

Variants of theorems of Schur, Baer and Hall

B. A. F. Wehrfritz1

Received: 24 March 2016 / Published online: 27 June 2017 © The Author(s) 2017. This article is an open access publication

Abstract If a group *G* is 'restricted' modulo its hypercentre, then to what extent does *G* have an equally restricted normal subgroup *L* with *G*/*L* hypercentral? We consider these questions where restricted means finite- π , Chernikov, locally finite- π , polycyclic or polycyclic-by-finite.

Keywords Hypercentre · Hypocentre · Central series

Mathematics Subject Classification 20F14 · 20E15

1 Introduction

For any group *G* denote its centre by $\zeta_1(G)$ and its hypercentre by $\zeta(G)$. If *t* is a positive integer, say $t = \Pi$ primes $p^{e(p)}$, let $e(t)$ denote the maximum of the $e(p)$ (so $e(1) = 0$) and $h(t)$ the sum of all the $e(p)$. Set $a(t) = [e(t)/2] + 1$, where [*r*] denotes the integer part of a real number *r*, and set $b(t) = t^{(e(t)+1)/2}$. Obviously $b(t) \le t^{a(t)}$. The following variant of theorems of Schur and Baer was essentially proved by de Falco et al. [\[2](#page-6-0)].

Theorem A (cf. [\[2](#page-6-0)[,5](#page-6-1)]) Let G be a group with $G/\zeta(G)$ finite of order t. Then G has a *normal subgroup L with G/L hypercentral and with L of finite order dividing* $t^{a(t)+1}$ *and at most b*(*t*)*t.*

Communicated by F. de Giovanni.

 \boxtimes B. A. F. Wehrfritz b.a.f.wehrfritz@qmul.ac.uk

¹ Queen Mary University of London, London E1 4NS, UK

de Falco et al. [\[2](#page-6-0)] gives no specific bounds. The later paper [\[5\]](#page-6-1) by Kurdachenko et al. contains two proofs of Theorem [A,](#page-0-0) one shorter with no bounds and one with just a bound for $|L|$ slightly larger than $b(t)t$.

There are variants of the classical Schur and Baer theorems where finite is replaced by notions like Chernikov, polycyclic or locally finite, see [\[7\]](#page-6-2), especially Page 115. Here we consider corresponding questions in the context of Theorem [A.](#page-0-0) The following is the main result of this paper.

Theorem B *Let G be a group with G*/ζ (*G*) *a Chernikov group. Then G has a normal Chernikov subgroup L with G*/*L hypercentral.*

A minor variation to our proof of Theorem [B](#page-1-0) gives yet another short proof of Theorem [A.](#page-0-0) In fact we prove Theorem [A](#page-0-0) with rather better bounds than those stated above, but with bounds less briefly explained. Let *Z* be a central subgroup of a group *G* of finite index dividing *t*. Then (Schur's theorem) the order $|G'|$ of the derived subgroup of G is finite and in fact boundedly so (e.g. the easy proof of $[11]$ $[11]$ 1.18, yields that $log_t|G'| \le (t-1)^2 + 1$. Given *t* define the integers $c(t)$ and $d(t)$ as follows: $c(t)$ is the least integer such that for any G and Z as above (but with fixed t), $|G'|$ divides $t^{c(t)}$ and $d(t)$ is the least integer with $|G'| \leq d(t)$. Notice that if *s* divides *t*, then $c(s) \leq c(t)$ and $d(s) \leq d(t)$. By Theorem 1 of [\[12](#page-6-4)] we have $c(t) \leq [e(t)/2]+1$ and $d(t) \le t^{(e(t)+1)/2}$. Hence Theorem [A](#page-0-0) follows from the following.

Theorem C Let G be a group with $Z = \zeta(G)$ of finite index in G dividing t. Then G *has a normal subgroup L with G*/*L hypercentral and with L of finite order dividing* $t^{c(t)+1}$ *and at most d*(*t*)*t*.

Wiegold [\[13](#page-6-5)] has a different type of bound for $d(t)$. Assume $t > 1$, let q be the least integer to divide *t* and set $t' = log_q t$ and $t'' = [t']$; clearly $e(t) \leq h(t) \leq t'' \leq t' \leq t$. Then Wiegold proves that $d(t) \leq t^{(t'-1)/2}$. In fact one can do a little better than this (see [\[12\]](#page-6-4) Theorems 2 and 3), namely that $c(t) \leq [t''/2]$ and $d(t) \leq t^{(t''-1)/2}$ unless $t = p^e q$ or pq^e with $p > q$ primes and $e > 1$ when $c(t) < [t''/2] + 1$. Further if *t* = *pq^{<i>e*} with *e* ≥ 2 or if *t* = *p^{<i>e*}q with *p^{<i>e*} > q^{e+1} , then $d(t) ≤ t^{(t^{7}-1)/2}$. With the exceptional $t = p^e q$ (e.g. $t = 6$) we have of course Wiegold's bound $d(t) \le t^{(t'-1)/2}$.

The obvious analogues of Theorem [B,](#page-1-0) with Chernikov replaced by polycyclic or polycyclic-by-finite, are false, see Example [1](#page-4-0) below.We do however have the following easier result.

Theorem D Let G be a group with $G/\zeta(G)$ a locally finite π -group for some set π of *primes (e.g.* π *the set of all primes). Then G has a locally finite, normal* π*-subgroup L with G*/*L hypercentral.*

Casolo, Dardano and Rinauro in their recent paper [\[1](#page-6-6)] prove the corresponding result to Theorem [A](#page-0-0) in the context of Hall's theorem. Specifically they prove the following.

Theorem E (see [\[1](#page-6-6)] Theorem A) *Let L be a finite normal subgroup of the group G such that* G/L *is hypercentral. Then the index* $(G:\zeta(G))$ *is finite and divides* $|Aut L|.|\zeta_1(L)|$ *.*

Simple examples show that the corresponding statements are false with finite replaced by Chernikov, polycyclic, polycyclic-by-finite, or locally finite, see Examples [2,](#page-5-0) [3](#page-6-7) and [4](#page-6-8) below. Theorem [E](#page-1-1) is a very easy consequence of our final theorem.

Theorem F *Let A be a finite abelian normal subgroup of the group G and let H be a normal subgroup of G in CG*(*A*) *and containing A. Suppose every finite image of* $G/C_G(H)$ *is nilpotent. Then* $(H/A) \cap \zeta(G/A) = A(H \cap \zeta(G))/A$ *; that is, if* ϕ *denotes the natural projection of G onto* G/A *, then* $H\phi \cap \zeta(G\phi) = (H \cap \zeta(G))\phi$ *.*

Whenever we have $A \le K \le H$ note that $(K/A) \cap \zeta(G/A) = A(K \cap \zeta(G))/A$. To derive Theorem [E](#page-1-1) from Theorem [F,](#page-2-0) set $H = C_G(L)$ and $A = H \cap L$. Clearly H/A is *G*-isomorphic to $HL/L \leq G/L$, which is hypercentral. Consequently $H/A \leq$ $\zeta(G/A)$. Also $L \leq C_G(H)$, so $G/C_G(H)$ is hypercentral. Then Theorem [F](#page-2-0) implies that $H \leq A.\zeta(G)$. Clearly $(G : H)$ divides $|Aut L|$. Therefore $(G : \zeta(G))$ divides |*Aut L*|.|*A*|.

2 Proof of the Theorems

Lemma 1 *Let V be a finite elementary abelian p-group and G a nilpotent subgroup of AutV. Then as G-module* $V = V_1 \oplus V_2 \oplus \cdots \oplus V_r$ *, where for each i the Gcomposition factors of Vi are all G-isomorphic. In particular if V as G-module has a non-trivial factor centralized by G, then V has a non-zero element fixed by G and a non-trivial image centralized by G.*

To obtain such a decomposition of *V*, see [\[10\]](#page-6-9) 7.15. Note that the hypothesis there that the field *F* is algebraically closed is only used to ensure that the Jordan decomposition of each *g* in *G* takes place in $GL(n, F)$. If $g \in G$ has finite order, then trivially g_u and g_d lie in $\langle g \rangle$, so here, as *H* is finite, we can dispense with the algebraic closure hypothesis. (Actually it suffices just to have *F* perfect, e.g. see [\[9\]](#page-6-10) 3.1.6, which of course automatically covers the $F = GF(p)$ case.)

Remark Suppose *G* is a nilpotent group and *V* a finite *G*-module such that $V =$ [*V*, *G*]. If *q* is prime, Lemma [1](#page-2-1) shows that *V*/*qV* has no trivial *G*-composition factors. Thus nor does any *G*-image of V/qV ; in particular nor does any $q^i V/q^{i+1}V$. Applying this for every *q* dividing the order of *V* shows that *V* itself has no trivial *G*-composition factors.

As well as $\zeta(G) = \bigcup_{w>0} \zeta_w(G)$, the hypercentre of *G* we consider $\gamma G =$ $\bigcap_{w>0}\gamma^{w+1}G$, the hypocentre *G*; here w runs over the ordinals, $\{\zeta_w(G)\}\$ is the upper central series of *G* and $\{\gamma^{w+1}(G)\}\$ is the lower central series of *G*. Let $k \geq 0$ and $t \geq 1$ be integers. If $(G : \zeta_k(G)) = t$, then clearly $\zeta(G) = \zeta_{k+e(t)}(G)$. Also by Baer's theorem $|\gamma^{k+1}G|$ is finite (see [\[8\]](#page-6-11) 14.5.1), so $G/\gamma G$ is nilpotent. Then $G/\gamma G.\zeta_k(G)$ is nilpotent of order dividing *t*, so $G/\gamma G$ is nilpotent of class at most $k + e(t)$ and $\gamma G = \gamma^{k+e(t)+1} G$. Suppose instead that $|\gamma^{k+1} G| = d$. Clearly then $\gamma G = \gamma^{k+e(d)+1}(G)$. Also the upper central series of *G* intersected with $\gamma^{k+1}G$ has length at most $e(d)$ and $\zeta(G)/(\zeta(G) \cap \gamma^{k+1}G)$ embeds into $G/\gamma^{k+1}G$ as a G -group and hence has *G*-central height at most *k*. Therefore $\zeta(G!) = \zeta_{k+e(d)}(G)$. The above might seem rather pedantic, but one needs to be slightly careful in dealing with γG for infinite groups *G*. We use these remarks below.

We now start on the proofs of Theorem \bf{B} \bf{B} \bf{B} and, indirectly, Theorem \bf{C} . Thus below *G* denotes a group with $G/\zeta(G)$ a Chernikov group. Set $Z = \zeta(G)$ and $\Gamma = \gamma G$.

Suppose first that *G* is finite and that $(G : Z)$ divides *t*. Now $G/C_G(Z)$ stabilizes the upper central series of *G* and hence is nilpotent. Therefore $\Gamma \leq C_G(Z)$, $\Gamma \cap Z \leq$ $\zeta_1(\Gamma)$, $(\Gamma : \Gamma \cap Z)$ divides *t* and $|\Gamma'|$ divides $t^{c(t)}$ and is at most $d(t)$. Set $V = \Gamma/\Gamma'$. Clearly *Γ* centralizes *V*, so $G/C_G(V)$ is nilpotent. By the Remarks above *V* has no trivial *G*-composition factors, so $\Gamma \cap Z \leq \Gamma'$. Thus $(\Gamma : \Gamma')$ divides *t*. Therefore $|\Gamma|$ divides $t^{c(t)+1}$ and is at most $d(t)t$.

Now suppose that *G* is finitely generated. Again we have $t = (G : Z)$ finite. Also *G* is polycyclic-by-finite, so there exists an integer *k* with $\zeta_k(G) = Z$. By Baer's theorem $\gamma^{k+1}G$ is finite, so $\Gamma \leq \gamma^{k+1}G$ is finite and G/Γ is nilpotent. Now G is residually finite. Hence there is a normal subgroup *N* of *G* of finite index with $\Gamma \cap N = \langle 1 \rangle$. Clearly $ZN/N \le \zeta(G/N)$ and $\Gamma \cong \Gamma N/N = \gamma(G/N)$. By the finite case we have that $|\Gamma|$ divides $t^{c(t)+1}$ and is at most $d(t)t$. Also by the finite case we have $[T, Z] \leq \Gamma \cap N = \langle 1 \rangle$ and $\Gamma \cap Z \leq \Gamma \cap \Gamma' N = \Gamma'$.

The Proof of Theorem [B.](#page-1-0) Suppose $X \leq Y$ are finitely generated subgroups of G. Clearly $\gamma X \leq \gamma Y$, so $L = \bigcup_{X} \gamma X$ is a normal subgroup of G. By the finitely generated case above we have that $[\gamma X, X \cap Z] = \langle 1 \rangle$ and $\gamma X \cap Z \le (\gamma X)'$; further $X/\gamma X$ is nilpotent. If $x \in L$ and $z \in Z$, there exists an *X* with $x \in \gamma X$ and $z \in X \cap Z$. Then $[x, z] = 1$ and hence $[L, Z] = \langle 1 \rangle$. Also

$$
L \cap Z = \cup_X (\gamma X \cap Z) \leq \cup_X (\gamma X)' = L'.
$$

Now G/L is locally nilpotent since each $X/\gamma X$ is nilpotent and locally nilpotent Chernikov groups are hypercentral. Hence *G*/*L Z* and *G*/*L* are hypercentral. Further *L*/(*L*∩*Z*) is Chernikov and *L*∩*Z* ≤ $\zeta_1(L)$. Therefore *L'* is Chernikov by Polovickii's theorem (see [7] 4.23). Consequently *L* is Chernikov. The proof is complete. □ theorem (see [\[7\]](#page-6-2) 4.23). Consequently *L* is Chernikov. The proof is complete. 

The Proof of Theorem [C.](#page-1-2) Here we have $(G : Z)$ dividing *t*. Let *X* be a finitely generated subgroup of *G* with $XZ = G$. By the finitely generated case we have that $X/\gamma X$ is nilpotent and that $|\gamma X|$ divides $t^{c(t)+1}$ and is at most $d(t)t$. Choose X so that $|\gamma X|$ is maximal. If *Y* is any finitely generated subgroup of *G* containing *X*, then $\gamma X \leq \gamma Y$ since $[\gamma X, X] = \gamma X$. By the maximal choice of *X* we have $\gamma X = \gamma Y$. This is for all such *Y* and consequently $L = \gamma X$ is normal in *G*. If ψ is the natural map of *G* onto *G*/*L*, then *X* ψ is nilpotent and *G* $\psi = X\psi$. *Z* ψ . Consequently *G* ψ is hypercentral. The proof is complete.

Comments on the above proofs. Notice that in general, unlike the finitely generated case, in Theorem [C](#page-1-2) we cannot prove that γG is finite; just consider the infinite locally dihedral 2-group. However, since $L = \gamma X = [\gamma X, X]$, so $L = [L, G] \leq \gamma G$ and $G/\gamma G$ is hypercentral. Further *L* is actually the hypercentral residual of *G* and in particular *L* is fully invariant in *G*.

A similar remark applies to Theorem [B.](#page-1-0) If $A = \bigoplus_{i>1} \langle a_i \rangle$ is free abelian of infinite rank and $x \in AutA$ is given by $a_i x = a_{i-1} + a_i$ for all *i* (with $a_0 = 0$), then the split extension *G* of *A* by $\langle x \rangle$ is hypercentral and yet $\gamma G = A$ is not Chernikov. Suppose $\alpha = ch(G)$, the central height of *G*, and $\beta = ch(G/L)$. Assuming $(G : Z) = t$, if $e = e(t)$, then $\beta \leq \alpha + e$. On the other hand if $|L| = d$ and if $f = e(d)$, then $\alpha \leq f + \beta$, so if either of α and β is infinite, they both are and $\alpha \leq \beta \leq \alpha + e$.

Let $k \geq 0$ and $t \geq 1$ be integers. Suppose *G* is a group with $(G : \zeta_k(G))$ finite. By Baer's theorem $\gamma^{k+1}G$ is finite. More precisely there exists an integer-valued function $\tau(k, t)$ such that if $(G : \zeta_k(G))$ divides t , then $|\gamma^{k+1}G|$ divides $t^{\tau(k, t)}$. For set $\tau(0, t) = 1$ and (via Schur's theorem) set $\tau(1, t) = c(t)$. Suppose $k \ge 2$ and $|\gamma^{k}(G),\zeta_{1}(G)/\zeta_{1}(G)|$ divides *s*. Then by [\[8\]](#page-6-11) 14.5.2, or more precisely by its proof, $|\gamma^{k+1}G|$ divides $(st)^{2\tau(1, st)+1}$. Thus we can define $\tau(k, t)$ inductively on *k* by setting

$$
\tau(k, t) = (\tau(k - 1, t) + 1)(2\tau(1, st) + 1) \text{ for } s = t^{\tau(k - 1, t)}.
$$

The above implies (cf. [\[1\]](#page-6-6) Proposition 3) that if $(G : \zeta_k(G)) = t$, then the order of $\gamma^{2k+1}G$ divides a power of *t* whose exponent is bounded by a function of *t* only, namely it divides max $\{t^{c(t)+1}, t^{(\tau(2,c(t), t)}\}$. For as we saw above $G/\gamma G$ is nilpotent of class at most $k + e(t)$, so if $k \ge e(t)$, then $|\gamma^{2k+1}G| = |\gamma G|$, which divides $t^{c(t)+1}$ and if $k \leq e(t)$, then $|\gamma^{2k+1}G|$ divides $t^{\tau(2,e(t), t)}$, since $\tau(k, t)$ is an increasing function of *k*.

Lemma 2 Let G be a π-torsion-free group for π some set of primes. If $G/\zeta(G)$ is a *locally finite* π *-group, then* $G = \zeta(G)$ *.*

Proof If *X* is a finitely generated subgroup of *G*, then *X* is nilpotent-by-finite, $\zeta(X) =$ ζ*^k* (*X*) for some finite *k* and *X*/ζ*^k* (*X*) is a finite π-group. Hence γ *^k*+1(*X*) is also a finite π -group (e.g. [\[7\]](#page-6-2) Page 115 or use the above). But *G* is π -torsion-free; therefore $\gamma^{k+1}(X) = \langle 1 \rangle$ and so *G* is locally nilpotent. But then $\zeta(G)$ is π -isolated in *G* (see [\[4](#page-6-12)] 4.8b). Therefore $\zeta(G) = G$. (Alternatively, if T is the maximal periodic normal subgroup of *G*, then *T* is a π' -group, so $T \le \zeta(G)$ and $\zeta(G/T)$ is isolated in G/T by [\[6](#page-6-13)] 2.3.9i); thus again $\zeta(G) = G$.)

The Proof of Theorem [D.](#page-1-3) Let $X \leq Y$ be finitely generated subgroups of *G*. Then $X/\zeta(X)$ is a finite π -group, so by Theorem [C](#page-1-2) there exists a finite normal π -subgroup L_X of *G* with X/L_X hypercentral and hence nilpotent. Clearly we may choose L_X so that *X*/*L*_{*X*} is π -torsion-free. Then $L_X = X \cap L_Y$. Set $L = \bigcup_X L_X$. Then *L* is a locally finite, normal π -subgroup of *G* with $G/L\pi$ -torsion-free and locally nilpotent. By the lemma above *G*/*L* is hypercentral.

Example 1 If $G/\zeta(G)$ is polycyclic, there is no need for *G* to be (polycyclic-by-finite)by-hypercentral.

Let *A* be a divisible abelian 2-group of rank 2. Then $Aut A \cong GL(2, \mathbb{Z}_2)$. Let $H = \langle x, h \rangle \le GL(2, \mathbb{Z}_2)$; here $x \ne 1$ permutes the standard basis of $(\mathbb{Z}_2)^{(2)}$ and *h* = *diag*(*k*, *k*⁻¹) where *k* ∈ 1 + 2 \mathbb{Z}_2 ≤ \mathbb{Z}_2 has infinite order. Set $A_i = \{a \in A$: $|a|$ ≤ 2^{*i*} } for *i* = 0, 1, 2, Then [*A_i*, *h*] ≤ *A_{i−1}* for all *i* > 0; also *A_i*^{*x*} = *A_i* and $[A_i, 2x] \leq A_{i-1}$. Further *H* is infinite dihedral, so $\zeta_1(H) = \langle 1 \rangle$.

Let $G = HA$ be the split extension of A by H. Then $\zeta(G) = A$ and $G/\zeta(G) \cong H$ is polycyclic. Suppose *T* is any polycyclic-by-finite normal subgroup of *G*. Then

T ∩ *A* ≤ *A_i* for some *i*. If *m* is a positive integer with h^m ∈ *T*, then h^m stabilizes the series $\langle 1 \rangle < A_1 < A_2 < \cdots < A_i < A$ and hence h^{mn} centralizes A for some $n > 1$ (e.g. [\[11](#page-6-3)] 1.21), contradicting *h* of infinite order. Consequently $H \cap T = \langle 1 \rangle$ and so *G*/*T* cannot be hypercentral.

The Proof of Theorem [F.](#page-2-0) Define *K* by $K/A = (H/A) \cap \zeta(G/A)$. We induct on the exponent *e* of *A*. Suppose first that $e = p$, a prime and that $\zeta(G) = \langle 1 \rangle$. If $K > A$, then there exists $k \in K \backslash A$ with $kA \in \zeta_1(G/A)$. Then $V = \langle k \rangle A$ is abelian and normal in *G* and clearly $[v^p, g] = [v, g]^p = 1$ for all v in *V* and *g* in *G*. Also $V \leq H$, so $G/C_G(V)$ is an image of $G/C_G(H)$ and hence is nilpotent. It follows that $V \cap \zeta_1(G) \neq \langle 1 \rangle$, either because $V^p \neq \langle 1 \rangle$ or by the Remark above, contradicting the assumption that $\zeta(G) = \langle 1 \rangle$. Thus in this case $K = A$. Applying this to $G/\zeta(G)$ yields that if *A* is elementary abelian, then

$$
K/A \le (H/A) \cap A.\zeta(G)/A = A(H \cap \zeta(G))/A \le K/A.
$$

Now suppose that p is just some prime dividing e and set $B = A^p$. By the case above

$$
(H/A) \cap \zeta(G/A) = (A/B)((H/B) \cap \zeta(G/B))/(A/B).
$$

Also by induction on *e* we have $(H/B) \cap \zeta(G/B) = B(H \cap \zeta(G))/B$. Therefore

$$
(H/A) \cap \zeta(G/A) = (A/B)(B(H \cap \zeta(G))/B)/(A/B) = A(H \cap \zeta(G))/A.
$$

The proof is complete. 

Let *L* be a finite group of order *d*. Then any series of subgroups of *L* has length at most $h(d)$, the minimal number of generators of L is at most $h(d)$ and $Aut L$ has order at most $d^{h(d)}$. For example, appying this to Theorem [E](#page-1-1) yields that $(G : \zeta(G))$ is at most $d^{h(d)+1}$.

Assume $k > 0$ and $d > 1$ are integers and suppose G is a group with $L = \gamma^{k+1}G$ of order *d*. Then from Theorem 2 of [\[3](#page-6-14)] we have $(G : \zeta_{2k}(G)) \leq d^s$, where $s =$ $r^k + h(d)$ and *r* is the rank of *Aut L*. Note that *r* is bounded by a function of *d* only; for example $r \leq h(d)^2$. Also $\zeta(G) = \zeta_{k+e(d)}(G)$, see Remarks above; consequently $(G: \zeta_{k+e(k)}(G)) \leq d^{h(d)+1}$. Thus if $k \geq e(d)$, then $(G: \zeta_{2k}(G)) \leq d^{h(d)+1}$ and if $k < e(d)$, then $(G: \zeta_{2k}(G)) \leq d^s$ for $s = r^k + h(d) \leq r^{e(d)} + h(d) \leq h(d)^{2 \cdot e(d)} +$ $h(d) = u(d)$ say. We have proved the following (cf. [\[1\]](#page-6-6) Corollary A'). If $|\gamma^{k+1}G| = d$, then $(G: \zeta_{2k}(G)) \leq d^{u(d)}$ for *u* as above, a function of *d* only.

Unlike the previous case we need not have that $(G: \zeta_{2k}(G))$ divides a power of *d*, for if $G = Sym(3)$ and $k = 1$, then $d = 3$ and $(G : \zeta_{2k}(G)) = 6$.

For the analogues of Theorem E the results are negative.

Example 2 If *G* is (infinite cyclic)-by-hypercentral, then $G/\zeta(G)$ need not be polycyclic-by-finite.

Let $A = \mathbb{Z}, B = \mathbb{Z}[1/2], g$ the automorphism $b \mapsto -b$ of *B* and *G* the split extension $\langle g \rangle B$. Then *A* is infinite cyclic and normal in *G* and *G*/*A* is hypercentral, being an infinite locally dihedral 2-group. Finally if $x \in G \backslash B$, then *x* acts fixed-point freely on *B*, so $\langle 1 \rangle = \zeta_1(G) = \zeta(G)$. Clearly *G* is not polycyclic-by-finite.

$$
\Box
$$

Example 3 If *G* is (locally finite)-by-hypercentral, then $G/\zeta(G)$ need not be periodic.

Let *G* be the wreath product of a cyclic group of prime order *p* by an infinite cyclic group. Then *G'* is an elementary abelian *p*-group and yet $\zeta(G) = \zeta_1(G) = \langle 1 \rangle$.

Example 4 If *G* is Chernikov-by-hypercentral, then $G/\zeta(G)$ need not be Chernikov or even periodic.

Let *G* be the split extension of the Prüfer *p*-group *P* for the odd prime *p* by the infinite cyclic group $\langle ab \rangle$, where *a* is the inversion automorphism of *P* and *b* is an automorphism of *P* of infinite order that stabilizes the (only) composition series of *P*. Then $G' = P$ and so is Chernikov, but $\zeta(G) = \langle 1 \rangle$, so $G/\zeta(G)$ is not even periodic.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License [\(http://creativecommons.org/licenses/by/4.0/\)](http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

- 1. Casolo, C., Dardano, U., Rinauro, S.: Variants of theorems of Baer and Hall on finite-by-hypercentral groups. J. Algebra **452**, 279–287 (2016)
- 2. de Falco, M., de Giovanni, F., Musella, C., Sysak, Y.P.: On the upper central series of infinite groups. Proc. Am. Math. Soc. **139**, 385–389 (2011)
- 3. Hall, P.: Finite-by-nilpotent groups. Proc. Camb. Philos. Soc. **52**, 611–616 (1956)
- 4. Hall, P.: Nilpotent Groups. Queen Mary College Mathematical Notes, London (1969)
- 5. Kurdachenko, L., Otal, J., Subbotin, I.Y.: On a generalization of Baer's theorem. Proc. Am. Math. Soc. **141**, 2597–2602 (2013)
- 6. Lennox, J.C., Robinson, D.J.S.: The Theory of Infinite Soluble Groups. Clarendon Press, Oxford (2004)
- 7. Robinson, D.J.S.: Finiteness Conditions and Generalized Soluble Groups, vol. 1. Springer, Berlin (1972)
- 8. Robinson, D.J.S.: A Course in the Theory of Groups. Springer, Berlin (1982)
- 9. Shirvani, M., Wehrfritz, B.A.F.: Skew Linear Groups. Cambridge University Press, Cambridge (1986). (re-issued (2008))
- 10. Wehrfritz, B.A.F.: Infinite Linear Groups. Springer, Berlin (1973)
- 11. Wehrfritz, B.A.F.: Group and Ring Theoretic Properties of Polycyclic Groups. Springer, London (2009)
- 12. Wehrfritz, B.A.F.: Schur's theorem and Wiegold's bound (preprint)
- 13. Wiegold, J.: Multiplicators and groups with finite central factor-groups. Math. Z. **89**, 345–347 (1965)