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Abstract Interpolation results of Lions (Ann Scuola Norm Sup Pisa t 13:389–403,
1959), Lions (Math Scand 9:147–177, 1961), Lions and Peetre (Publ Math IHS 19:5–
68, 1964) are extended to embed domains of semi-groups into some weighted spaces
studied in Artola (Bolletino UMI 5(9):125–158, 2012), Artola (Bolletino UMI, in
press, 2016). Hardy’s inequality for weighted spaces (see Bolletino UMI 5(9):125–
158, 2012), being necessary for the treatment, the weights are required to belong to the
Hardy class H(p), (1 ≤ p ≤ +∞) defined in Artola (Bolletino UMI 5(9):125–158,
2012.
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1 Introduction

The paper describes the construction of some intermediate weighted spaces between
the domain D(�) of an unbounded operator �, which is the infinitesimal generator of
a convenient semi-group G(t), 0 ≤ t < ∞ and the space A that is a space� satisfying

D(�) ⊂ � ⊂ A

where ⊂ means algebraic and topological imbedding.
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234 M. Artola

It is of interest for applications to construct intermediate space which have the inter-
polation property: when (D(�1),�1, A1) is another set analogous to (D(�),�, A),
then a linear mapping π from A1 into A such that π restricted to D(�1) is continuous
from D(�1) into D(�) (say π ∈ L(D(�1), D(�))), then π is continuous from �1
into � (i.e. π ∈ L(�1, �).

The usual procedure to prove that an intermediate space has the interpolation prop-
erty is, either by a direct proof, or by showing that the space can be identified with
another space which has the property. That second method is employed to embed
domains of semi-groups into some weighted spaces studied in [2,4] but adapted here
to a semi-group framework where the weight c(t) belongs to the Hardy class H(p),
1 ≤ p ≤ ∞, that is: c(t) ∈ H(p) if and only if the Hardy operator φ−→H(φ)

is continuous from L p
c (R+; A) into itself, where H(φ)(t) = t−1

∫ t
0 φ(τ)dτ and

L p
c (R+; A) = {φ; cφ ∈ L p(R+; A)}.
A similar problem solved in [11], deals with weights c(t) = tα, α + 1/p ∈ (0, 1),

so that c belongs toH(p) and 1/c toH(p′), 1/p + 1/p′ = 1, in that case.
Section 2 extends all results of [11,12], to weighted spaces with weights c or 1/c

in Hardy’s class. Section 2.1, introduces a semi-group satisfying a SG-condition and
an intermediate weighted space � between D(�) and A which extends that of [11].
Then in Sect. 2.2, because c ∈ H(p), we show that � can be identified with a trace
space belonging to the class of weighted spaces studied mainly in [2]. In Sect. 2.3,
we recall that trace spaces of [2] have the interpolation property, so that we obtain the
result for �.

In Sect. 2.4, duality results are extended on introducing the weight 1/c which lead
to a problem posed by Lions in [12] which either is in general partly solved, or solved
in a particular case (see Proposition 2.4).

Section 3 is mainly devoted to spaces studied in [4,5], called “intermediate mean
weighted spaces” which extend those of [13] called “espaces de moyenne”. Generally
they are not trace spaces but have the interpolation property. Thus we obtain some
results for certain intermediate spaces again between D(�) and A.

In Sect. 4, we consider as in [11] the case of n commutative semi-groups which
is very important for applications to PDE and leads to a class of weighted Besov or
Sobolev spaces probably not well known when equipped with that weights type.

Finally, on using a main result of Lions on distribution semi-groups,1 we generalise
some results of [13] for intermediate mean weighted spaces between D(�m) (m ≥ 1)
and A and also between D(� j+1), D(� j ) on adapting a theorem established in [4]
to extend the reiteration theorem of Lions–Peetre. Furthermore, a formal example is
given that involves certain weighted Besov spaces that are probably new.

2 An intermediate space between D(�) and A

If X, Y are Banach spaces, we denote by L(X, Y ) resp. (L(X) i f X = Y ), the space
of linear mappings from X into Y.

1 See [13, pp. 53–54].
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Intermediate weighted spaces and domains of semi-groups 235

Let A be a real or complex Banach space with norm denoted by |.|. Consider an
unbounded, closed, operator �, with domain D(�) dense in A. Provided with the
norm |a|D(�) = |a| + |�(a)|, D(�) is a Banach space. When π ∈ L(A), we denote
the norm of π by ‖π‖.

We assume that� is the infinitesimal generator of a semi-group t−→G(t)which is
continuous and uniformly bounded on R+ = ]0,+∞[. More explicitly thismeans that
SG-condition:

The function t−→G(t) is strongly continuous from t ≥ 0 to A , with G(0)a = a
and there is a constant M such that ‖G(t)‖ ≤ M < ∞.

To construct an intermediate space between D(�) and A we begin with a simple
space connected with a trace space.

2.1 The space �(p,c;D(�),A)

Let p, 1 ≤ p < ∞ and c: t−→c(t), R+ = (0,+∞)−→R+, be a locally integrable
function satisfying

∀t0 > 0, (i) c ∈ L(0, t0; R+), (i i) 1/c ∈ L p′
(0, t0; R+), (2.1)

and c

t
∈ L p(t0,+∞; R+). (2.2)

Moreover, we assume that,2

sup
t>0

(∫ +∞

t

[
c(τ )

τ

]p

dτ

)1/p (∫ t

0

dτ

[c(τ )]p′

)1/p′

< ∞. (2.3)

Remark 2.1 (1) Condition (2.3) characterizes the weights c for which the Hardy oper-
ator:

f −→H( f )(t) = 1

t

∫ t

0
f (τ )dτ

is continuous from L P
c (A) into itself when cf ∈ L p(A) = L p(R+; A), which is a

Banach space when equipped with the natural norm | f |L p(A) = (∫
R+ | f (τ )|p

A

)1/p

(usual definition holds for p = ∞).
In what follows we shall write c ∈ H(p) to say that c satisfies (2.1) and (2.3)
(2) A weight c which is a non-increasing function,obviously belongs to H(p) for

all p, and if φ is a non-increasing function then φ c ∈ H(p) when c ∈ H(p).
(3) It is of interest to notice that (2.2) is only a necessary condition for c ∈ H(p)

(see [2]).

2 See [2].
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236 M. Artola

We define the space �(p, c; D(�), A) as a subspace of A such that: a ∈ A, with

c(t)

t
(G(t)a − a) ∈ L p(A). (2.4)

�(p, c; D(�), A) becomes a Banach space, When equipped with the norm

|a|� = |a| +
(∫

R+

[
c(τ )

τ

]p

|G(τ )a − a|p
)1/p

. (2.5)

Proposition 2.2 Assume that (2.1i) and (2.2) hold, and let G satisfy the “SG-
condition”. Then the space �(p, c; D(�), A) is an intermediate space between D(�)

and A. That is
D(�) ⊂ �(p, c; D(�), A) ⊂ A (2.6)

where ⊂ means algebraic and topological inclusion.

Proof Naturally we have to check only the first inclusion.
From semi-group theory3 f or a ∈ D(�), the function t−→G(t)a is continuous

and derivable, the derivative being G(t)�a, so that

G(t)a − a =
∫ t

0
G(τ )�adτ

and consequently

|G(t)a − a| ≤ Mt |�a| ;

for a fixed T0, we then deduce from (2.1i)

c(t)

t
(G(t)a − a) ∈ L p(0, T0; R+)

with
∫ T0

0

[
c(t)

t

]p

|G(t)a − a|p dt ≤ M p |�a|p
∫ T0

0
c(t)pdt .

On the other hand, we have

c(t)

t
|G(t)a − a| ≤ c(t)

t
(M + 1) |a| ,

and from (2.2)

c(t)

t
(G(t)a − a) ∈ L p(T0,+∞; R+).

3 We refer to [7].

123



Intermediate weighted spaces and domains of semi-groups 237

This complete the proof for the first inclusion algebraically and also topologically,
because there is a positive constant K, such that

|a|� ≤ K (|a| + |�a|).

We next show that the space �(p, c; D(�), A) can be identified with a trace space.

2.2 The space �( p, c; D(�), A) as a trace space

We define, as a particular case of spaces studied in [2]:

W (p, c; D(�), A) = W (1)(p, c, D(�); p, c, A)

= {u; cu ∈ L p(D(�), cDu ∈ L p(A)},

where W (p, c; D(�), A) is a Banach space when provided with the natural norm.
The last condition on Du must be understood as follows: u is differentiable in the

sense of distributions on R+ with values in A, Du being locally integrable, so that the
product with c takes a sense.

Now sinceDu is locally integrable, u is absolutely continuous and hence continuous.
Then we can consider that u is continuously differentiable with values in A and u(t)
is defined for t ∈]0,+∞[. Therefore when lim

t−→+0
u(t) = a in A exists, we shall say

that u has a trace u(0) = a at t = 0.
For the existence of traces ( �=0), we have from [2]:

Proposition 2.3 Conditions (2.1) are necessary and sufficient for the existence of a
trace a �=0.

Assuming that conditions (2.1) hold, let T(p, c; D(�), A) = T 1
0 (p, c, D(�); p, c, A)

the space spanned in A by u(o) = a when u spans the space W (p, c; D(�), A). The
space T (p, c; D(�), A) is a Banach space, When equipped with the norm:

|a|T (p,c;D(�),A) = inf
u(0)=a

|u|W (p,c;D(�),A) . (2.7)

The space T (p, c; D(�), A) is called a trace space (here of order 0).

Remark 2.4 The definition of the norm of T (p, c; D(�), A) shows that the space can
be interpreted as the quotient space W (p, c; D(�), A)/W0(p, c; D(�), A) where

W0(p, c; D(�), A) = {u; u ∈ W (p, c; D(�), A), u(0) = 0}.

From (2.1), the space of traces T (p, c; D(�), A) exists and we have:

Theorem 2.5 Assume that � is the infinitesimal generator of a continuous and uni-
formly bounded semi-group t−→G(t). Given p with 1 ≤ p ≤ ∞, let c ∈ H(p). Then
the linear mapping

u−→u(o) is continuous f rom W (p, c; D(�), A) onto �(p, c; D(�), A).
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238 M. Artola

Proof of Theorem 2.5 The proof involves two steps:
Step 1: u−→u(0) is continuous f rom W (p, c,�) into �(p, c; D(�), A).
Since u ∈ W (p, c; D(�), A), ∀t > 0, u(t) ∈ D(�), we can write

du

dt
− �u = f (2.8)

and from the definition of W (p, c; D(�), A), we deduce that

c f ∈ L p(A). (2.9)

Therefore4 the method of Cauchy to solve (2.8) gives

u(t) = G(t)u(0) +
∫ t

0
G(t − σ) f (σ )dσ ,

and when we set u(0) = a, we have

u(t) − a = G(t)a − a +
∫ t

0
G(t − σ) f (σ )dσ

and

G(t)a − a =
∫ t

0

du

dt
(σ )dσ−

∫ t

0
G(t − σ) f (σ )dσ .

On setting du
dt = u′, we get

c(t)

t
|G(t)a − a| ≤ I1(t) + I2(t)

where

I1(t) = c(t)H (|u′|) (t),

I2 = c(t)

t

∫ t

0
‖G(t − σ‖ | f (σ )| dσ .

As c ∈ H(p) and because cu′ ∈ L p(A) the weighted Hardy inequality gives

∫

R+
[I1(t)]pdt ≤κ

∫

R+

∣
∣c(t)u′(t)

∣
∣p

dt, κ = constant.

For I2, because ∀t ≥ 0, ‖G(t)‖ ≤ M < ∞, and from (2.9), the procedure is analogous
to that for I1 and Hardy’s inequality gives the required estimate. We deduce that
a ∈ �(p, c; D(�), A). Thus the result for the step 1 is proved.

4 See for example [7].
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Intermediate weighted spaces and domains of semi-groups 239

Step 2: The mapping u−→u(0) is onto.
Assume a ∈ �(p, c; D(�), A). We have to check that a function u ∈

W (p, c; D(�), A) can be found such that u(0) = a.
On introducing5

v(t) = t−1
∫ t

0
G(σ )adσ = H(G(σ )a). (2.10)

We define a continuous function from t ≥ 0 into A with

v(0) = a. (2.11)

Now we use

Lemma 2.6 For any t > 0

∫ t

0
G(τ )dt ∈ L(A; D(�))

and

�

∫ t

0
G(τ )dτ = G(t) − I, I = identity.

Proof: Obviously when a ∈ D(�), we obtain

�

∫ t

0
G(τ )adτ =

∫ t

0
�G(τ )adτ =

∫ t

0

d

dt
(G(τ )a]dτ = G(t)a − a.

D(�) being dense in A, and the operator � being closed, that is true for every
a ∈ A. The lemma is proved.

Therefore, v(t) ∈ D(�), and

�v(t) = t−1 (G(t)a − a) .

Consequently, we deduce

c(t)�v(t) = c(t)

t
(G(t)a − a)

belongs to L p(A), because a ∈ �(p, c.D(�), A).
Consider now the derivative v′ = dv/dt . From (2.10) we have

tv′ + v = G(t)a

5 We follow an adaptation of a Gagliardomethod given by Lions [11] using theweights tα , α+1/p ∈ (0, 1)
which are in H(p).
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240 M. Artola

so that

v′(t) = t−1 (G(t)a − a) + t−1a − t−2
∫ t

0
G(τ )dτ,

and finally
v′ = �v − w, (2.12)

where

w(t) = t−2
∫ t

0
(G(τ )a − a)dτ.

In order to check that
cv′ ∈ L p(A), (2.13)

and because c�v ∈ L p(A) it is sufficient to obtain the result for w. Since

|w(t)| ≤ t−1
∫ t

0
t−1 |G(τ )a − a| dτ ≤ t−1

∫ t

0
τ−1 |G(τ )a − a| dτ ,

in conjunction with the definition of �(p, c; D(�), A) and on applying the weighted
Hardy inequality, we obtain cw ∈ L p(A).

Hence (2.13) holds and Theorem 2.5 is proved, if we consider the function u defined
by u(t) = 
(t)v(t), where the function 
 is once continuously differentiable on
t ≥ 0 and vanishes for t sufficiently large, and is such that 
(0) = 1. Thus u ∈
W (p, c; D(λ), A) and u(0) = a.

2.3 Interpolation property

From [1], we know that any trace theorem gives an interpolation result and we have
proved in [2] that, generally, the traces of weighted spaces (of the Hardy’s class) have
the interpolation property.

Let (A1,�1, W1(p1, c1; D(�1), A1)T1), be a set analogous to (A,�, W, T ).
Therefore

π ∈ L(D(�), D(�1)) ∩ L(A, A1)),

implies

π ∈ L(T (p, c, D(�), A), T1(p1, c1, D(�1), A1).

Thus, since �(p, c, D(�), A) = T (p, c, D(�), A), we have

Theorem 2.7 Given {(A,�, W, �), (A1,�1, W1, �1)}, we assume π ∈ L(D(�),

D(�1)) ∩ L(A, A1). Then

π ∈ L(�(p, c; D(�), A),�1(p1, c1; D(�1), A1)).
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Intermediate weighted spaces and domains of semi-groups 241

Remark 2.8 Define ĉ(t) = t−1/pc(t) with c ∈ H(p), then also ĉ ∈ H(p). Therefore,
when we consider spaces constructed with c replaced by ĉ, the previous result still
holds.

If we denote by L p∗ (A) the space L p(A) equipped with the Haar measure on R∗,
we have the equivalence:

ĉu ∈ L p(A) � cu ∈ L p∗ (A).

2.4 Duality

Since D(�) is dense inA, wemay identify A′, the dual (or antidual) of A, as a subspace
of D(�)′ and

A′ ⊂ D(�)′, (wi th in jective mapping).

Indeed if i is the injective mapping of D(�) into A, then its range is dense in A.
This implies that the adjoint i∗ is a continuous injective mapping from A′ into D(�)′,
whose the range is dense.

Assume
A is a re f lexive Banach space. (2.14)

From Proposition 3.1, and Theorem 4.7 of [2], we obtain

[w(p, c.D(�), A)]′ = W (p′, c−1, A′; p′, c−1, D(�)′)
= W (p′, c−1; A′, D(�)′), (2.15)

[T (p, c; D(�), A)]′ = T 1
0 (p′, c−1, A′; p′, c−1, D(�)′)

= T (p′, c−1; A′, D(�)′). (2.16)

where 1/p + 1/p′ = 1.

Remark 2.9 For the moment, we note that only the condition (2.1)′ is needed for
existence of the trace space T 1

0 (p′, c−1, A′, p′, c− D(�)′), that is

(2.1)′ : ∀t0 > 0,
∫ t0

0

dτ

[c(τ )]p′ < +∞,

∫ t0

0
[c(τ )]pdτ < +∞,

which is (globally) (2.1).

To study the dual of the space �(p, c; D(�), A), we observe that G(t) ∈
L(D(�), D(�)), the norm of G(t) in that space being majorized by M and G(t)
is defined as a semi group into D(�).

If G̃(t) denotes the adjoint of G(t) in L(D(�), D(�)), we have:

G̃(t) ∈ L(D(�)′, D(�)′), (2.17)

G̃(t) being a semi-group on satisfying the SG-condition in D(�)′.
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242 M. Artola

Let �∗ be the adjoint of � with domain D(�∗) = A′ which is an element of
L(A′, D(�)′).

To prove that [�(p, c; D(�), A)]′ = �′(p′, c−1; A′, D(�)′), equipped with the
norm

∣
∣a′∣∣

�′ = ∣
∣a′∣∣

D(�)′ +
(∫

R+
[(tc(t)−1]p′ ∣∣

∣G̃(t)a′ − a′
∣
∣
∣

p′
D(�)′dt

)1/p′
< ∞, (2.18)

is an intermediate space between A′ and D(�)′, we need to assume:

(2.2)′ : ∀t0 > 0,
∫ +∞

t0

dt

[tc(t)]p′ < ∞,

which togetherwith (2.1ii) gives the result by the samemethod that used for Proposition
2.2.

To prove that

�′(p′, c−1; A′, D(�)′) ≡ T (p′, c−1; A′, D(�)′) (2.19)

we need to assume moreover that

c−1 ∈ H(p′). (2.20)

Thus we have obtained.

Theorem 2.10 Let G(t) be a semi-group with infinitesimal generator �, satisfying
the SG-condition in the reflexive Banach space A.

Let G̃(t) be the adjoint semi-group in D(�) and for p with 1 < p < ∞, we assume
c ∈ H(p) and c−1 ∈ H(p′).

Then the dual space of �(p, c.D(�), A) is algebraically and topologically equiv-
alent to the space T (p′, c−1; A′, D(�)′) equipped with the norm of T 1

0 (p′, c−1, A′;
p′, c−1, D(�)′) that is

|a′|T (p′,c−1;A′,D(�)′) = I n f
u(o)=a′

|u|W (p′,c−1;A′,D(�)′) . (2.21)

On an other hand, from [2], every continuous linear form L on �(p, c; D(�), A) may
be written (with non uniqueness).

L(a) =< a′, a > +
∫ +∞

0

c(t)

t
< f (t), G(t)a − a > dt,

where <,> denotes the bracket in the duality < A′, A >, with

a′ ∈ A′, f ∈ L p′(R+; A′), a ∈ �(p, c; D(�), A).

We note that, a.e. on t, one has
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Intermediate weighted spaces and domains of semi-groups 243

< f (t), G(t)a − a >=< G̃(t) f (t) − f (t), a >,

and we deduce

Lemma 2.11 Let f ∈ L p′(R+; A′). Then the function

g(t) = c(t)

t
(G̃(t) f (t) − f (t))

belongs to L1(R+; D(�)′).
The lemma is the dual result to Proposition 2.2.

Proof (1) First we have that g ∈ L1(1,∞; A′) because

|g(t)|A′ ≤ (M + 1)t−1c(t) | f (t)|A′ ,

and from (2.2), the result follows by Hölder’s inequality.
(2) Now, we check that g ∈ L1(0, 1.D(�)′).

When a′ ∈ A′, it follows that

∣
∣
∣G̃(t)a′ − a′

∣
∣
∣

D(�)′ ≤ sup
a∈D(�)

∣
∣
∣< G̃(t)a′ − a′, a >

∣
∣
∣

|a|D(�)

= sup
a∈D(�)

|< a′, G(t)a − a >|
|a|D(�)

≤ Mc(t) |a′|A′

so that

|g(t)|D(�)′ ≤ Mc(t) | f (t)|A′ ,

and from (2.1i), the result follows by Hölder inequality.

Taking in account (2.17–2.19) and the Lemma 2.11, we can finally give an equivalent
version of Theorem 2.10.

Theorem 2.12 Let G(t) semi-group with infinitesimal generator �, satisfying the
SG-condition in the reflexive Banach space A.

Let 1 < p > +∞, and assume c ∈ H(p), c−1 ∈ H(p′), 1/p + 1/p′ = 1. Then
we can write every element a ∈ �(p, c; D(�), A) as

a = a0 +
∫ +∞

0
(G(t) f (t) − f (t))

dt

tc(t)
, (2.22)

where
f ∈ L p(R+; D(�)), a0 ∈ D(�). (2.23)

The representation (2.21, 2.22) is non-unique.
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244 M. Artola

2.4.1 A problem of Lions

In [12] the following problem is considered:
Problem P:
Let 
 be the set


 = {φ; φ ≥ 0, on R+, φ ∈ L p(1,+∞), tφ ∈ L p(0, 1)}, (2.24)

and denote by Sφ(p, D(�), A) the space of a ∈ A such that

φ(t) (G(t)a − a) ∈ L p(R+; A).

Equipped with the norm

|a|Sφ
= |a| +

(∫ +∞

0
φ(t)p |G(t)a − a|p dt

)1/p

(2.25)

Sφ(p, D(�), A) becomes a Banach space.
From (2.23), we have

D(�) ⊂ Sφ(p, D(λ), A) ⊂ A.

Then a question is: what are the functions φ ∈ 
 such that the space Sφ(p, D(�), A)

is an interpolation space?
A partial answer is given here:
Indeed if we define φ = c(t)

t , wi th c ∈ H(p), then thanks to (2.1i) and (2.3),
φ ∈ {
} and from Sect. 2.2, the space Sφ(p, D(�), A) is identified with the trace
space T (p, c; D(�), A) which is an interpolation space.

Then we have

̃ = {φ ∈ 
; tc ∈ H(p)} ⊂ 
. (2.26)

Now a dual problem is
Problem P∗:

Let � be the set

� = {ψ; ψ ≥ 0, on R+, ψ ∈ L p′(1,+∞), tψ ∈ L p′(0, 1)}. (2.27)

Then, for every f ∈ L p(R+, D(�)) the function

t−→ψ(t) (G(t) f (t) − f (t))

belongs to L1(R+; A) and we can consider the mapping

{a0, f }−→a = a0 +
∫

R+
ψ(t)(G(t) f (t) − f (t))dt

from D(�) × L p(R+; D(�)) into A.
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Denote by Sψ(p, D(�), A) the range of the mapping (2.26) equipped with the
norm

|a|Sψ
= I n f

{

|a0|D(�) +
(∫ +∞

0
| f (t)|p

D(�) dt

)1/p
}

(2.28)

for every

a0 +
∫ +∞

0
ψ(t) (G(t) f (t) − f (t)dt) dt = a.

Then Sψ(p, D(�), A) is a Banach space which is also an intermediate space:

D(�) ⊂ Sψ(p, D(�), A) ⊂ A.

Therefore the problem is: “what are the functions ψ satisfying (2.27) such that
Sψ(p, D(�), A) is an interpolation space?”

From Theorem 2.12 an answer is given when ψ(t) = 1
tc(t) , 1/c ∈ H(p′). Thus on

setting

�̃ = {ψ ∈ �; tψ ∈ H(p′)},
we obtain6

�̃ ⊂ �.

Remark 2.13 (1) In [10,11] the case with weights tα is studied under the assumption
θ = α + 1/p ∈]0, 1[ which implies both that c ∈ H(p) and 1

c ∈ H(p′) so that the
associated functions φ,ψ are φ(t) = tα−1, ψ(t) = t−(α+1).

(2) If we assume that the function φ (resp.ψ) is such that log(tφ) (resp. log(tψ))

is of finite order distinct from −1, with respect to log t when t −→ 0 or t−→∞,

(conditionA), and since we can naturally assume that [tφ]−1 ∈ L p′(0, t0),
(resp. [tψ]−1 ∈ L p(0, t0)) for any t0 > 0, then from a result of Bourbaki [6],
we can check that

∫ t

0
φ(τ)pdτ � k0tφ p(t) and

∫ t

0

dτ

[τφ(τ)]p′ � k1
t1−p′

φ p′(t)
, as t−→ + 0 or t−→∞,

for constants ki (i = 0, 1).
Consequently (2.3) holds for c(t) = tφ(t), and we obtain c ∈ H(p). An analogous

result holds for c∗(t) = tψ(t) and c∗ ∈ H(p′).
From remark 2.13(2), we have

Proposition 2.14 Assume that Condition A of Remark 2.13, holds. Then the solution
of Problem P (resp. of Problem P∗) is given by φ(t) = c(t)

t , with c ∈ H(p), (resp. by

ψ(t) = c∗(t)
t , with c∗ ∈ H(p′), and we can take c∗(t) = 1/c(t).

6 As for (2.25) the imbedding is only algebraically.

123



246 M. Artola

3 Intermediate weighted mean spaces

In [2] we have defined the space �̂θ = �(p, θ, ĉ, D(�); p, θ − 1, ĉ, A), where
θ ∈ (0, 1), (and ĉ as in Remark 2.8), by

a ∈ �̂θ i f we can f ind ai (t), (i = 0, 1) wi th

a = a0(t) + a1(t), tθ ĉa0 ∈ L p(D(�)), tθ−1ĉa1 ∈ L P (A). (3.1)

Equipped with the norm

|a|
�̂θ

= in f
a(t)+a1(t)=a

(
∣
∣ĉa0

∣
∣
L p(D(�))

,
∣
∣ĉa1

∣
∣
L p(A)

). (3.2)

�̂θ becomes a Banach space.
Since properties of spaces named “Espaces de moyennes” by Lions–Peetre extend

to the weighted space �θ , we call these spaces “weighted mean spaces”.
One has

Theorem 3.1 The space �̂θ , θ ∈ (0, 1) is an intermediate space between D(�) and
A having the interpolation property.

Proof We have only to prove the interpolation property.
To do that we use a result (of Lemma 4.3 and Remark 4.4 from [2]) that gives

|a|�θ= I n f
a0(t)+a1(t)=a

∣
∣tθ ĉa0

∣
∣1−θ

L p(D(�)

∣
∣
∣tθ−1ĉa1

∣
∣
∣
θ

. (3.3)

Consider, another set (A1,�1) like (A,�) and let π ∈ L(A, A1) (with norm ω0 in
that space) which restricted on D(�) belongs to L(D(�), D(�1)), (with norm ω1)
then we have to prove that

π ∈ L(�(p, θ, ĉ, D(�), p, θ − 1, ĉ, A),�(p, θ, ĉ, D(�1); pθ − 1, ĉ, A1).

Then if we denote for the moment �i
θ , i = 0, 1, the space �θ by (A,�) (resp.

(A1,�1)), we have when a ∈ �0
θ , that πa = πa0 + πa1, and (obviously) with the

notations used in inequality (3.3) :

|πa|�1
θ

≤ ∣
∣tθ ĉπa0

∣
∣1−θ

L p(D(�1))

∣
∣
∣tθ−1ĉπa1

∣
∣
∣
L p(A1)

≤ ω1−θ
0 ωθ

1

∣
∣tθ ĉa0

∣
∣
L p(D(�)

∣
∣
∣tθ−1ĉa1

∣
∣
∣
L p(A)

and, again with (3.3), we obtain

|πa|�1
θ

≤ ω1−θ
0 ωθ

1 |a|�0
θ
,

and the theorem is proved.
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If we denote by ω the norm of π ∈ L(�0
θ , �1

θ ), this shows that

ω ≤ ω1−θ
0 ωθ

1 .

From the comparison with traces spaces made in [2], we obtain

Theorem 3.2 When θ = 1/p, 1 ≤ p < +∞, it follows that

�1/p = �(p, 1/p, ĉ, D(�); p,−1/p′, ĉ, A) ≡ T (p, c; D(�), A) (3.4)

with equivalent norms.

Proof See [2] and (Sect. 5, Theorem 5.2).
Another definition of the space �θ is given in [2]: Consider a function t−→v(t),

defined on R+with values in D(�), and assume that v belongs to the space

V = {v; v(t) ∈ D(�) a.e., tθ ĉv ∈ L p(D(�), tθ−1ĉv ∈ L p(A)}

which is a Banach Space when equipped with the natural norm.

Then when
t−θ [ĉ(t)]−1 ∈ � (3.5)

the integral
∫ +∞
0

v(t)
t dt exists in A.

Proposition 3.3 Consider the space spanned by a = ∫ +∞
0

v(t)
t dt. When v spans the

space V , which is a Banach space provided with the norm

I n f
∫ +∞
0

v(t)
t dt=a

[max (
∣
∣tθ ĉv

∣
∣
L p(D(�))

,

∣
∣
∣tθ−1ĉv

∣
∣
∣
L p(A)

)], (3.6)

then that space can be identified with the space �θ .

Proof (see [2, Theorem 4.2]).

Remark 3.4 The condition (3.5) means that

∫ 1

0

t−θp′

[ĉ(t)]p′ dt < ∞,

∫ +∞

1

t−θp′

[t ĉ(t)]p′ < ∞,

we know that is implied by the condition t−θ [ĉ(t)]−1 ∈ H(p′)which is satisfied when
[ĉ(t)]−1 ∈ H(p′).

Henceforth, we assume that the last conditon holds.

We may introduce a variant for the Space � of section2: Let the space �θ, θ ∈
(0, 1),be the subspace of A such that

ĉ(t)t−(1−θ)(G(t)a − a) ∈ L p(A). (3.7)
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Equipped with the norm

|a|�θ
= |a| + [

∫ +∞

0
t−(1−θ)pĉ p(t) |G(t)a − a|p dt]1/p, (3.8)

�θ is a Banach space.

Remark 3.5 Observe that when G(t) is relaced by e−kt G(t), k > 0 , � becomes
� + k I with the same domain D(�), and consequently

‖G(t)‖ ≤ Me−kt , k > 0 (3.9)

without change of the space �̂θ . Moreover, the space �θ is not changed when we
assume that (3.7) holds.

Thus we can assume now that (3.7) holds and since a space does not change when
we replace its norm with an equivalent norm,

we can take ‖a‖1 = Sup
t≥0

|G(t)a|which is equivalent to |a| (note that |a| ≤ ‖a‖1 ≤
M |a| and the new norm of G(t) is Sup

t≥0

‖G(t)a‖1‖a‖1 ≤ 1.)

Then wemay assume that G(t) has a norm≤ 1, and eventually, if necessary, we can
change again G(t) in G(t)e−kt to have ‖G(t)‖ ≤ e−kt , k > 0. Thus we will assume
in what follows that

(I − G(t))−1 exists f or t ≥ 0. (3.10)

Another variant for the space �̂θ , is the space Sθ such that a function v can be found
with values a.e. in D(�) for which a = ∫ +∞

0
v(t)

t dt in A, and

tθ ĉ(t)(I − G(t))−1�v(t) ∈ L p(A). (3.11)

Then Sθ become a Banach space equipped with the norm

|a|Sθ= |a| + [
∫ +∞

0
[tθ ĉ(t)]p |(I − G(t)�v(t)|p dt]1/p. (3.12)

Therefore the main result of Sect 3 is

Theorem 3.6 Assume that G(t) satisfies the SG-condition and (3.13), 1 ≤ p ≤ ∞,
and also that ĉ ∈ H(p), [ĉ]−1 ∈ H(p′).

Then the following conditions are equivalent :

(1) - a ∈ �̂θ = �(p, θ, ĉ, D(�); p, θ − 1, ĉ, A)
(2) - a ∈ �θ .
(3) - a ∈ Sθ .

An immediate deduction is that �̂θ = �θ = Sθ with equivalent norms. Note that the
conditions upon the weight may be relaxed.
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Proof I) (1)�⇒(2).
From the definition when a ∈ �̂θ we have together with (3.1) that a = a0(t) +

a1(t) a.e. But we know that |(I − G(t))a| ≤ t |�a|, for every a ∈ D(�), and there-
fore

|(I − G(t)a0(t)| ≤ t |�a0(t)| .

Since ‖I − G(t)‖ ≤ 2, consequently

|(I − G(t))a| ≤ t |�a0(t)| + 2 |a1(t)| ,

and the result follows from (3.1).
II) (3)�⇒(1).
Let v satisfy (3.11). We must to check that

tθ ĉv ∈ L p(D(�)), tθ−1ĉv ∈ L p(A) (3.13)

which, from remark 3.5, implies that (1) holds.
We can write

�v(t) = (I − G(t)) (I − G(t))−1 �v(t)

and as ‖I − G(t)‖ ≤ 2, the first condition (3.13) is obtained from (3.11).
Then, since

v(t) = (I − G(t)) (I − G(t))−1 v(t)

we conclude that

|v(t)|A ≤ t
∣
∣
∣(I − G(t))−1 �v(t)

∣
∣
∣

A

and the second condition of (3.13) is satisfied from (3.11).
III) (2) �⇒(3).
Assume given a ∈ �θ , and define v by

v(t) = k

t
(I − G(t))2�−1a (3.14)

where k is a constant to be chosen.
Now ĉ(t)tθ (I − G(t))−1 �v(t) = kĉ(t)t−(1−θ) (I − G(t)) a ∈ L p(A), because

a ∈ �θ . Thus v satisfies (3.11), which implies that (3.13) is satisfied so that the integral
I (v) = ∫ +∞

0
v(t)

t dt exists.
It remains to prove that

I (v) = Lim
ε−→+0

k
∫ +∞

ε

t−2 (I − G(t))2 �−1adt = �[�−1a] = a. (3.15)
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with a convenient choice of k found with the help of Lemmas (1-1) and (1-2) ([13,
p. 53]) for α = 1, μ = 2. Then (3.15) is true when k−1 = − ∫ +∞

0 t−2(1 − e−1)2dt
(see also in Sect. 5).

4 Commutative semi-groups

One consider ν unbounded operators �i , i = 1, 2 . . . , ν with domain D(�i )

dense in A, every �i being the infinitesimal generator of a semi-group Gi (t), satis-
fying the SG-condition.

Moreover, assume that

∀i, j, and ∀(s, t) ≥ 0, Gi (s)G j (t) = G j (t)Gi (s). (4.1)

This implies that G j (t) ∈ L(D(�i ), D(� j )) and consequently that

∀a ∈ D(�i ), �i G j (t)a = G j (t)�i a. (4.2)

Definition 4.1 Wedenote byW (p, c,�1, . . . , �ν) the space of functions u satisfying

cu ∈ L p(R+; D(�i )), i = 1, . . . , ν, (4.3)

c
du

dt
∈ L p(R+; A), (4.4)

with 1 < p ≤ ∞, c ∈ H(p).
Provided with the norm

(∫ ∞

0
cp(t)[|u(t)|p +

ν∑

i=1

|�i u(t)|p + |u′(t)|p]dt

)1/p

,

the space W (p, c,�1, . . . , �ν) is a Banach space.

Definition 4.2 Denote by �(p, c,�1, . . . , �ν) the space

a ∈ A, t−1c(t) (Gi (t)a − a)) ∈ L p(R+; A), i = 1, . . . , ν. (4.5)

Equipped with the norm

|a| +
ν∑

i=1

(∫ +∞

0
[t−1c(t)]p |Gi (t)a − a|p dt

)1/p

,

�(p, c,�1, . . . , �ν) becomes a Banach space.
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Denote by D(�1, . . . , �ν), the space of a ∈ D(�i ), f or i = 1, . . . , ν, which is a
Banach space when provided with the norm

|a|A +
ν∑

i=1

|�i a|A.

We have

D(�1, . . . , �v) ⊂ �(p, c,�1, . . . , �ν) ⊂ A,

and we want to show that the space �(p, c,�1, . . . , �ν) can be identified with the
trace space T (p, c,�1, . . . , �ν) of W (p, c,�1, . . . , �ν).

For this purpose we have

Theorem 4.3 Assume that every �i satisfies the SG-condition and that (4.1) holds.
Moreover assume c ∈ H(p), 1 ≤ p ≤ ∞. Then the linear mapping

u−→u(0) is continuous f rom W (p, c,�1, . . . , �ν) onto �(p, c,�1, . . . , �ν).

Proof On recalling the first step in the proof for the Theorem 2.5, we have only to
prove that the mapping is “onto′′.

Let a ∈ �(p, c,�1, . . . , �ν). To construct a function u ∈ W (p, c,�1, . . . , �ν),
satisfying u(o) = a, we let

vi (t) = t−1
∫ t

0
Gi (τ )dτ ,

and define7

v(t) = v1(t)v2(t) . . . vν(t)a.

In what follows, to fix the ideas, it is sufficient to consider only the case when
ν = 2.

Since vi (t) commutes wi th Gi (t), Lemma 2.6 implies,

�ivi (t) = t−1 (Gi (t) − I )

and therefore ‖vi (t)‖ ≤ M , follows from ‖Gi (t)‖ ≤ Mi .
Then

�1v(t) = t−1 (G1(t)a − a) V2(t)

7 This is an idea of Gagliardo [9].
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and

‖�1v(t)‖ ≤ M2t−1 |G1(t)a − a| .

So that c�1v ∈ L p(A), and we deduce

c�iv(t) ∈ L p(A), ∀i ≡ 1, 2, . . . , ν. (4.6)

Now to consider v′(t):

v′(t) = w1(t) + w2(t)

with

w1(t) = v′1(t)v2(t)a,

w2(t) = v1(t)v′2(t)a. (4.7)

To prove that
cv′ ∈ L p(A), (4.8)

it is sufficient to prove
cw1 ∈ L p(A). (4.9)

The second step in the proof of Theorem 2.2, gives

v′i (t) = �ivi (t) − t−2
∫ t

0
(Gi (τ ) − I ) dτ,

and thus

w1 = w1
1 + w2

1, w1
1(t) = �1v1(t)v2(t)a,

w2
1(t) = t−2

∫ t

0
(G1(τ ) − I ) v2(τ )adτ .

But (4.6), implies cw1
1 ∈ L p(A), and it remains only to estimate w2

1. Since‖v2(t)‖ < M2, we have

∣
∣
∣w2

1(t)
∣
∣
∣ ≤ M2t−1

∫ t

0
t−1 |G(τ )a − a| dτ ≤ M2t−1

∫ t

0
τ−1 |G(τ )a − a| dτ ,

so that, from the definition of the space �(p, c,�1, . . . , �ν) and from the weighted
Hardy inequality, we obtain cw2

1 ∈ L p(A). Thus (4.8) is proved.
Finally as in the proof of Theorem 2.2, we could define u ∈ W (p, c,�1, . . . , �ν)

by u(t) = 
(t)v(t) with u(0) = a.

123



Intermediate weighted spaces and domains of semi-groups 253

Example 4.4 We consider the space A = Lq(Rn). Let x = (x1, . . . , xn) ∈ Rn and
denote by

�i = ∂/∂xi

the infinitesimal generator of the semi-group defined by

Gi (t) f (x) = f (x1, . . . , xi−1, xi + t, xi+1, . . . , xn).

The hypothesis of Theorem 4.3 is satisfied, and the space

D(�1, . . . , �n)=W 1,q(Rn) = { f ; f ∈ Lq(Rn), ∂ f/∂xi ∈ Lq(Rn), i = 1, . . . , n}

is the usual Sobolev space of order 1 (see [16]).

Let � = {x, t; t ≥ 0) ⊂ Rn
x × Rt , and assume that f ∈ L p

t [L p
x (�t )] �

∫ ∞
0

(∫
Rn

x
| f (x, t)|qdx

)p/q
dt . Then “u ∈ W (p, c,�1, . . . , �n)” is equivalent to

cu, c(∂u/∂xi ) ∈ L p
t [L p

x (Rn)] i = 1, . . . , n, c(∂u/∂t) ∈ L p
t [L p

x (Rn)], (4.10)

and Theorem 4.3 shows that the mapping u−→u(x, o) is continuous from the space
of u satisfying (4.10) onto the functions f such that

f ∈ Lq(Rn
x ) (4.11)

∫ ∞

0
[t−1c(t)]p

(∫

Rn
x

| f (x1, . . . , xi + t, . . . , xn) − f (x)|q dx

)p/q

< ∞, ∀i = 1, . . . , n. (4.12)

For p = q , c(t) ≡ 1, the result is given in Gagliardo [9] where the case p = 1 is
solved. For c(t) = tα, α + 1/p ∈]0, 1[ (where tα ∈ H(p) and t−α ∈ H(p′)). See,
for example, the discussion by: Lions [12], Peetre [16] and also Slobodetskii [17], and
Vacherin [20] (p = q = 2, α ∈ (0, 1/2). Nevertheless, as far as the present author is
aware, there are few, if any, results for weights spaces belonging generally toH(p).

5 Intermediate mean spaces between D(�m) and A

Let �, G(t), satisfying the SG-condition. For m ∈ N , m ≥ 1 we denote by D(�m),
the space of a ∈ D(�), such that�a ∈ D(�), . . . , �m−1a ∈ D(�), which equipped
with the graph norm:

m∑

i=0

∣
∣
∣�i a

∣
∣
∣,

is a Banach space.
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The main Lemma of Lions ([13, pp. 53–54]) uses the notion of distribution semi-
groups, and is reproduced as lemma below.

Lemma 5.1 Let α ∈ N , α ≥ 1 be given. Consider μ ∈ N , μ ≥ α + 1, and put
kα,μ = ∫ ∞

0 t−(α+1)
(
1 − e−t

)μ
dt.

On the other hand let a ∈ A such that

Lim
ε−→+0

∫ ∞

ε

t−(α+1)(I − G(t)μ · adt, exists.

Therefore a ∈ D(�α) and

Lim
ε−→+0

(−1)α

kα,μ

∫ ∞

ε

t−(α+1) (I − G(t))μ · adt = �α(a). (5.1)

Now we return to Theorem 3.6 where we change D(�) in D(�m) and θ in mθ . We
have

Theorem 5.2 Assume that G(t) satisfies the SG-condition, and (3.13) with 1 ≤ p ≤
∞, and also that ĉ ∈ H(p), [ĉ]−1 ∈ H(p′).

Then the following conditions are equivalent:
(1) a ∈ �̂(p, θm, , ĉ, D(�m); p, (θ − 1)m, ĉ, A),
(2) a ∈ �θm,
(3) a ∈ Sθm.

We have
�θm = {a ∈ A, t−(1−θ)mĉ (I − G(t))m a ∈ L p(A)}, (5.2)

and Sθm is the space of a ∈ A, such that a function v can be found with values a.e. in
D(�m) such that

∫ ∞

0

v(t)

t
dt = a in A, and tmθ ĉ (I − G(t))−m �mv(t) ∈ L p(A). (5.3)

Proof First we use the homogeneity result of [2], which states

�̂(p, θm, ĉ, D(�m); p, (θ − 1)m, ĉ, A) = �̂ p, θ, ĉ, D(�m); p, θ − 1), ĉ, A).

Then the same proof as that for Theorem 3.6 (upto some obvious modifications)
shows (1)�⇒(2) and (3)�⇒(1). To prove that (2)�⇒(3), define v(t) = kt−m(I −
G(t))2m�−ma, with k = (−1)m/K2m,m (notation of the Lemma 5.1). The proof is
analogous to that of Theorem 3.6 on using the Lemma 5.1.

Now when
(1 − θ)m = α, (5.4)

Theorem 5.2 gives

D(�α) = �̂(p, θ, ĉ, D(�m); p, θ − 1, ĉ, A), (5.5)

with equivalent norm.
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Let Xi = �̂(p, θi , ĉ, D(�m); p, θi −1, ĉ, A), i = 0, 1. From the reiteration result
for “mean weighted spaces” (see [2, Proposition 6.7]), we have

�̂(p, ξ0, ĉ, D(�m); p, ξ1, ĉ, A) = �̂(p, η0, ĉ, X0; p, η1, ĉ, X1), (5.6)

where

θ = ξ0

ξ0 − ξ1
, θ0 < θ < θ1, ηi = (ξ0 − ξ1)(θ − θi ), i = 0, 1. (5.7)

On choosing (1− θ0)m = j + 1 (resp. (1− θ1)m = j) to give X0 = D(� j+1) (resp.
X1 = D(� j )) and on taking ξ0 = θ , (resp. ξ1 = θ − 1) in (5.6) we can claim

Theorem 5.3 Assume, (1 − θ)m = j + η, 0 < j ∈ N , 0 < η < 1, then

�̂(p, θ, ĉ, D(�m); p, θ − 1, ĉ, A) = �̂(p, 1 − η, ĉ, D(� j+1); p,−η, ĉ, D(� j )),

(5.8)
with equivalent norms.

Moreover, � being an isomorphism from D(�) onto A,from (3.10), we obtain

�̂(p, θ, ĉ, D(�m); p, θ − 1, ĉ, A)

= {a; a ∈ D(� j ), � j (a) ∈ �̂(p, 1 − η, ĉ, D(�); p,−η, ĉ, A), (5.9)

with equivalent norms.

For completeness, we must consider now the case where (1 − θ)m ∈ N . Let
(1 − θ)m = j + 1, and define �̂(p, θ, ĉ, D(�m); p, θ − 1, ĉ, A) as an intermediate
space between D(� j+2) and D(� j ). By choosing (1−θ0)m = j+2 (resp. (1−θ1)m =
j , the reiteration theorem gives

�̂(p, θ, ĉ, D(�m); p, θ − 1, ĉ, A) = �̂(p, η0, ĉ, D(� j+2); p, η1, ĉ, D(� j )),

where

η0 = θ − θ0, η1 = θ − θ1.

Since mη0 = 1, mη1 = −1, we therefore have

�̂(p, θ, ĉ, D(�m); p, θ − 1, ĉ, A = �̂(p,
1

2
, ĉ, D(� j+2); p,−1

2
, ĉ, D(� j ))

and as � j is an isomorphism from �̂(p, 1
2 , ĉ, D(� j+2), p,− 1

2 , ĉ, D(� j )) onto the
space

�̂(p,
1

2
, ĉ, D(�2); p,−1

2
, ĉ, A),

we have proved:
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Theorem 5.4 Assume (1 − θ)m ∈ N. The choice (1 − θ)m = j = 1, leads to the
relation

�̂(p, θ, ĉ, D(�m); p, θ − 1, ĉ, A)

= {a; a ∈ D(� j ),� j (a) ∈ �̂(p,
1

2
, ĉ, D(�2); p,−1

2
, ĉ, A)}.

Moreover the norms

|a|
�̂(p,θ,ĉ,D(�m );p,θ−1,ĉ,A)

and |a|D(� j ) +
∣
∣
∣� j a

∣
∣
∣
�̂(p, 12 ,ĉ,D(�2);p,− 1

2 ,ĉ,A)

are equivalent.

Example 5.5 We can consider as in Example 4.4, the case of A = Lq(Rn), 1 < q <

∞ along with the operators

�i = ∂/∂xi , i = 1, . . . , n

which are infinitesimal generators of

Gi (t) f (x) = f (x1, . . . , xi−1, xi + t, xi+1, . . . , xn).

In consequence

D(�i ) = {v; v ∈ Lq(Rn),
∂v

∂xi
∈ Lq(Rn)}

and D(�) = D(�1, . . . , �n) = W 1,q(Rn).

Then denote by D(�m), the space of v ∈ A, with �α1v, . . . , �
αn
n v ∈

Lq(Rn), ∀(α1, . . . , αn), such that α1 + · · · + αn ≤ m, and αi ∈ N , αi ≥ 0. This
gives

D(�m) = W m,q(Rn) = {v; Dαv ∈ Lq(Rn), |α| ≤ m} (5.10)

which is a Sobolev space provided with the usual norm

∑

|α|≤m

∣
∣Dαv

∣
∣
L p(Rn)

.

If we consider the case where c ≡ 1 (called the unweighted case) and put

�̂(p, θ, t−1/p, W m,q(Rn); p, θ − 1, t−1/p, Lq(Rn) = B(1−θ)m,q(Rn) (5.11)

with (1 − θ)m = j + η, j ∈ N , 0 < η < 1, then [13] implies

a ∈ B(1−θ)m,q(Rn)
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which means

(i) v ∈ W j,q(Rn),

(ii) ∀α, |α| = j, and ∀i, t−(1/p+η)
(
Gi (t)Dαv − Dαv

) ∈ L p
t (Lq

x (Rn).

The spaces B(1−θ)m,q(Rn) are Besov spaces (see [18]).
In our case when we put for instance m = 1, Theorem 3.6 yields

�̂(p, θ, ĉ, W 1,q(Rn); p, θ − 1, ĉ, Lq(Rn) = B(1−θ)m,q
c (Rn), (5.12)

where formally a ∈ B1−θ,q
c (Rn) means:

(i) a ∈ W 1,q(Rn)

(ii) ∀i ∈ {1, . . . , n}, t−(1−θ)ĉ (a − Gi (t)a) ∈ L p
t [Lq

x (Rn).

Thus the interpretation of applications in terms of intermediate mean spaces leads
to the introduction of some weighted types of Besov spaces whose the properties are
unknown at the least to the present author.
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