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Abstract We consider the following anisotropic problem, with singular nonlinearity
having a variable exponent

⎧
⎪⎪⎨

⎪⎪⎩

−
N∑

i=1
∂i
[|∂i u|pi−2 ∂i u

] = f
uγ (x) in �,

u = 0 on �,

u ≥ 0 in �;

where � is a bounded regular domain in R
N and γ (x) > 0 is a smooth function,

having a convenient behavior near ∂�. f is assumed to be a non negative function
belonging to a suitable Lebesgue space Lm (�) . We will also assume without loss of
generality that 2 ≤ p1 ≤ p2 ≤ · · · ≤ pN .Using approximation techniques, we obtain
existence and regularity of positive solutions to the considered problem.
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416 S. E.-H. Miri

1 Introduction

We consider in this paper, the following problem

⎧
⎪⎨

⎪⎩

−Lu = f

uγ (x)
in �,

u = 0 on �,

u ≥ 0 in �,

(1)

where

Lu =
N∑

i=1

∂i

[
|∂i u|pi−2 ∂i u

]
,

γ (x) > 0 is assumed to be a regular function, say for example γ (x) ∈ C(�), and �

is a bounded regular domain in R
N . We will assume without loss of generality that

2 ≤ p1 ≤ p2 ≤ · · · ≤ pN and that f is a non negative function belonging to a suitable
Lebesgue space Lm (�) .

When the differential operator is assumed to be semilinear, andγ (x) = γ , Boccardo
and Orsina in their leading work [2], obtained existence and regularity of the solution,
and this was generalized to the case of the p-laplacian in [7], and to the the case of the
anisotropic operator L in [14].

In the very recent work [3] the authors consider a singular semilinear elliptic prob-
lemwith variable exponentγ (x), they obtained existence and regularity of the solution,
under some conditions on the behavior of the function γ (x) near the boundary of �.

There exists a huge literature, devoted to the study of the anisotropic operator L , as
it has many applications in fluid dynamics, and physical phenomena with anisotropic
diffusion, we cite for example [8–11], and the references therein.

When a singular nonlinearity is considered in interaction with different types of
differential operators as the laplacian or the p-laplcian, we invite the reader to see the
works [1,4–6,10,12,15,16,18].

Problem (1) is associated to the following anisotropic Sobolev spaces

W 1,(pi ) (�) =
{
v ∈ W 1,1 (�) ; ∂iv ∈ L pi (�)

}

and
W 1,(pi )

0 (�) = W 1,(pi ) (�) ∩ W 1,1
0 (�)

endowed by the usual norm

‖v‖
W

1,(pi )
0 (�)

=
N∑

i=1

‖∂iv‖L pi (�) .
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Definition 1.1 We will say that u ∈ W 1,(pi )
0 (�) is an “energy” solution to (1) if and

only if

N∑

i=1

∫

�

|∂i u|pi−2 ∂i u∂iϕ =
∫

�

f ϕ

uγ (x)
∀ϕ ∈ C1

0 (�) ,

and we will say that u is a “weak” solution to (1) if ∂i u pi−1 ∈ L1(�), f
uγ (x) ∈ L1

loc(�),
and one has the identity

N∑

i=1

∫

�

|∂i u|pi−2 ∂i u∂iϕ =
∫

�

f ϕ

uγ (x)
∀ϕ ∈ C1

0 (�) .

We will also very often use the following indices

1

p
= 1

N

N∑

i=1

1

pi

and

p∗ = N p

N − p
, p∞ = max

{
pN , p∗}

The following Theorem states some anisotropic Sobolev type inequalities, for more
details we refer to the early works [13,17,20].

Theorem 1.2 There exists a positive constant C, depending only on �, such that for
every v ∈ W 1,(pi )

0 (�) , we have

‖v‖pN
L p∗ (�)

≤ C
N∑

i=1

‖∂iv‖pi
L pi (�)

, (2)

‖v‖Lr (�) ≤ C
N∏

i=1

‖∂iv‖
1
N
L pi (�)

∀r ∈ [1, p∗] (3)

and ∀v ∈ W 1,(pi )
0 (�) ∩ L∞ (�) , p < N

⎛

⎝

∫

�

|v|r
⎞

⎠

N
p −1

≤ C
N∏

i=1

⎛

⎝

∫

�

|∂iv|pi |v|ti pi
⎞

⎠

1
pi

, (4)
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418 S. E.-H. Miri

for every r and t j chosen in such a way to have

⎧
⎪⎨

⎪⎩

1
r = γ (x)i (N−1)−1+ 1

pi
ti+1

N∑

i=1
γ (x)i = 1.

In the whole paper, C will denote a constant that may change from line to line.

2 Approximation problems

All the results obtained in this section, are direct consequences of the ones presented
in [2,14], but for the reader convenience we present them in details.

Let us first consider the following approximation problems

⎧
⎪⎪⎨

⎪⎪⎩

−Lun = fn
(
un+ 1

n

)γ (x) in �,

un = 0 on �,

un ≥ 0 in �,

(5)

where fn = Tn( f ).
Recalling that

Tn(s) =
{
n s

|s| i f |s| > n
s i f |s| ≤ n

Lemma 2.1 The problem (5) has a solution in W 1,(pi )
0 (�) .

Proof We will follow the same reasoning as in [2].
Fix n ∈ N , and let v ∈ L p∗ (�) . Consider the equation

− Lw = fn
(|v| + 1

n

)γ (x)
, (6)

it is clear that the previous problem has a unique solution whenever the right hand side
belongs to Ls (�) with s ≥ p′∞ see for instance [8,9]. Denoting w = S(v),

using w as test function in (6), we obtain

N∑

i=1

∫

�

|∂iw|pi =
∫

�

w fn
(|v| + 1

n

)γ (x)
≤ nγ (x)+1

∫

�

|w|

by Sobolev inequality (2),

‖w‖pN
L p∗ (�)

≤ C
N∑

i=1

∫

�

|∂iw|pi ,
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by Hölder inequality

∫

�

|w| ≤
⎛

⎝

∫

�

|w|p∗
⎞

⎠

1
p∗

.

Hence

‖w‖pN
L p∗ (�)

≤ Cnγ (x)+1 ‖w‖L p∗ (�) ,

and then

‖w‖L p∗ (�) ≤ C ′ (nγ (x)+1
) 1

pN−1 = RN ,

which means that the ball of radius RN in L p∗
(�) is invariant by S, and so by

Sobolev embedding and Schauder’s fixed point theorem we conclude that the approx-
imation problem (5) has a solution in W 1,(pi )

0 (�), for every fixed n.

��
Lemma 2.2 The sequence {un}n is increasing with respect to n.

Proof We recall that fn = Tn ( f ) and so 0 ≤ fn ≤ fn+1

−Lun = fn
(
un + 1

n

)γ (x)
≤ fn+1
(
un + 1

n+1

)γ (x)

as

−Lun+1 = fn+1
(
un+1 + 1

n+1

)γ (x)

and so one has that

−Lun + Lun+1 ≤ fn+1

⎡

⎢
⎣

1
(
un + 1

n+1

)γ (x)
− 1
(
un+1 + 1

n+1

)γ (x)

⎤

⎥
⎦

≤ fn+1

⎡

⎢
⎣

(
un+1 + 1

n+1

)γ (x) −
(
un + 1

n+1

)γ (x)

(
un + 1

n+1

)γ (x) (
un+1 + 1

n+1

)γ (x)

⎤

⎥
⎦

using (un − un+1)
+ as test function in the last inequality, the right hand side gives

fn+1

⎡

⎢
⎣

(
un+1 + 1

n+1

)γ (x) −
(
un + 1

n+1

)γ (x)

(
un + 1

n+1

)γ (x) (
un+1 + 1

n+1

)γ (x)

⎤

⎥
⎦ (un − un+1)

+ ≤ 0.
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420 S. E.-H. Miri

Now, taking into account the problems associated to un and to un+1, it follows that

∫

�

(−Lun + Lun+1) (un − un+1)
+ ≤ 0.

Thus

N∑

i=1

∫

�

(
|∂i un|pi−2 ∂i un − |∂i un+1|pi−2 ∂i un+1

)
∂i (un − un+1)

+ ≤ 0.

Integrating over the subset of � where un ≥ un+1 and using the following inequality
for pi ≥ 2

C0 |∂i (un − un+1)|pi ≤
(
|∂i un|pi−2 ∂i un − |∂i un+1|pi−2 ∂i un+1

)
∂i (un − un+1)

we reach that
N∑

i=1

∫

�

∣
∣∂i (un − un+1)

+∣∣pi ≤ 0.

Hence

un ≤ un+1,

which allows us to conclude that {un}n is increasing with respect to n.

��
Remark 2.3 We limit ourselves to the case pi ≥ 2 because (at our knowledge), the
operator L verify a strong maximal principle only in the case pi ≥ 2 see for instance
[8], maximal principle that will be necessary in the sequel.

Lemma 2.4 For all n ∈ N, un the solution to the approximation problem (5), is such
that un ∈ L∞ (�) and for all K ⊂⊂ �, un ≥ CK > 0.

Proof By some modifications in the theory of Leray-Lions operators theory one can
show the existence of solution to

−Lu1 = f1

(u1 + 1)γ (x)

and so

−Lu1 = f1

(‖u1‖∞ + 1)γ (x)
≥ 0

the strong maximum principle, and the monotonicity of {un}n give that un ≥ CK > 0.
The L∞ (�) estimate of {un}n , is a direct consequence of Stampachia result [19], as
done in [2]. ��
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3 Passage to the limit

For fixed δ, let �δ = {x ∈ �, dist (x, ∂�) < δ}

Theorem 3.1 Let s = N p

N (p − 1) + p
and f ∈ Ls (�) , assume that there exists a

δ > 0 such that γ (x) ≤ 1 in�δ , then the sequence {un}n of solutions to (5), is bounded
in W 1,(pi )

0 (�) .

Proof Put ωδ = �\�δ , by the previous results we know that un ≥ Cωδ > 0. Now
using un as test function in (5) we obtain

N∑

i=1

∫

�

|∂i un|pi =
∫

�

fn(x)
(
un + 1

n

)γ (x)
un

=
∫

�δ

fn(x)
(
un + 1

n

)γ (x)
un +

∫

ωδ

fn(x)
(
un + 1

n

)γ (x)
un

≤
∫

�δ

f (x)u1−γ (x)
n +

∫

ωδ

f (x)

Cγ (x)
ωδ

un

≤
∫

�δ∩{un≤1}
f (x) +

∫

�δ∩{un≥1}
f (x)un +

∫

ωδ

f (x)

Cγ (x)
ωδ

un

≤ ‖ f ‖L1(�) +
(

1 +
∥
∥
∥C−γ (x)

ωδ

∥
∥
∥
L∞(�)

)∫

�

f (x)un

Using Hölder and Sobolev inequalities, we then obtain

N∑

i=1

∫

�
|∂i un |pi ≤ ‖ f ‖L1(�) + C

(

1 +
∥
∥
∥C

−γ (x)
ωδ

∥
∥
∥
L∞(�)

)

‖ f ‖Ls (�)

⎡

⎣
N∑

i=1

∫

�
|∂i un |pi

⎤

⎦

1
pN

which implies that

N∑

i=1

∫

�

|∂i un|pi ≤ C

where C is a constant independant of n. ��

Theorem 3.2 Let s = N p

N (p − 1) + p
and f ∈ Ls (�) , assume that there exists a

δ > 0 such that γ (x) ≤ 1 in �δ , then problem (1) posses a solution u ∈ W 1,(pi )
0 (�) .

Proof By the previous proposition {un}n is bounded in W 1,(pi )
0 (�), thus (up to a

subsequence) {un}n converges weakly to some u in W 1,(pi )
0 (�) . On the other hand,
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422 S. E.-H. Miri

{un}n converges strongly in Lθ (�) for θ < p∗, thus {un}n converges to u almost
everywhere in �. So one has that for every ϕ ∈ C1

0 (�)

lim
n→+∞

N∑

i=1

∫

�

|∂i un|pi−2 ∂i un∂iϕ =
N∑

i=1

∫

�

|∂i u|pi−2 ∂i u∂iϕ

By the fact that

0 ≤
∣
∣
∣
∣
∣

fn(x)ϕ
(
un + 1

n

)γ (x)

∣
∣
∣
∣
∣
≤
∥
∥
∥ϕC−γ (x)

ω

∥
∥
∥
L∞(�)

f (x)

for every ϕ ∈ C1
0 (�), whenever ϕ �= 0 and on the set where un ≥ Cω, ω being the

support of ϕ; the dominated Lebesgue’s theorem permits us to conclude that

lim
n→+∞

∫

�

fn(x)ϕ
(
un + 1

n

)γ (x)
=
∫

�

f (x)ϕ

uγ (x)

by the sequel, the limit u of the sequence {un}n verify
N∑

i=1

∫

�

|∂i u|pi−2 ∂i u∂iϕ =
∫

�

f (x)ϕ

uγ (x)
.

��
Theorem 3.3 Assume that for some γ ∗ > 1 and some δ > 0we have ‖γ ‖L∞(�) ≤ γ ∗.

Provided that f ∈ Ls (�) with s = N (γ ∗ − 1 + p)

N (p − 1) + pγ ∗ , problem (1) has a solution u

in Lα (�) with α = N (γ ∗ − 1 + p)

(N − p)
, belonging to W 1,(pi )

loc (�) .

Proof Let us use uγ ∗
n as test function in (5), so we obtain for every i = 1, 2, ..., N

∫

�

|∂i un|pi uγ ∗−1
n ≤

∫

�δ

f (x)uγ ∗−γ (x)
n +

∫

ωδ

f (x)

Cγ (x)
ωδ

uγ ∗
n

≤ ‖ f ‖L1(�) +
(

1 +
∥
∥
∥C−γ (x)

ωδ

∥
∥
∥
L∞(�)

)∫

�

f (x)uγ ∗
n

≤ ‖ f ‖L1(�) +
(

1 +
∥
∥
∥C−γ (x)

ωδ

∥
∥
∥
L∞(�)

)(∫

�

f s(x)

) 1
s
(∫

�

uγ ∗β
n

) 1
β

with β = N (γ ∗ − 1 + p)

(N − p) γ ∗ , and so

∫

�

|∂i un|pi uγ ∗−1
n ≤ C1 + C2

(∫

�

uγ ∗β
n

) 1
β

,

123



On an anisotropic problem with singular nonlinearity… 423

thus

(∫

�

|∂i un|pi uγ ∗−1
n

) 1
pi ≤

(

C1 + C2

(∫

�

uγ ∗β
n

) 1
β

) 1
pi

which implies that

N∏

i=1

(∫

�
|∂i un |pi uγ ∗−1

n

) 1
pi ≤

(

C1 + C2

(∫

�
uγ ∗β
n

) 1
β

)
N∑

i=1

1
pi

=
(

C1 + C2

(∫

�
uα
n

) 1
β

) N
p

with the following choice of exponents

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ti pi = γ ∗ − 1

r = α = N (γ ∗ − 1 + p)

(N − p)
1
r = γi (N−1)−1+ 1

pi
ti+1

Sobolev inequality (4) gives

(∫

�

uα
n

) N
p −1

≤
(

C1 + C2

(∫

�

uα
n

) 1
β

) N
p

and so

(∫

�

uα
n

)1− p
N ≤ C1 + C2

(∫

�

uα
n

) 1
β

by the fact that

1

β
< 1 − p

N

we conclude that {un}n is bounded in Lα (�) with α = N (γ ∗ − 1 + p)

(N − p)
and by the

monotone convergence theorem, {un}n converges strongly to u ∈ Lα (�) .

On the other side using uγ ∗
n as test function in (5) we get

N∑

i=1

∫

�

|∂i un|pi uγ ∗−1
n ≤ C
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424 S. E.-H. Miri

by strong maximum principle we have for every compact K ⊂⊂ �

Cγ ∗−1
K

N∑

i=1

∫

�

|∂i un| ≤ C

thus we obtain weak convergence of {un}n to u in W 1,(pi )
loc (�) .

To complete the proof, we follow the same steps as in the previous Proposition. ��
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