D Let G be a group with G/ζ(G) a locally finite π -group for some set π of
primes (e.g. π the set of all primes). Then G has a locally finite, normal π -subgroup
L with G/L hypercentral.

Casolo, Dardano and Rinauro in their recent paper [1] prove the corresponding
result to Theorem A in the context of Hall’s theorem. Specifically they prove the
following.

Theorem E (see [1]TheoremA)Let L beafinite normal subgroupof the groupG such
that G/L is hypercentral. Then the index (G:ζ(G)) is finite and divides |Aut L|.|ζ1(L)|.
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Simple examples show that the corresponding statements are false with finite
replaced by Chernikov, polycyclic, polycyclic-by-finite, or locally finite, see Exam-
ples 2, 3 and 4 below. Theorem E is a very easy consequence of our final theorem.

Theorem F Let A be a finite abelian normal subgroup of the group G and let H
be a normal subgroup of G in CG(A) and containing A. Suppose every finite image
of G/CG(H) is nilpotent. Then (H/A) ∩ ζ(G/A) = A(H ∩ ζ(G))/A; that is, if φ

denotes the natural projection of G onto G/A, then Hφ ∩ ζ(Gφ) = (H ∩ ζ(G))φ.

Whenever we have A ≤ K ≤ H note that (K/A) ∩ ζ(G/A) = A(K ∩ ζ(G))/A.
To derive Theorem E from Theorem F, set H = CG(L) and A = H ∩ L . Clearly H/A
is G-isomorphic to HL/L ≤ G/L , which is hypercentral. Consequently H/A ≤
ζ(G/A). Also L ≤ CG(H), so G/CG(H) is hypercentral. Then Theorem F implies
that H ≤ A.ζ(G). Clearly (G : H) divides |Aut L|. Therefore (G : ζ(G)) divides
|Aut L|.|A|.

2 Proof of the Theorems

Lemma 1 Let V be a finite elementary abelian p-group and G a nilpotent subgroup
of AutV . Then as G-module V = V1 ⊕ V2 ⊕ · · · ⊕ Vr , where for each i the G-
composition factors of Vi are all G-isomorphic. In particular if V as G-module has a
non-trivial factor centralized by G, then V has a non-zero element fixed by G and a
non-trivial image centralized by G.

To obtain such a decomposition of V , see [10] 7.15. Note that the hypothesis
there that the field F is algebraically closed is only used to ensure that the Jordan
decomposition of each g in G takes place in GL(n, F). If g ∈ G has finite order,
then trivially gu and gd lie in 〈g〉, so here, as H is finite, we can dispense with the
algebraic closure hypothesis. (Actually it suffices just to have F perfect, e.g. see [9]
3.1.6, which of course automatically covers the F = GF(p) case.)

Remark Suppose G is a nilpotent group and V a finite G-module such that V =
[V, G]. If q is prime, Lemma 1 shows that V/qV has no trivialG-composition factors.
Thus nor does anyG-image ofV/qV ; in particular nor does anyqi V/qi+1V . Applying
this for every q dividing the order of V shows that V itself has no trivialG-composition
factors.

As well as ζ(G) = ∪w≥0ζw(G), the hypercentre of G we consider γG =
∩w≥0γ

w+1G, the hypocentre G; here w runs over the ordinals, {ζw(G)} is the upper
central series of G and {γ w+1(G)} is the lower central series of G. Let k ≥ 0 and
t ≥ 1 be integers. If (G : ζk(G)) = t , then clearly ζ(G) = ζk+e(t)(G). Also
by Baer’s theorem |γ k+1G| is finite (see [8] 14.5.1), so G/γG is nilpotent. Then
G/γG.ζk(G) is nilpotent of order dividing t , so G/γG is nilpotent of class at most
k + e(t) and γG = γ k+e(t)+1G. Suppose instead that |γ k+1G| = d. Clearly then
γG = γ k+e(d)+1(G). Also the upper central series of G intersected with γ k+1G has
length at most e(d) and ζ(G)/(ζ(G) ∩ γ k+1G) embeds into G/γ k+1G as a G-group
and hence has G-central height at most k. Therefore ζ(G!) = ζk+e(d)(G). The above
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might seem rather pedantic, but one needs to be slightly careful in dealing with γG
for infinite groups G. We use these remarks below.

We now start on the proofs of Theorem B and, indirectly, Theorem C. Thus below
G denotes a group with G/ζ(G) a Chernikov group. Set Z = ζ(G) and Γ = γG.

Suppose first that G is finite and that (G : Z) divides t . Now G/CG(Z) stabilizes
the upper central series of G and hence is nilpotent. Therefore Γ ≤ CG(Z), Γ ∩ Z ≤
ζ1(Γ ), (Γ : Γ ∩ Z) divides t and |Γ ′| divides tc(t) and is at most d(t). Set V = Γ/Γ ′.
Clearly Γ centralizes V , so G/CG(V ) is nilpotent. By the Remarks above V has no
trivial G-composition factors, so Γ ∩ Z ≤ Γ ′. Thus (Γ : Γ ′) divides t . Therefore |Γ |
divides tc(t)+1 and is at most d(t)t .

Now suppose thatG is finitely generated. Again we have t = (G : Z) finite. AlsoG
is polycyclic-by-finite, so there exists an integer k with ζk(G) = Z . By Baer’s theorem
γ k+1G is finite, so Γ ≤ γ k+1G is finite and G/Γ is nilpotent. Now G is residually
finite. Hence there is a normal subgroup N of G of finite index with Γ ∩ N = 〈1〉.
Clearly ZN/N ≤ ζ(G/N ) and Γ ∼= Γ N/N = γ (G/N ). By the finite case we
have that |Γ | divides tc(t)+1 and is at most d(t)t . Also by the finite case we have
[Γ, Z ] ≤ Γ ∩ N = 〈1〉 and Γ ∩ Z ≤ Γ ∩ Γ ′N = Γ ′.

The Proof of Theorem B. Suppose X ≤ Y are finitely generated subgroups of G.
Clearly γ X ≤ γY , so L = ∪Xγ X is a normal subgroup ofG. By the finitely generated
case above we have that [γ X, X ∩ Z ] = 〈1〉 and γ X ∩ Z ≤ (γ X)′; further X/γ X is
nilpotent. If x ∈ L and z ∈ Z , there exists an X with x ∈ γ X and z ∈ X ∩ Z . Then
[x, z] = 1 and hence [L , Z ] = 〈1〉. Also

L ∩ Z = ∪X (γ X ∩ Z) ≤ ∪X (γ X)′ = L ′.

Now G/L is locally nilpotent since each X/γ X is nilpotent and locally nilpotent
Chernikov groups are hypercentral. Hence G/LZ and G/L are hypercentral. Further
L/(L∩Z) is Chernikov and L∩Z ≤ ζ1(L). Therefore L ′ is Chernikov by Polovickii’s
theorem (see [7] 4.23). Consequently L is Chernikov. The proof is complete. �

The Proof of Theorem C. Here we have (G : Z) dividing t . Let X be a finitely gener-
ated subgroup of G with X Z = G. By the finitely generated case we have that X/γ X
is nilpotent and that |γ X | divides tc(t)+1 and is at most d(t)t . Choose X so that |γ X |
is maximal. If Y is any finitely generated subgroup of G containing X , then γ X ≤ γY
since [γ X, X ] = γ X . By the maximal choice of X we have γ X = γY . This is for all
such Y and consequently L = γ X is normal in G. If ψ is the natural map of G onto
G/L , then Xψ is nilpotent and Gψ = Xψ.Zψ . Consequently Gψ is hypercentral.
The proof is complete. �

Comments on the above proofs. Notice that in general, unlike the finitely generated
case, in Theorem C we cannot prove that γG is finite; just consider the infinite locally
dihedral 2-group. However, since L = γ X = [γ X, X ], so L = [L , G] ≤ γG and
G/γG is hypercentral. Further L is actually the hypercentral residual of G and in
particular L is fully invariant in G.

A similar remark applies to Theorem B. If A = ⊕i≥1〈ai 〉 is free abelian of infinite
rank and x ∈ Aut A is given by ai x = ai−1 + ai for all i (with a0 = 0), then the split
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extension G of A by 〈x〉 is hypercentral and yet γG = A is not Chernikov. Suppose
α = ch(G), the central height of G, and β = ch(G/L). Assuming (G : Z) = t ,
if e = e(t), then β ≤ α + e. On the other hand if |L| = d and if f = e(d), then
α ≤ f + β, so if either of α and β is infinite, they both are and α ≤ β ≤ α + e.

Let k ≥ 0 and t ≥ 1 be integers. Suppose G is a group with (G : ζk(G)) finite.
By Baer’s theorem γ k+1G is finite. More precisely there exists an integer-valued
function τ(k, t) such that if (G : ζk(G)) divides t , then |γ k+1G| divides tτ(k, t). For
set τ(0, t) = 1 and (via Schur’s theorem) set τ(1, t) = c(t). Suppose k ≥ 2 and
|γ k(G).ζ1(G)/ζ1(G)| divides s. Then by [8] 14.5.2, or more precisely by its proof,
|γ k+1G| divides (st)2τ(1, st)+1. Thus we can define τ(k, t) inductively on k by setting

τ(k, t) = (τ (k − 1, t) + 1)(2τ(1, st) + 1) for s = tτ(k−1, t).

The above implies (cf. [1] Proposition 3) that if (G : ζk(G)) = t , then the order of
γ 2k+1G divides a power of t whose exponent is bounded by a function of t only,
namely it divides max{tc(t)+1, tτ(2.c(t), t)}. For as we saw above G/γG is nilpotent of
class at most k+e(t), so if k ≥ e(t), then |γ 2k+1G| = |γG|, which divides tc(t)+1 and
if k ≤ e(t), then |γ 2k+1G| divides tτ(2.e(t), t), since τ(k, t) is an increasing function
of k.

Lemma 2 Let G be a π -torsion-free group for π some set of primes. If G/ζ(G) is a
locally finite π -group, then G = ζ(G).

Proof If X is a finitely generated subgroup ofG, then X is nilpotent-by-finite, ζ(X) =
ζk(X) for some finite k and X/ζk(X) is a finite π -group. Hence γ k+1(X) is also a
finite π -group (e.g. [7] Page 115 or use the above). But G is π -torsion-free; therefore
γ k+1(X) = 〈1〉 and so G is locally nilpotent. But then ζ(G) is π -isolated in G (see
[4] 4.8b). Therefore ζ(G) = G. (Alternatively, if T is the maximal periodic normal
subgroup of G, then T is a π ′-group, so T ≤ ζ(G) and ζ(G/T ) is isolated in G/T
by [6] 2.3.9i); thus again ζ(G) = G.) �

The Proof of Theorem D. Let X ≤ Y be finitely generated subgroups of G. Then
X/ζ(X) is a finite π -group, so by Theorem C there exists a finite normal π -subgroup
LX of G with X/LX hypercentral and hence nilpotent. Clearly we may choose LX so
that X/LX is π -torsion-free. Then LX = X ∩ LY . Set L = ∪X LX . Then L is a locally
finite, normal π -subgroup of G with G/L π -torsion-free and locally nilpotent. By the
lemma above G/L is hypercentral.

Example 1 IfG/ζ(G) is polycyclic, there is no need forG to be (polycyclic-by-finite)-
by-hypercentral.

Let A be a divisible abelian 2-group of rank 2. Then Aut A ∼= GL(2, Z2). Let
H = 〈x, h〉 ≤ GL(2, Z2); here x �= 1 permutes the standard basis of (Z2)

(2) and
h = diag(k, k−1) where k ∈ 1 + 2Z2 ≤ Z2 has infinite order. Set Ai = {a ∈ A :
|a| ≤ 2i } for i = 0, 1, 2, . . .. Then [Ai , h] ≤ Ai−1 for all i > 0; also Ax

i = Ai and
[Ai , 2x] ≤ Ai−1. Further H is infinite dihedral, so ζ1(H) = 〈1〉.

Let G = H A be the split extension of A by H . Then ζ(G) = A and G/ζ(G) ∼= H
is polycyclic. Suppose T is any polycyclic-by-finite normal subgroup of G. Then
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T ∩ A ≤ Ai for some i . If m is a positive integer with hm ∈ T , then hm stabilizes the
series 〈1〉 < A1 < A2 < · · · < Ai < A and hence hmn centralizes A for some n ≥ 1
(e.g. [11] 1.21), contradicting h of infinite order. Consequently H ∩ T = 〈1〉 and so
G/T cannot be hypercentral.

The Proof of Theorem F. Define K by K/A = (H/A) ∩ ζ(G/A). We induct on the
exponent e of A. Suppose first that e = p, a prime and that ζ(G) = 〈1〉. If K > A,
then there exists k ∈ K\A with k A ∈ ζ1(G/A). Then V = 〈k〉A is abelian and
normal in G and clearly [v p, g] = [v, g]p = 1 for all v in V and g in G. Also
V ≤ H , so G/CG(V ) is an image of G/CG(H) and hence is nilpotent. It follows that
V ∩ ζ1(G) �= 〈1〉, either because V p �= 〈1〉 or by the Remark above, contradicting
the assumption that ζ(G) = 〈1〉. Thus in this case K = A. Applying this to G/ζ(G)

yields that if A is elementary abelian, then

K/A ≤ (H/A) ∩ A.ζ(G)/A = A(H ∩ ζ(G))/A ≤ K/A.

Now suppose that p is just some prime dividing e and set B = Ap. By the case above

(H/A) ∩ ζ(G/A) = (A/B)((H/B) ∩ ζ(G/B))/(A/B).

Also by induction on e we have (H/B) ∩ ζ(G/B) = B(H ∩ ζ(G))/B. Therefore

(H/A) ∩ ζ(G/A) = (A/B)(B(H ∩ ζ(G))/B)/(A/B) = A(H ∩ ζ(G))/A.

The proof is complete. �

Let L be a finite group of order d. Then any series of subgroups of L has length

at most h(d), the minimal number of generators of L is at most h(d) and Aut L has
order at most dh(d). For example, appying this to Theorem E yields that (G : ζ(G))

is at most dh(d)+1.
Assume k ≥ 0 and d > 1 are integers and suppose G is a group with L = γ k+1G

of order d. Then from Theorem 2 of [3] we have (G : ζ2k(G)) ≤ ds , where s =
rk + h(d) and r is the rank of Aut L . Note that r is bounded by a function of d only;
for example r ≤ h(d)2. Also ζ(G) = ζk+e(d)(G), see Remarks above; consequently
(G : ζk+e(k)(G)) ≤ dh(d)+1. Thus if k ≥ e(d), then (G : ζ2k(G)) ≤ dh(d)+1 and if
k < e(d), then (G : ζ2k(G)) ≤ ds for s = rk + h(d) ≤ re(d) + h(d) ≤ h(d)2.e(d) +
h(d) = u(d) say.We have proved the following (cf. [1] CorollaryA′). If |γ k+1G| = d,
then (G : ζ2k(G)) ≤ du(d) for u as above, a function of d only.

Unlike the previous case we need not have that (G : ζ2k(G)) divides a power of d,
for if G = Sym(3) and k = 1, then d = 3 and (G : ζ2k(G)) = 6.

For the analogues of Theorem E the results are negative.

Example 2 If G is (infinite cyclic)-by-hypercentral, then G/ζ(G) need not be
polycyclic-by-finite.

Let A = Z, B = Z[1/2], g the automorphism b �→ −b of B and G the split
extension 〈g〉B. Then A is infinite cyclic and normal in G and G/A is hypercentral,
being an infinite locally dihedral 2-group. Finally if x ∈ G\B, then x acts fixed-point
freely on B, so 〈1〉 = ζ1(G) = ζ(G). Clearly G is not polycyclic-by-finite.
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Example 3 IfG is (locally finite)-by-hypercentral, thenG/ζ(G) need not be periodic.
Let G be the wreath product of a cyclic group of prime order p by an infinite cyclic

group. Then G ′ is an elementary abelian p-group and yet ζ(G) = ζ1(G) = 〈1〉.
Example 4 If G is Chernikov-by-hypercentral, then G/ζ(G) need not be Chernikov
or even periodic.

Let G be the split extension of the Prüfer p-group P for the odd prime p by the
infinite cyclic group 〈ab〉, where a is the inversion automorphism of P and b is an
automorphism of P of infinite order that stabilizes the (only) composition series of P .
Then G ′ = P and so is Chernikov, but ζ(G) = 〈1〉, so G/ζ(G) is not even periodic.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Casolo, C., Dardano, U., Rinauro, S.: Variants of theorems of Baer and Hall on finite-by-hypercentral
groups. J. Algebra 452, 279–287 (2016)

2. de Falco, M., de Giovanni, F., Musella, C., Sysak, Y.P.: On the upper central series of infinite groups.
Proc. Am. Math. Soc. 139, 385–389 (2011)

3. Hall, P.: Finite-by-nilpotent groups. Proc. Camb. Philos. Soc. 52, 611–616 (1956)
4. Hall, P.: Nilpotent Groups. Queen Mary College Mathematical Notes, London (1969)
5. Kurdachenko, L., Otal, J., Subbotin, I.Y.: On a generalization of Baer’s theorem. Proc. Am. Math. Soc.

141, 2597–2602 (2013)
6. Lennox, J.C., Robinson,D.J.S.: TheTheory of Infinite SolubleGroups. ClarendonPress,Oxford (2004)
7. Robinson, D.J.S.: Finiteness Conditions and Generalized Soluble Groups, vol. 1. Springer, Berlin

(1972)
8. Robinson, D.J.S.: A Course in the Theory of Groups. Springer, Berlin (1982)
9. Shirvani, M., Wehrfritz, B.A.F.: Skew Linear Groups. Cambridge University Press, Cambridge (1986).

(re-issued (2008))
10. Wehrfritz, B.A.F.: Infinite Linear Groups. Springer, Berlin (1973)
11. Wehrfritz, B.A.F.: Group andRingTheoretic Properties of PolycyclicGroups. Springer, London (2009)
12. Wehrfritz, B.A.F.: Schur’s theorem and Wiegold’s bound (preprint)
13. Wiegold, J.: Multiplicators and groups with finite central factor-groups. Math. Z. 89, 345–347 (1965)

123

http://creativecommons.org/licenses/by/4.0/

	Variants of theorems of Schur, Baer and Hall
	Abstract
	1 Introduction
	2 Proof of the Theorems
	References




