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Abstract We consider the following anisotropic problem, with singular nonlinearity
having a variable exponent

N
= > O [1ulP 7 du] =

m n Q,

i=1
u=20 on 2,
u>0 in Q;

where Q is a bounded regular domain in RY and y(x) > 0 is a smooth function,
having a convenient behavior near 2. f is assumed to be a non negative function
belonging to a suitable Lebesgue space L™ (£2) . We will also assume without loss of
generality that2 < p; < pr < --- < py. Using approximation techniques, we obtain
existence and regularity of positive solutions to the considered problem.
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1 Introduction

We consider in this paper, the following problem

—Lu = L inQ,

uy ) 1
u=~0 on 2, M
u=>0 in,

where

Lu=>3 [|aiu|Pf*2 aiu] ,

i=1

y(x) > 01s assumed to be a regular function, say for example y(x) € C (©), and Q
is a bounded regular domain in RY. We will assume without loss of generality that
2 < p1 < pp <--- < py and that f is a non negative function belonging to a suitable
Lebesgue space L™ (R2) .

When the differential operator is assumed to be semilinear, and y (x) = y, Boccardo
and Orsina in their leading work [2], obtained existence and regularity of the solution,
and this was generalized to the case of the p-laplacian in [7], and to the the case of the
anisotropic operator L in [14].

In the very recent work [3] the authors consider a singular semilinear elliptic prob-
lem with variable exponent y (x), they obtained existence and regularity of the solution,
under some conditions on the behavior of the function y (x) near the boundary of €.

There exists a huge literature, devoted to the study of the anisotropic operator L, as
it has many applications in fluid dynamics, and physical phenomena with anisotropic
diffusion, we cite for example [8—11], and the references therein.

When a singular nonlinearity is considered in interaction with different types of
differential operators as the laplacian or the p-laplcian, we invite the reader to see the
works [1,4-6,10,12,15,16,18].

Problem (1) is associated to the following anisotropic Sobolev spaces

Wheo (@) = {ve W @ v e L7 (@)

and
Wy P @) = whe @ nwy! (@)

endowed by the usual norm

N
Il 100 ) = > 19l -
i=1
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Definition 1.1 We will say that u € W(;’(p 1) (£2) is an “energy” solution to (1) if and

only if

/ fe Vo e cl),

N

Pi—2 9.9 ,
Z/ |0;u| ojudip = ®
i=1 Q

and we will say that u is a “weak” solution to (1) if 3;u” ~! € L1(), m) eL! (),

loc

and one has the identity

fo
/|8u|p’ dudip = uy(x) Vo € CH(Q).

lIQ

We will also very often use the following indices

and
—

The following Theorem states some anisotropic Sobolev type inequalities, for more
details we refer to the early works [13,17,20]
Theorem 1.2 There exists a positive constant C, depending only on 2, such that for
L,(pi)
every v € W, (2) , we have
(2)

cZna o7 (g -

N

1
Wlizr@ < T80 g V€ [1.77]
i=1

PN
lols. o) =
3)

and v € Wy P (@) N L™ (Q),7 < N
Ny L
)

P N
Jur)  =eIT( o)
i=I
Q

Q
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for every r and tj chosen in such a way to have

(N—=1)—1+L
| reoiN=D-T L
ti+1

N
>y =1.
i=1
In the whole paper, C will denote a constant that may change from line to line.

2 Approximation problems

All the results obtained in this section, are direct consequences of the ones presented
in [2,14], but for the reader convenience we present them in details.
Let us first consider the following approximation problems

—Lun = #}/(X) in Q,
(uy,+n) 5
u, =0 on 2, ©)
u, >0 in Q,
where f, = T,(f).
Recalling that
ne if |s|>n
T - Is|
n(s) s if Is|l<n
Lemma 2.1 The problem (5) has a solution in W()l’(pi) ().
Proof We will follow the same reasoning as in [2].
Fixn € N, and let v € L3+ (2) . Consider the equation
—Lw = I (6)

y(x)’
(vl + 1)
it is clear that the previous problem has a unique solution whenever the right hand side

belongs to L* (2) with s > p/ see for instance [8,9]. Denoting w = S(v),
using w as test function in (6), we obtain

3 [ = [ s = [

lIQ

by Sobolev inequality (2),
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by Holder inequality
%
Jwi={ [wr
Q Q
Hence
Iwl}5 g < €O il q)
and then
T
lwll 7+ = €' (”V(X)H)PN = R,

which means that the ball of radius Ry in L7 () is invariant by S, and so by
Sobolev embedding and Schauder’s fixed point theorem we conclude that the approx-

imation problem (5) has a solution in WO1 (D) (€2), for every fixed n.

Lemma 2.2 The sequence {u,}, is increasing with respect to n.

Proof Werecall that f, =T, (f) andso 0 < f;, < fut1

fn < fn+1
1\ y&) — y(x)
(u" + ﬁ) (un + nlﬁ)

—Lu, =

as

fn+1

Y (x)
Unpt+1 + m)

—Lupy) =

and so one has that

1 1

V@ LY@
Gov )™ (oroh)
B 1 \Y™ 1 \Y™
(Mn+1 + m) - (Mn + m)
1 \7® Y™
(e 7)™ o)
using (u, — u,+1)" as test function in the last inequality, the right hand side gives
1 \Y® 1 \Y®
(un+l + m) - (Mn + m)

L@ L™
(o 7) " (s +71)

—Luy + Luyy1 < futa

= fn+1

(un — un+l)+ <0.

fn+1
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Now, taking into account the problems associated to u,, and to u, 41, it follows that

/(_Lun + Luyy1) (uy — un+1)+ <0.
Q

Thus

i=1

/ (100172 Bt = 10110011772 Byt ) 0 (= te41) ™ < 0.
Q

Integrating over the subset of 2 where u,, > u,41 and using the following inequality
for p; > 2

Col0s (tn = )1 = (1001”2 Byt — it 117 72 Bt ) 0ty = 1)

we reach that

N .
Z/ |0 (un — uns) ¥ < 0.
i=1g

Hence

Up = Un+1,

which allows us to conclude that {u,}, is increasing with respect to n.
O

Remark 2.3 We limit ourselves to the case p; > 2 because (at our knowledge), the
operator L verify a strong maximal principle only in the case p; > 2 see for instance
[8], maximal principle that will be necessary in the sequel.

Lemma 2.4 Foralln € N, u,, the solution to the approximation problem (5), is such
that u, € L*° () and forall K CC , u, > Cg > 0.

Proof By some modifications in the theory of Leray-Lions operators theory one can
show the existence of solution to

fi

_LM - -
YT+ @

and so

1= A(x) > 0
(lurllee + 1Y
the strong maximum principle, and the monotonicity of {u,}, give thatu, > Cx > 0.

The L (Q2) estimate of {u,}, , is a direct consequence of Stampachia result [19], as
done in [2]. O
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3 Passage to the limit

For fixed 8, let Qs = {x € Q, dist(x, 92) < §}
Np ) .
Theorem 3.1 Lets = ———— and f € L® (), assume that there exists a
N(p-1D+p
8 > Osuchthaty (x) < lin g, then the sequence {u,}, of solutions to (5), is bounded

in Wy P ().

Proof Put ws = Q\Q_g, by the previous results we know that u, > C,; > 0. Now
using u, as test function in (5) we obtain

N
> ol = [
i=l1 u

nt )

_ Jn(x) Jn(x)
= Wun + Wun
2 (u"+n) @8 (u”+n)

J(x)

u
w CLO"
J(x)
5/ f(x)+/7 Fu, + oy ln
QN{up<1) N{up>1} ws Chy

LOC(Q))/SZf(x)Mn

Using Holder and Sobolev inequalities, we then obtain

< | f@u 7% 4
Qs

< fllpg + (1 + HCJK(”

1

N PN
s 0: Pi
mm) 1l é/ﬂ| it

N .
Z/Q [0;un P < IflLr g +C (1 + HC‘;ay(X)
i=1

which implies that

N
> [l <
=17

where C is a constant independant of n. O
Np .
Theorem 3.2 Let s = ——  and f € L* (), assume that there exists a
Np-D+p

6 > 0 such that y (x) < 1 in Qs, then problem (1) posses a solution u € Wé’(pi) ().

Proof By the previous proposition {u,}, is bounded in Wé (pi) (R2), thus (up to a

subsequence) {u,}, converges weakly to some u in Wol’(p i) (£2) . On the other hand,
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{un}, converges strongly in LY (Q) for < p*, thus {u,}, converges to u almost
everywhere in 2. So one has that for every ¢ € Cé ()

N N
ngrfwz;/ﬂ|aiun|m—2 Bty 0i¢p =Zl“/g|aiu|"f—2 iudig
1= 1=

By the fact that

< Sn(X)e

(un + l)V(X)

n

fx)

< C_V(X)
- H(p @ Lo°(Q)

for every ¢ € Cé (£2), whenever ¢ # 0 and on the set where u, > C,, w being the
support of ¢; the dominated Lebesgue’s theorem permits us to conclude that

lm e [ fx)e
n—+oo | (un+%)y(w q uv®

by the sequel, the limit u of the sequence {u,}, verify

N
Z/ |0u| P2 iudyp = A
P Q Q uy )

O

Theorem 3.3 Assume that for some y* > 1and some§ > Owehave ||y || po(q) < ¥*.
: ; : N(y*—1+Dp) .
Provided that f € L* () withs = — problem (1) has a solution u

N _Nm®-D+py

(V;jl))’ bdongmg to W[L(Pi) (Q) .
(N —-P) -

y*

Proof Letus use u;, as test function in (5), so we obtain foreveryi = 1,2, ..., N

in LY () witha =

_ *_ X
/ |8 unlpz I/ty 1 < f(x)u% y(x) + f(() Z
oy w0 C°

,y*
Lm(m)/gf(xmn
s % )/*/3 %
o) (L70) ()

=Iflizve + (1 + HC 7

Ny*—1+7p
withﬂ:((lj\/]—_)—i_f),andso
—pY

1
_ AN
/Iaunl”’un <C1+C2(/ Vﬂ),
Q
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thus

1 1 N
1\ 7 AV AN
(/ 10714 |7 1ty 1)[ S(C1+C2(/ iy ﬂ) )
Q Q

which implies that

N L 1

. — i B \i
||(/ 0P ul, ‘)”’ =(a+o (/ uZ*’g)
i=1 V€ @

with the following choice of exponents

M=

tipi=y*—1
N 14D
(N —p)
| N=D=l4 o
= ti+1
Sobolev inequality (4) gives
N
L1 P\ 7
()" (L))
Q Q
and so
1-% 1
(/MOZ) §C1+C2(/un>
Q Q
by the fact that
| _
S
B N
Ny*—1+p
we conclude that {u,}, is bounded in L% (R2) with o« = %
-p

monotone convergence theorem, {u,}, converges strongly to u € L* (2) .
*
On the other side using ul as test function in (5) we get

ul *
> [ i <
=17

1
g ;
= C1+C2(/ uf{)
Q

~l=

and by the
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by strong maximum principle we have for every compact K CC 2

N
1
D I NUTHEYS

i=1

thus we obtain weak convergence of {u,}, to u in Wl1 ,C(p i) (2).

0
To complete the proof, we follow the same steps as in the previous Proposition. O

References

10.

11.

12.

13.

14.

15.

16.

18.

19.

20.

. Abdellaoui, B., Attar, A., Miri, S.E.: Nonlinear singular elliptic problem with gradient term and general

datum. J. Math. Anal. Appl. 409(1), 362-377 (2014)
Boccardo, L., Orsina, L.: Semilinear elliptic equations with singular nonlinearities. Calc. Var. Partial
Differ. Equ. 37, 363-380 (2009)

. Carmona, J., Martinez-Aparicio, P.J.: A singular semilinear elliptic equation with a variable exponent.

Adv. Nonlinear Stud. (2016). doi:10.1515/ans-2015-5039

Crandall, M.G., Rabinowitz, P.H., Tartar, L.: On a Dirichlet problemwith a singular nonlinearity. Comm.
Partial Differ. Equ. 2, 193-222 (1997)

Brandolini, B., Chiacchio, F., Trombetti, C.: Symmetrization for singular semilinear elliptic equations.
Ann. Mat. Pura Appl. 193(2), 389404 (2014)

Brandolini, B., Ferone, V., Messano, B.: Existence and comparison results for a singular semilinear
elliptic equation with a lower order term. Ric. Mat. 63(1), 3—18 (2008)

De Cave, L.M.: Nonlinear elliptic equations with singular nonlinearities. Asymptot. Anal. 84, 181-195
(2013)

Di Castro, A.: Elliptic problems for some anisotropic operators. Ph.D. Thesis, University of Rome
“Sapienza”, a.y. 2008/2009

Di Castro, A.: Existence and regularity results for anisotropic elliptic problems. Adv. Nonlin. Stud. 9,
367-393 (2009)

Di Castro, A.: Anisotropic elliptic problems with natural growth terms. Manuscr. Math. 135(3-4),
521-543 (2011)

Fragala, I, Filippo, G., Bernd, K.: Existence and nonexistence results for anisotropic quasilinear elliptic
equations. Annales de I’Institut Henri Poincare (C) Non Linear Anal. Elsevier Masson 21(5): 715-734
(2004)

Ghergu, M., Radulescu, V.: Singular elliptic problems. Oxford Univ. Press, Oxford (2008)
Kruzhkov, S.N., Kolodii, I.M.: On the theory of embedding of anisotropic Sobolev spaces. Russ. Math.
Surveys 38, 188-189 (1983)

Leggat, Ahmed, Réda, Miri, Sofiane, El-Hadi: Anisotropic problem with singular nonlinearity. Com-
plex Var. Elliptic Equ. 61(4), 496-509 (2016)

Miri, Sofiane El-Hadi: Quasilinear elliptic problems with general growth and nonlinear term having
singular behavior. Adv. Nonlinear Stud. 12, 19-48 (2012)

Miri, S.E.H.: Editions universitaires européennes, Problemes elliptiques et paraboliques avec termes
singuliers (2015)

. Nikolskii, S.M.: Imbedding theorems for functions with partial derivatives considered in various met-

rics. Izd. Akad. Nauk SSSR 22, 321-336 (1958)

Radulescu, V., Repovs, D.: Partial differential equations with variable exponents: variational methods
and qualitative analysis. CRC Press, Taylor & Francis Group, Boca Raton (2015)

Stampacchia, G.: Le probléme de Dirichlet pour les équations elliptiques du second ordre a coefficients
discontinus. Ann. Inst. Fourier (Grenoble) 15, 189-258 (1965)

Troisi, M.: Teoremi di inclusione per spazi di Sobolev non isotropi. Ric. Mat. 18, 3-24 (1969)

@ Springer


http://dx.doi.org/10.1515/ans-2015-5039

	On an anisotropic problem with singular nonlinearity having variable exponent
	Abstract
	1 Introduction
	2 Approximation problems
	3 Passage to the limit
	References




