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630 A. Aberqi et al.

1 Introduction

In the present paper, we establish the uniqueness for renormalized solutions for a class
of doubly nonlinear parabolic equations, whose prototype:

0b(u) A . y—1 s—1 _ . .

o put +div(c(x, 1)|ul u)+d(x,t)|Vu| = f —div(F) in Qr,
u(x, 1) =0 ond2 x (0,T),
b(u(x,0)) = b(uo(x)) in 2.

)
In the problem (2) the framework is the following: §2 is a bounded open set of RV,
with Lipschitz-continuous boundary 02, N > 2, T > 0, while the data f, F and b(u()
are respectively in LY(Or), (LP/(QT))N, and L'(2). b is strictly increasing CH(R)-
function, unbounded of s. A,u is the p-Laplace operator, Q7 = £ x (0, T), data
c(.,.), d(.,.),y, 8, will be defined later, see Sect. 2 (8—11).

Starting with the paper [9] the authors proved an existence result of a weak solu-
tions for the non coercive problem 3 in the stationary case (b;(u) = 0) using the
symmetrization method. More later Di Nardo et al. [10] have shown the existence
of renormalized solution for the parabolic version, more precisely in the linear case
(b(u) = u), and the uniqueness for such solution in the paper [6], Aberqi et al. [1,2]
have proved the existence of a renormalized solutions for 3 with more general parabolic
terms (b;(x, u)).

In the present work we prove the uniqueness or such solution, under some local control
of Lipschitz coefficient (see Theorem 3.1).

In general, the concept of the weak solution is not sufficient to determine the solu-
tion physically observed due to the lack of uniqueness of the solution. It appears
necessary to select among all the physically weak solutions feasible solution. The
renormalized solutions allowed to have results of existence and uniqueness for certain
equations that are not accessible within the solutions in the sense of distributions
see the counter example given by Serrin [14] in the linear case, and Bénilan et
al. [5] in the case of p-Laplacian operator. To overcome this difficulties we work
in the framework of renormalized solutions (see 14—18), this notion was intro-
duced by Diperna and Lions [12] in their study of Boltzmann equations, see also
[4,8].

The paper is concerned with giving a careful account on both existence and unique-
ness of renormalized solution, we want to stress that, while the existence result
follows a rather standard approximation argument see [1] due to the nonlinearity
b(u) and non coercive terms c(x, t)|u|”_1u and d(x, t)|Vu|‘3_l and the measure
f —div(F).

In order to perform the uniqueness, the paper is planned in the following way.
Section 2 is devoted to specify the assumptions on b, a, H, f, and b(ug) and to give
the definition of a renormalized solution of 3, and we prove some technical Lemmas
whose play a crucial role to prove the uniqueness results. In Sect. 3, we prove that
there exists a unique renormalized solution see Theorem 3.1.
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2 Basic assumptions and definitions

In this section, we recall the definition of renormalized solutions to the following
nonlinear parabolic problem:

0b(u) . . .

o div (a(x, t,u,Vu) —o(x,t, u)) + H(x,t,Vu) = f —div(F) in Qr
ulx,t)=0 ondf2 x (0,7T)
b(u(x,0)) = b(uo(x)) in 2,

3)
where Qris the cylinder £2 x (0, T), §2 is a bounded open set of RY, with N > 2,
T>0,p>1.
Throughout this paper, we assume the following assumptions hold true.
e b : R — Ris strictly increasing C !_function, b(0) =0,
N
and 0 < bg < b'(s) < by Vs and with b; < (—) 4
o

where « is a strictly real number defined below in (6).

e a:02x(0,T) xR xRY — RN be a Carathéodory function such that there is
o > 0, and for k > 0, there exists vy > 0 and a function s € L”/(QT) such that,
Vis| <k, V(& n) € R?N forae. (x,1) € Or,

la(x, t,5,6) < (heCe,0) +IsIP~ 1+ [£177) Q)
a(x,t,s, £)& > al|P, (©6)
(a(xaf,saf)—a(%t,s’n)'(5_'7)>O, 57&’77 (7)

e ¢p:2x(0,7T)xR—>RNbea Carathéodory function such that

B (x,1,9)] < e(x, Db, ®)
o on . PHN N+ 1)
o) e W@, r="n and y = o)

e H:2 x(0,T) x RY — RY be a Carathéodory function such that

|H(x,1,8) <d(x, g’ (10)
N(p—1
with§ = %, d(., .) belonging a suitable Lorentz space LNH’I(QT),
(11)
Moreover we assume that the source terms
feLlYQr), Fe@(Qr, (12)
uy € L'(£2). (13)
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632 A. Aberqi et al.

Definition 2.1 A measurable function u defined on Q7 is called a renormalized solu-
tion of (3) if:

b(u) € L®((0, T), L' (2)). (14)
Ti(b(u)) € LP((0, T), Wé’p(.Q)), for any k > 0, (15)
lim l a(x,t,u, Vu)Vudx dt =0, (16)

m=>+00 M J{(x,)eQr:|bu(x,1))|<m}

and if, for every function § in W2 (R) which is piecewise C !"and such that S’ has a
compact support, we have in the sense of distributions

8S(§t(”)). _ div(S/(b(u))(a(x, t,u, Vu) — ¢(x, t, u))) + Sﬂ(b(u))(a(x, t,u, Vu)

—o(x,t, u))Vb(u) + H(x,t, Vu)S' (b(u)) = £S'(b(u)) + div(S'(b(u))F)
—S"(b(u))FVb(u), (17)

and
Sbu))(t =0) = Sbuy)) in 2. (18)

Remark 2.1 Note that conditions (4), (14), and (15) allow to define Vu and Vb(u)
almost everywhere in Q7.

Remark 2.2 Note that for a renormalized solution, due to (15), each term in (17)
has a meaning in L'(Q7) + L?'((0, T); W=7 (2)). Indeed, since |Tx(b(u))| <
k, we can choose k such that supp(S’) € [—k, k]. Then the properties of S,
the functions S’ and §” are bounded in R. We have S(b(u)) = S(Tx(b(u))) €
LP((0,T); Wy " (£2)) and B8 ¢ p/(Qr). The term S (b(u))a(x, t, u, Vu) iden-
tifies with 8" (T (b(w)))a(x, t, u, Vb’l(Tk(b(v)))) a.e. in Q7, where v = b(u) and
u = b~ (Ti(b(v))) in {|b(u)| < k}, by (4) and (5) we have

S'(Tx bae, t,u, V)| < 18w [haCe, D+~ 41967 T )~ |
_ 1 _ )
< 18 N [ e, 0 ™ 9Tk @ Jae.in O 19
0
Using (6, 17) it follows that S’ (b(u))a(x,t,u, Vu) € (Lp,(QT))N. In view of
(4,6,9, 10, 15, 19), we obtain:

S"(wa(x, t,u, Vu)Vbu) in LY(Q7)
S" (W) (x, t, u)Vb(u) in LY(O7)

S"(Te b)) p(x, 1, u) in L'(Qr) (20)
S'"(bw))H (x, t, Vu) in L'(Qr)
S'(u) f in L'(Q7),
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Consequently, we have € L[’/(O, T; W_l”’/(.Q)) +LY(Q07) and S(b(w)) €

LP(0, T, Wé’p(.Q)) N L°°(Q7). Which implies that S(b(u)) belongs to C([0, T']; L
(£2)) so the initial condition (18) makes sense.

9S8 (b))
t

The existence theorem of renormalized solution of (3):

Theorem 2.1 Under assumptions (4)—(13) there exists at least a renormalized solu-
tion u of problem (3).

Proof of Theorem 2.1 The existence theorem of renormalized solution of (3) is proved
in ([10]) in the linear case (b(u) = u) and by author in ([1,2]). O

Remark 2.3 To prove the uniqueness result for the problem (3), due to, the presence
of a general monotone operator A(u) = —div(a(x,t,u, Vu), and the non-linearity
b(u), a standard approach does not feasible. To overcome this difficulty we draw upon
the idea included in ([6]), for which we recall some basic results that will be a key
point.

Lemma 2.1 (see [7]) Let v be a function in W(}’p(.Q) N L2(2) with p > 1. Then
there exists a positive constant C, depending on N, p, such that

o ey = C IV IE, gl v 20,

for every 0 and y satisfying

1 11 1-0
0<0<1, l<y<+oo, —=0|-——]+ .
14 p N

An immediate consequence of the previous result:

Corollary 2.1 Let v € LP((0,T); WhP(£2)) N L>®((0, T); L*(£2)), with p > 1.
Then v € L° (§2) with o = p(%) and

2p

/ |v|"dxdt§C||v||£(O’TYL2(Q))/ |Vv|Pdxdt.
or or

Lemma 2.2 Let w be an open subset ofRN, N>1, F e LP(2),andu : 2 —
[0, +o0] and v : 2 — [0, +00] be two measurable functions. Then there exists a
sequence n j(related for simplicity as n) of real numbers such that

—[|1 1
lim Tim [-/ |F|pdxdt+—/ |F|”dxdt] )
n—>+005—0 | 8 J,_s<[m|<n+5 8 Jn—s<mi<n+s

Proof see [6], Lemma 6. O

@ Springer



634 A. Aberqi et al.

Lemma 2.3 Under the assumptions (4)—(13), any renormalized solution u of (3)
satisfies the following estimate for anyn > 1 andany 0 < § < 1

1

/ a(x,t,u, Vu)Vb(u)dx dt < e(n, §),
8 Jin—s<lb@)<n+s)

with limy,_s 4o lims_0 € (n, §) = 0.

Proof Using the same proof (Lemma 5, p. 356, [6]), adding the analysis of the two
lower order terms ¢ and H, and taking into account the non-linearity b(u). O

Let S, € W1 (R)be the function defined by

S,(0)=0

S r)=1 for|r| <n o1
Siry=n+1—|r| forn<|r|<n+1

S(ry=0 for|r| > n + 1.

Since suppS, C [—n — 2, n + 2], by setting § = S,,41, Vn > 0 in (17), we have in
the sense of distributions

85”%(?(”)) — div(S;,+1(b(u))(a(x, tou, Vu) — ¢(x, 1, u)))

+S,’;+1(b(u))(a(x, tou,Vu) —¢(x,t,u))Vb(u) + H(x, 1, Vu)S, ,  (b(u))
= 8,1 (bw) 4+ div(S,, (b)) F) — S, (b)) FVb(u), (22)

For a real numbers n > 0 and 0 < § < 1, using the admissible test function
5 1
R,(r) = S(Tn+a(r) — Th—5(r)) (23)

in (22), we get

/T <8Sn+1 (b(u))
0 at

: Rﬁ(b(u)))dt + /QT a(x,t,u, Vu)S) | (b)) VRS (b(u)) dx dt
+/Q Sy (b))a(x, t,u, Vu)Vb(u) RS (b(u)) dx dt
r
-/, G (x,t,u)S), 1 (bw)V R (b(w)) dx dt
r
—fQ I (b)) (x, t, w)Vb(u) RS (b(w)) dx dt

+ | H(x,t, VS, (b)) R (b(u)) dx d

or
= / FuS1 (b)) RS (b(w)) dx dt
Or
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Uniqueness of renormalized solutions for a class... 635

+/ S,/L+1(b(u))FVRf,(b(u))dxdt

or

+/ Sy/[+1(b(u))FVb(u)R,§(b(u)) dxdt. (24)
or

Remark that R,‘z (b(n)) = Rﬁ (Sn+1(b(u))) assoonas 0 < § < 1, and then we have

T 98u41(bw))

T 98u41(b(w))
— / / de,dx
B 2Jo ot

_ /Q R (Syat (b)) (T) dx — /Q R (Sa1 (b)) (¢ = 0) dx

>~ [ RSk = 0)dx
2
> - fﬂ 150t bty 21 x 25)
- Sn+1(b(up))
where R®(s) = R3(s)ds foranyn > 1 andany 0 < § < 1.

0
The definitions (21) and (23) permit to obtain from (24) and (25) that for any n > 1
andany 0 <§ < 1,

1

8 /{n—s<|h<u><n+a}

§2f a(x,t,u, Vu)Vb(u) dx dt
{n+1<|b(u)|<n+2}

a(x,t,u, Vu)Vb(u)dx dt

1

s /{n—s<|b<u><n+s}

~|—2/ c(x, t)|bw)|Y Vb(u) dx dt
{n+1<|b(u)|<n+2}

c(x, )|bw)|Y Vb(u) dx dt

+2/ d(x,t)|Vu|5dxdt+2/ | f|dx dt
{l1b(u)|>n—1} {Ib(u)|>n—1}

+2/ |F||Vb(u)| dx dt
{n+1=lb()|<n+2)

1
41 |FIVb(n)| dox di + / 1b(u0) | Xbuoyzni dx. (26)
22

1) /{n_5§|b(u)§n+5}

* Estimates for the first lower order: Note that the terms involving ¢ (x, ¢, u) in (22)
not equal to O forany n > 0, and any § > 0 (as in equation 24 in [6]). By (8,9), (21, 24)
and using Holder inequality, Gagliardo—Nirenberg (see Corollary 2.1) together with
Young inequality yields to
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636 A. Aberqi et al.

d(x,t, u)S,’H_l (b(u))VRfl (b(u)) dx dt
or

1
< —/ c(x,)|bm)|Y Vb(u)dx dtn
{n—38<|b(u)|<n+3s}

| o
=5(/ (ctx, Dl dxdr)”
8 X Jin—s=lb@<n-+5)

1
(/ (IVb(w)))? dx dt) p
{n—8<|b(u)|<n+36}

1

" (x,t)dx dt);

X

1

i
8\ Jin—s<ib@)<n+s}

=

N+2) +

b)) dx dt)m

(],
{n—38<[b(u)|<n+38}

(
h ( /{n8<h(u)|<n+5}(|Vb(u)|)p “ dt)

==

< Lejel N4_l/ per e
< <CllellLr(rnin—s<ib@)|<n+s e
3 (QrNin—b=Ib(uw)|=n+8}) + P Jin—s<lbw)|<n+8)
1
+5CllellLrrnn—s=ipi<n+s) (27)

The coercive character (6) of a and choosing the norm of c(x, t) small enough, we
get

1

8 /{nas|b(u)sn+6}
1

S —_
48 Jin—s<b(u)|<n+5)

cCx, ) b)Y |Vb(u)| dx dt

a(x,t,u, Vu)Vb(u)dx dt + €(5). (28)

in the same way

/ c(x, )|b@)|Y |Vb(u)| dx dt
{n+1<|b(u)|<n+2}

< C1/ a(x,t,u, Vu)Vb(u)dx dt. 29)
{n+1<|b(u)|<n+2}

* Estimates for the second lower order: By Holder inequality (in Lorentz space),
we have

/ d(x,t)|Vu|® dx dt
{Ib@)]>n—1)

<||d , vl 30
= lldllzv+21 o (b >n—1p 11Vl IIL%.QO(QHW)(M)'M_”) (30)
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Uniqueness of renormalized solutions for a class... 637

and by using (Lemma A.1, see ([10]) in Appendix) we have

N+2

= k)" =

+p

N(p—D+ N
N

)+p n—1)
Va0 s = supieok(maes{(r. 1) : [Vul 552
e

Finally by using Young inequality and the coercivity of a for the sixth term of the right
hand (26), we obtain from (25) to (30) that for any n > l and any 0 < 6 < 1

1

C ,
a(x, t,u, Vi)Vbu) dx dt < —> \F|P dx dt

8 f{n—a<b<u>|<n+8} 8 Jin—s<lbw)|<n+s)

+Cs / a(x,t,u, Vu)Vb(u) dx dt
{n+1<|b(u)|<n+2}

1
+Calldllzvas gempanrnp + CollFlly o ([ Vul?)”
@n{lb@)|>n—1}) L” (Qr) I+ 1<[b()| <42}

+2/ | fldxdt +/ [b@o) | X1bug)|=n—1 dx.
{|b(u)|>n—1} 2

Since f € Ll(QT), a(x,t,u, Vu)Vb(u) € Ll(QT) and conditions (14), (16) we
have

lim lim - a(x,t,u, Vu)Vb(u)dxdt =0

n—+00§—+00 § Az—é<h(u)|<n+3}

so that Lemma 2.3 is established.

3 Uniqueness of renormalized solution

In this section, we assume a local control of Lipschitz coefficients to prove the fol-
lowing uniqueness theorem

Theorem 3.1 Assume that assumptions (4)—(13) hold true and moreover that for any
compact set D of R, there exists Lp € LP (Qr) and pp > 0 such thatVs,s € D

laG.1,5,6) —a(, .56 < (Lo, 0+ pole”)ls =51 (D
9. 1.8) = $(x. 1.9)] = Lp(x.0)ls =5 (32)
b'(s) = B'®)| < pls 5] (33)

foralmost every (x,t) € Qr andforevery& € RN . Then the problem (3) has a unique
renormalized solution.

For the sake of shortness, we denote by {|u| < k} (resp. {|u| < k}) the measurable
subset {(x,?) € Or; |lu(x,t)| < k} (resp. {(x,1) € Or; |u(x,t)| < k}.) Moreover
the explicit dependence in x and ¢ of the functions a, ¢ and H will be omitted so that
a(x,t,u,Vu) =a(u, Vu), ¢ (x,t,u) = ¢ (u).
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Proof of Theorem 3.1 Let u and v be two renormalized solutions of (3) for the same
data f and F and initial condition b(up). We define a smooth approximation of 7;, by
T? and

1 for|r| <n
(T (1) = 3 2= forn < |rj<n+o (34)
0 for|r| > n +o.

O

Using %Tk(Tn" (b(u)) — T,7 (b(v))) as test function in the difference of Eq. (17) for u
and v in which we take S = 7,7, we obtain

. - TLTY () = T (w) e

+Iﬁn+1§n =I§n+15fn+l;n+lgn+l{n, (35)

1 / T (3<T,;’<b<u>> — 1,7 (b(v)))
0

where

1
n=1 fQ [Ty @pa. Vu) = (1) b@)aw, Vo) VI (bw)

—T7 (b(v)))dx dt,
1
13, = %/Q [(T,f)”(b(u))a(u, Vu)Vb(u) — (T;7)" (b(v))a(v, Vv)Vb(v)]Tk(Tf(b(u))
=T, (b(v))) dx dt,

1
I3, = %/;2 [(T,f’)/(b(u))qﬁ(u) - (T,f)/(b(v))¢(v)]VTk(Tn“(b(u)) =T, (b)) dx dt,
T

1
17, = £/;2 [(T,f’)”(b(u)w(u)Vb(u) - (Tn”)”(b(v))fﬁ(v)Vb(v)]Tk(T,f(b(u))
T

=T (b(v)))dx dt,
1
I, = */ f[(Tn")’(b(u)) - (T,f)/(b(v))] T (T, (b(w)) — T, (b(v))) dx dt,
k or

1
Ig, = E/Q [(T,?)’(b(u)) - (Tn")’(b(v))]FVTk(T,f(b(u)) — T, (b(v)))dxdt,
T

1
I, = E/ [Tk(T,,”(b(u)) = T7 (b)) FV((T7) (b)) = (T,7) (b(v))) dx dt.

or

Forany k > 0,n > 0,0 > 0. Now we will pass to the limit of each term of (35) when
o and k tends to 0, and n tend to +o00.

e For the first term in the right-hand sid of (35), upon of Lemma 2.4 ([3]), and due
to

T2 (b))t =0) =T7 (b))t =0) =T (b(up)) a.e. in 2, we have

LTI W) — T W) .
Jim lim - | ( - LT(TY (b)) = T (b)) )
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1 _
= lim lim — Ti (T (b(u)) — T,7 (b(v))) dt dx
k—00—-0k Jo,

- / T, (b)) — Ty (b)) dt dx
or

where again Ty (z) = foz Ty (r)dr. We deduce from the above equality that for
almost any ¢ € (0, T)

lim lim lim
n—+00 k—00—0

= / Ib(u) — b(v)|dtdx (36)

o7

T o _ o
O <8(T,, (b(u))at Ty (b(v))); T (T (b(w)) — Tn"(b(v)))>dt

e For a fixed n > 0, we studied the behavior of / f’ , When o and k tends to O:

We have, when o — 0, TnU)/(r) —> Xlr|<n Q.€. in Q7 and strongly in L1(Q7) for
any g < oo and T?)(r) — T,(r) a.e. in Qr and strongly in L?(Q7). Since supp
(T?) C [—n — o, n + o] we have

. 1
lim 17, = %/Q [X{\b(u)lgn}a(uy Vu) = X{ibw)<nja(v, Vv)]VTk(Tn(b(u))
T

— T (b(v)dxdt = I,

Rewritten Iy , as I, = I11 + o + 113 4+ 114 + I15, where

1

Iy = 7/ <a(u, Vu) — alu, Vv))(Vu — V)b (u)dxdt
k S —b) <k bl <n. b <n)
1

Ip = - / (a(u, Vo) — a(v, W))(w — V)b (u)dxdt
ke Jiib—bw) 1=k bl <n. b <n)
1

I3 = 7/ <a(u, Vi) — a(v, Vv))Vv(b/(u) — b (v))dxdt
k Jiibt-b) 1<k Ib@l <n. b <n)
1

Ly = 7/ a(v, Vu)Vb(v)dxdt
k ST, (@)~ T (b)) | <k b0 =, b ()| <n)
1

Iis = */ a(u, Vu)Vb(u)dxdt
k ST, ) ~T, (b)) | <k o) < )] =)

We use the monotonicity of a(s, §) with respect to & and b'(s) > O forall s € R, we

obtain
Ii; = 0. (37)

It remains to prove that 71> goes to zero as k goes to zero. Indeed using the local
Lipschitz condition (31) and (35) on a we get
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A

b -
2l < ;/ VO X -beiskle = vl (Lo 1) + ppI VoI~ ) (Vul + [VoDdxds
or
by
<

< (Lot + ool Vol7~")(Vul + |VoDdxds
bo Jby—bw) <k

Due to regularity of u, v, and Lp we have
(LoCe.0)+ oI Vo) Vul + Vo) € L'(Q1).

Since x{pu)—b(v)|<k} tends to zero almost everywhere in Q7 as k goes to zero, the
Lebesgue dominated convergence allows us to conclude that, for all n > 1:

limsup I12 = 0. (38)
k—0

We denote by C,, the compact subset (b~ (—=n—1), b~ (n +1)], and remark that due
to the local Lipschitz character of »’,there exists a positive real number 8, such that

16 (r1) — b'(r2)| < Bulri — ral,

for all 1 and r, lying in C,,. Using now (4) again leads to
/ / ﬂn
16 (ri) — b’ ()| = %Ib(rl) — b(r2)| (39)

for all r and r; lying in C,,, then |6’ (u) — b’ (v)| < kbﬁ on
{Ib(u) — b()| <k, |[b(w)| < n,|b(v)| < n}, and in view (4) we obtain

B
[113] < i la(u, Vu) — a(v, VOV X{1b@)—bw)| <k, bu)£b ). |bw)|<n. ()| <n}dxdl

Or

Due to regularity of u, v, Vu and Vv we have
la(T, (), VT, () — a(T,(v), VI, (w)IIVT,(v)| € L'(Q7).

Since X{b(u)—b)|<k,b(u)#b(v),|b(u)|<n,|b(v)|<n} tends to zero almost everywhere in QT
as k goes to zero, the Lebesgue dominated convergence allows us to conclude that, for
alln > 1:
lim sup /13 = 0. (40)
k—0

In view of the definition of 7, we have
1

Iy =+

/ a(v, Vv)Vb(v)dxdt
k JUT, (@)~ T, (b)) | <k, [b@0) | >, () | <n)
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It is possible to obtain

1
| 114] = —/ a(v, Vv)Vb(v)dxdt
k Jin—k<ibw)|<k)

Using (35), (6) we conclude that

lim inf lim sup 14 > 0 (41)

n—>+00 .0

Similarly to the argument of limit /14, we conclude

lim inf lim sup /15 > 0 42)

n=>+00 k0

We obtain from (37) to (42) that

liminf limsup I} > 0
L

then
lim inf lim sup lin}) I >0 (43)

e N i

The limit of /7 : In view of the definition of 7,7 it is possible to obtain

113,

IA

1
f — [ttr=tbrza o)t VIOVb@) + xin<ipiwyzntaiav, Vo)Vb() [dxds
Or

1 1
< —f a(u, Vu)Vb(u)dxdt + —/ a(v, Vv)Vb(v)dxdt
{n<|b(u)|<n+o} {n<lb()|<n+o}

o o
(44)
Using (44) and the estimates of Lemma 2.3, then we obtain
lim inf li I =0 45
im fuflm sup 15, “3)

The limit of I3(f . We first write that for almost any ¢ € (0, T')

1
limsup |13, | = ‘%/Q [X{1b) | <n}® (U) — X{1b(w)|<n}@ (WIV T (T, (b(u))

o—0
—T,(b(v))) dx dt‘
< I31 + I3y + I33,

where
1 .
I3 = %/ X{b@)|<n and [b(v)|>n} @ IV T (b(u) — nsign(b(v)))ldxdt
T
1 .
I3 = z/ X{1b)|<n and [b(u)|>n} [P W[V T (D(v) — nsign(b(u)))|dxdt

T

@ Springer



642 A. Aberqi et al.

and

1
I3 = %/Q X{b()|<n and [b)|<n}|P () — @ (V)[[V T (b(u) — b(v))|dxdt
T

We estimate /31 and I3, by (8) we obtain

1
L < E/ X{Ib@u)|<n and |b(v)|>n) X{|b@)—nsign(b )| <k} | @ @) [|Vb(u)|dxdt
or

1
< —/ | ) [|Vb(u)|dxdt (46)
k Jin—k<ibu)|<n}
and similarly
1
o< / 16 )| Vb(v)ldxds. 47)
{n—k=<|b(v)|<n}

Applying Lemma 2.2 in (46) and (47), we obtain:

lim /31 = lim I3 =0, forany n > 0. (48)
k—0 k—0

Finally, since the function ¢ is locally Lipschitz continuous, we have for some positive
Lp element of L? (Q7)

1
I = z/Q X{|b(u)|<n and [b)|<n}|@ @) — ¢ (WIV T (T (b)) — To(b(v)))|dxdt

T

1

< z/Q XUT b)) —T o)<k} Lo (x, Hv () [ — V]| VT (T, (b (1))

T

=T (b(v)))|dxdt

by (4) we obtain

1 1
I3 < —/ X{lT,,(b(u))—T,,(b(v))lfk}b_OLD(xv T (b)) — T, (b |V Ti (T, (b(u))

Tk or
=T, (b(v)))|dxdt
1

< —
bo J{1, (b)) T, (b)) <k}
+IVT,(b(v))|)dxdt.

XUT (b)) —T, b)) <k} L (x, ) (IV T, (b(u))]

Since L¢ belongs to LP/(QT) and due to (15) the function Lp(x, 1)(|VT,(b(u))| +
IV T, (b(v))|) belongsto L' (Q1). Using x|, b(u))—T, (b(v))|<k} tends to 0 almost every-
where in Q7 as k goes to 0 and is bounded by 1, the Lebesgue dominated convergence

theorem leads to
llinb I3 =0, forany n > 0. 49)
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Using (48) and (49) we obtain:

lim inf limsup 75, = 0 (50)

n>+00 k0

The limit of 7;] : We have for any o and k > 0

o

1
g, < = U | (u)||Vb(u)|dxdt
{n<|b(u)|<n+o}
+/ |¢(v)||Vb(v)|dxdt] dxdt
{n<|b(v)|<n+o}

Using the Lemma 2.2, we get

liminf limsup Iy, = 0 (51)

n—>+00  ,_.(
The limit of /7 : Using Lebesgue’s theorem, the definition of 7,7, it is possible to

conclude that

n——+00 g—0 n—+oo k
=T, (b(v)))| dx dt

< lim (/ |f|dxdt+/ |f|dxdt)=0.
n=>+00 \J{|b(u)|2n} {Ib)|=n)

liminf lim JJ =0 (52)

n——+00 o0—0

. . . 1
lim lim [[J,| < lim —f L1 Xtb @y 1<ny = Xtib) <n} | Tk (Tn (b))
or

Then

The limit of Ig . We have for almost every ¢ € (0, T)

. 1
limsup | /g ,| = ‘z / [xgpy<ny — Xp)<n) 1 F VT (Ty (b)) — T, (b(v))) dx dt
or

o—0
< Is1 + Is2,
where
1 .
Ier = % X{b()|<n and [b)|>n}| F IV Tk (b(u) — nsign(b(v)))|dxdt
or
1 .
= [ b0 s oo | FINTL ) — nsign(oiu) dds
or
1
Is1 < %/ X{Ib(w)|<n and |b)|>n} X{|b@w)—nsignb@))|<k} | F1IVb(u)|dxdt
or
1
< —/ |F||Vb(u)|dxdt (53)
k Jin—k<ib@)|<n)
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and similarly

1
Iep < — / |F||Vb(v)|dxdt. (54)
k Jin—k<ibw)|<n)

Applying Lemma 2.2 in (53) and (54), we obtain:

lim Ig; = lim Igp =0, f 0. 55
Jim Isy = lim Ts orany n > (55)

The limit of 17‘f - We have for any o and k > 0

1
12,,] < —[f |F||Vb(u)|dxdt+f |F||Vb(v)|dxdt]dxdt
o {n<|b(u)|<n+o} {n<|b(v)|<nto}

Using the Lemma 2.2, we get

lim inf lim sup I{n =0 (56)

n—-+00 o—0

The proof of Theorem 3.1 is complete.
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