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Abstract Volterra’s model for population growth in a closed system includes an inte-
gral term to indicate accumulated toxicity in addition to the usual terms of the logistic
equation, that occurs in ecology. In this paper, a new numerical approximation is
introduced for solving this model of arbitrary (integer or fractional) order. The pro-
posed numerical approach is based on the generalized fractional order Chebyshev
orthogonal functions of the first kind and the collocation method. Accordingly, we
employ a collocation approach, by computing through Volterra’s population model
in the integro-differential form. This method reduces the solution of a problem to
the solution of a nonlinear system of algebraic equations. To illustrate the reliability
of this method, we compare the numerical results of the present method with some
well-known results in order to show that the new method is efficient and applicable.
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1 Introduction

In this section, Spectral methods and some basic definitions and theorems which are
useful for our method have been introduced.
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1.1 Spectral methods

Spectral methods have been developed rapidly in the past two decades. They have
been successfully applied to numerical simulations in many fields, such as heat con-
duction, fluid dynamics, quantum mechanics etc. These methods are powerful tools
to solve differential equations. The key components of their formulation are the trial
functions and the test functions. The trial functions, which are the linear combinations
of suitable trial basis functions, are used to provide an approximate representation of
the solution. The test functions are used to ensure that the differential equation and
perhaps some boundary conditions are satisfied as closely as possible by the truncated
series expansion. This is achieved byminimizing the residual function that is produced
by using the truncated expansion instead of the exact solution with respect to a suitable
norm [1–10].

1.2 Basical definitions

In this section some basic definitions and theorems which are useful for our method
have been introduced [11].

Definition 1 For any real function f (t), t > 0, if there exists a real number p > μ,
such that f (t) = t p f1(t), where f1(t) ∈ C(0,∞), is said to be in space Cμ, μ ∈ �,
and it is in the space Cn

μ if and only if f n ∈ Cμ, n ∈ N .

Definition 2 The fractional derivative of f (t) in the Caputo sense by the Riemann–
Liouville fractional integral operator of order α > 0 is defined as [12,13]:

Dα f (t) = 1

�(m − α)

∫ t

0
(t − s)m−α−1Dm f (s)ds, α > 0,

for m − 1 < α ≤ m, m ∈ N , t > 0, m is the smallest integer greater than α, and
f ∈ Cm−1.

Some properties of the operator Dα are as follows. For f ∈ Cμ,μ ≥ −1, α, β ≥ 0,
γ ≥ −1, N0 = {0, 1, 2, · · · } and constant C :

(i) DαC = 0,

(i i) DαDβ f (t) = Dα+β f (t), (1)

(i i i) Dαtγ =
⎧⎨
⎩
0 γ ∈ N0 and γ < �α�,

�(γ+1)
�(γ−α+1) t

γ−α, γ ∈ N0 and γ ≥ �α� or γ /∈ N and γ > 	α
.
(2)

(iv) Dα(

n∑
i=1

ci fi (t)) =
n∑

i=1

ci D
α fi (t), where ci ∈ R. (3)

123



Solving Volterra’s population growth model of arbitrary order… 309

Definition 3 Suppose that f, g ∈ C[0, η] and w(t) is a weight function, then

‖ f (t) ‖2w =
∫ η

0
f 2(t)w(t)dt,

〈 f (t), g(t)〉w =
∫ η

0
f (t)g(t)w(t)dt.

Theorem 1 (Generalized Taylor’s formula) Suppose that f (t) ∈ C[0, η] and
Dkα f (t) ∈ C[0, η], where k = 0, 1, . . . ,m, 0 < α ≤ 1 and η > 0. Then we
have

f (t) =
m−1∑
i=0

t iα

�(iα + 1)
Diα f (0+) + tmα

�(mα + 1)
Dmα f (ξ), (4)

with 0 < ξ ≤ t, ∀t ∈ [0, η]. And thus

| f (t) −
m−1∑
i=0

t iα

�(iα + 1)
Diα f (0+)| ≤ Mα

tmα

�(mα + 1)
, (5)

where Mα ≥ |Dmα f (ξ)|.
Proof See Ref. [14].

In case of α = 1, the generalized Taylor’s formula (4) reduces to the classical
Taylors formula. ��
Theorem 2 Suppose that {Pi (t)} be a sequence of orthogonal polynomials, w(t) is
weight function for {Pi (t)}, and q(t) is a polynomial of degree at most n − 1, then for
pn(t) ∈ {Pi (t)} we have: 〈pn(t), q(t)〉w = 0.

Proof See the Section 2.3 in Ref. [15].
The organization of paper is expressed as follows: in Sect. 2, we express the mathe-

matical Preliminaries onVolterra’s populationmodel of arbitrary (integer or fractional)
order. In Sect. 3, we obtain the GFCFs and their properties. In Sect. 4, the proposed
method is applied to the Volterra’s population model of arbitrary order. Results and
discussion of the proposed method is shown in Sect. 5 and a comparison is made with
the approximate solutions that were reported in other published works in the literature.
Finally, we give a brief conclusion in the last section. ��

2 Mathematical preliminaries on Volterra’s population model

In this section, the mathematical preliminaries on Volterra’s population model of arbi-
trary (integer or fractional) order have been introduced.

2.1 Volterra’s population model of integer order

Attempts to explain the balance of nature throughmathematics began to appear around
the turn of the century. A simple set of differential equations to describe malaria
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epidemics was proposed by Ross [16]. Martini improved these equations by allowing
for the immunity of individuals who had recovered from infection [17]. A further
refinement, the incubation lag, was introduced by Lotka and Sharp [18]. In 1925,
Lotka [19] published his Elements of Physical Biology. In this work, the interaction
between two species is accounted for by a system of quadratic differential equations
[19]

dp1(t)

dt
= (ε1 + γ1 p2(t))p1(t), (6)

dp2(t)

dt
= (ε2 + γ2 p1(t))p2(t), (7)

where the ε are the coefficients of self-increase, the γ account for the interactions, and
the p1(t), p2(t) are population sizes.

This system can be represented by the integro-differential equation [20]

dp(t)

dt
=
(

ε − λp(t) − μ

∫ t

0
p(τ )dτ

)
p(t), (8)

p(0) = p0, (9)

where μ > 0 is the toxicity coefficient and p0 is the initial population.
This model includes the well-known terms of a logistic equation, and, in addition, it
includes an integral term μp(t)

∫ t
0 p(τ )dτ that characterizes the accumulated toxicity

produced since time zero [21,22]. A dimensionalization is under taken as follows:

t = tμ

λ
, u = pμ

ε
,

to obtain the non-dimensional problem

κ
du

dt
= u − u2 − u

∫ t

0
u(x)dx, (10)

u(0) = u0, (11)

where u(t) is the scaled population of the identical individuals at time t and κ = μ
ελ

is a
prescribed non-dimensional parameter. The equilibrium points are the trivial solution
u(t) = 0 and the analytical solution of Eq. (10) [21]

u(t) = u0exp

(
1

κ

∫ t

0

[
1 − u(τ ) −

∫ τ

0
u(x)dx

]
dτ

)
,

shows that u(t) > 0 for all t if u0 > 0.
Although a closed form solution has been achieved in [21,22], it was formally

shown that the closed form solution cannot lead to any insight into the behavior of the
population evolution [23]. Therefore, the solution of Eq. (10) is one of considerable
problems. Some researchers have worked on this problem; for example, Scudo [20]
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by the successive approximation method was offered. TeBeest [21] by three numerical
algorithms, namely the Euler method, the modified Euler method and a fourth order
Rung-Kuttamethod, have beenused forEq. (10).Recently, some researchers employed
spectral methods to solve Volterra’s population model for example [24–29]; also,
some researchers have used the analytical methods for approximating this problem,
for example [30–33].

2.2 Volterra’s population model of fractional order

Volterra’s population growth model of fractional order has been introduced as follows

κ
dαu

dtα
= u − u2 − u

∫ t

0
u(x)dx, (12)

u(0) = u0, (13)

where 0 < α ≤ 1.
Some researchers haveworked on this problem; for example, Erturk et al. [34] by the

differential transformmethod and Pade approximates, Momani et al. [35] by Adomian
decomposition method and Pade approximates, Yuzbasi [36] and Parand et al. [37]
by the Bessel collocation method, Maleki et al. [38] by multi-domain pseudospectral
method, and Khan et al. [39] and Ghasemi et al. [40] by homotopy method and Pade
approximates.

In this paper, we attempt to introduce a new method, based on the generalized
fractional order of the Chebyshev orthogonal functions (GFCFs) of the first kind for
solving theVolterra’smodel for population growthof arbitrary order in a closed system.

3 Generalized fractional order of the Chebyshev functions

In this section, first, the generalized fractional order of the Chebyshev functions
(GFCF) have been defined, and then some properties and convergence of them for
our method have been introduced.

3.1 The Chebyshev functions

The Chebyshev polynomials have been used in numerical analysis, frequently, includ-
ing polynomial approximation, Gauss-quadrature integration, integral and differential
equations and spectral methods. Chebyshev polynomials have many properties, for
example orthogonal, recursive, simple real roots, complete for the space of polyno-
mials. For these reasons, many researchers have employed these polynomials in their
research [41–46].

The number of researchers using some transformations extended Chebyshev poly-
nomials to semi-infinite or infinite domain, for example by using x = t−L

t+L , L > 0 the
rational functions introduced [47–52].
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In proposed work, by transformation z = 1 − 2( t
η
)α , α > 0 on the Chebyshev

polynomials of the first kind, the fractional order of the Chebyshev orthogonal func-
tions in interval [0, η] have been introduced, that they can use to solve the Volterra’s
population model of arbitrary (integer or fractional) order.

3.2 The GFCFs definition

The efficient methods have been used by many researchers to solve the differential
equations (DE) is based on series expansion of the form

∑n
i=0 ci t

i , such as Adomian
decomposition method [53] and Homotopy perturbation method [54]. But exact solu-
tion of many DEs can’t be estimated by polynomials basis. Therefore we have defined
a new basis for Spectral methods to solve them as follows:

�n(t) =
n∑

i=0

ci t
iα.

Now by transformation z = 1 − 2( t
η
)α , α, η > 0 on classical Chebyshev polyno-

mials of the first kind, we defined the GFCFs in interval [0, η], that be denoted by
ηFT α

n (t) = Tn(1 − 2( t
η
)α).

By this definition the singular Sturm-Liouville differential equation of classical
Chebyshev polynomials become:

√
ηα − tα

t
α
2 −1

d

dt

[√
ηα − tα

t
α
2 −1

d

dt
ηFT

α
n (t)

]
+ n2α2

ηFT
α
n (t) = 0, t ∈ [0, η]. (14)

The ηFT α
n (t) can be obtained using recursive relation as follows (n = 1, 2, . . .):

ηFT
α
0 (t) = 1, ηFT

α
1 (t) = 1 − 2(

t

η
)α,

ηFT
α
n+1(t) =

(
2 − 4

(
t

η

)α)
ηFT

α
n (t) − ηFT

α
n−1(t).

The analytical form of ηFT α
n (t) of degree nα given by

ηFT
α
n (t) =

n∑
k=0

(−1)k
n22k(n + k − 1)!

(n − k)!(2k)!
(
t

η

)αk

=
n∑

k=0

βn,k,η,α.tαk, t ∈ [0, η], (15)

where

βn,k,η,α = (−1)k
n22k(n + k − 1)!
(n − k)!(2k)!ηαk

and β0,k,η,α = 1.
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(a) (b)

Fig. 1 Graphs of the GFCFs for various values of n and α. a Graph of the GFCFs with α = 0.25 and
various values of n. b Graph of the GFCFs with n = 5 and various values of α

Note that ηFT α
n (0) = 1 and ηFT α

n (η) = (−1)n .

The GFCFs are orthogonal with respect to the weight function w(t) = t
α
2 −1√

ηα−tα
in

the interval [0, η]:
∫ η

0
ηFT

α
n (t) ηFT

α
m (t)w(t)dt = π

2α
cnδmn . (16)

where δmn is Kronecker delta, c0 = 2, and cn = 1 for n ≥ 1. Equation (16) is provable
using properties of orthogonality in the Chebyshev polynomials.

The pictures in Fig. 1 shown graphs of GFCFs for various values of n and α and
η = 5.

3.3 Approximation of functions

Any function y(t), t ∈ [0, η], can be expanded as the follows:

y(t) =
∞∑
n=0

an ηFT
α
n (t),

where the coefficients an obtain by inner product:

〈
y(t), ηFT

α
n (t)

〉
w

=
〈 ∞∑
n=0

an ηFT
α
n (t), ηFT

α
n (t)

〉

w

and using property of orthogonality in the GFCFs:

an = 2α

πcn

∫ η

0
ηFT

α
n (t)y(t)w(t)dt, n = 0, 1, 2, . . . .
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In practice, we have to use first m-terms GFCFs and approximate y(t):

y(t) � ym(t) =
m−1∑
n=0

an ηFT
α
n (t) = AT�(t), (17)

with

A = [
a0, a1, . . . , am−1

]T
, (18)

�(t) = [
ηFT

α
0 (t), ηFT

α
1 (t), . . . , ηFT

α
m−1(t)

]T
. (19)

3.4 Convergence of method

The following theorem shows that by increasing m, the approximation solution fm(t)
is convergent to f (t) exponentially.

Theorem 3 Suppose that Dkα f (t) ∈ C[0, η] for k = 0, 1, ...,m, and ηFα
m is the

subspace generated by {ηFT α
0 (t),η FT α

1 (t), . . . ,η FT α
m−1(t)}. If fm = AT� (in Eq.

(17)) is the best approximation to f (t) from ηFα
m, then the error bound is presented

as follows

‖ f (t) − fm(t) ‖w ≤ ηmαMα

2m�(mα + 1)

√
π

α.m! ,

where Mα ≥ |Dmα f (t)|, t ∈ [0, η].

Proof By theorem 1, y = ∑m−1
i=0

t iα
�(iα+1) D

iα f (0+) and

| f (t) − y(t)| ≤ Mα

tmα

�(mα + 1)
,

since AT�(t) is the best approximation to f (t) from ηFα
m , and y ∈ ηFα

m , one has

‖ f (t) − fm(t) ‖2w ≤ ‖ f (t) − y(t) ‖2w
≤ M2

α

�(mα + 1)2

∫ η

0

t
α
2 +2mα−1

√
ηα − tα

dt

= M2
α

�(mα + 1)2
η2mαπ

α22mm! .

Now by taking the square roots, the theorem can be proved. ��
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Theorem 4 The generalized fractional order of the Chebyshev function ηFT α
n (t), has

precisely n real zeros on interval (0, η) in the form

tk = η

⎛
⎝1 − cos

(
(2k−1)π

2n

)

2

⎞
⎠

1
α

, k = 1, 2, . . . , n.

Moreover, d
dt ηFT

α
n (t) has precisely n−1 real zeros on interval (0, η) in the following

points:

t ′k = η

(
1 − cos( kπn )

2

) 1
α

, k = 1, 2, . . . , n − 1.

Proof The Chebyshev polynomial Tn(x) has n real zeros [55,56]:

xk = cos

(
(2k − 1)π

2n

)
, k = 1, 2, . . . , n,

therefore Tn(x) can be written as

Tn(x) = (x − x1)(x − x2) · · · (x − xn).

Using transformation x = 1 − 2( t
η
)α yields to

FT α
n (t) =

((
1 − 2

(
t

η

)α)
− x1

)((
1 − 2

(
t

η

)α)
− x2

)
· · ·

((
1 − 2

(
t

η

)α)
− xn

)
,

so, the real zeros of ηFT α
n (t) are tk = η(

1−xk
2 )

1
α .

Also, the real zeros of d
dt Tn(t) occurs in the following points [55]:

x ′
k = cos

(
kπ

n

)
, k = 1, 2, . . . , n − 1.

Same as in previous, the absolute extremes of ηFT α
n (t) are t ′k = η(

1−x ′
k

2 )
1
α . ��

3.5 The fractional derivative operational matrix of GFCFs

In the next theorem, we generalize the operational matrix of the Caputo fractional
derivative of order α > 0 for GFCFs, which can be expressed by:

Dα�(t) = D(α)�(t). (20)
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Theorem 5 Let�(t) be GFCFs vector in Eq. (19), and D(α) is an m×m operational
matrix of the Caputo fractional derivatives of order α > 0, then:

D(α)
i, j =

⎧⎪⎪⎨
⎪⎪⎩

2√
πc j

∑i
k=1

∑ j
s=0 βi,k,η,αβ j,s,η,α

�(αk+1)�
(
s+k− 1

2

)
ηα(k+s−1)

�(αk−α+1)�(s+k) , i > j

0 otherwise
(21)

for i, j = 0, 1, . . . ,m − 1.

Proof Using Eq. (20)

⎡
⎢⎢⎢⎢⎢⎢⎣

D0,0 · · · D0, j · · · D0,m−1
...

...
...

...
...

Di,0 · · · Di, j · · · Di,m−1
...

...
...

...
...

Dm−1,0 · · · Dm−1, j · · · Dm,m−1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

�0
...

� j
...

�m−1

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

Dα�0
...

Dα�i
...

Dα�m−1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

By orthogonality property of the GFCFs, and the Eqs. (2) and (15), for i, j =
0, 1, . . . ,m − 1:

D(α)
i, j = 2α

πc j

∫ η

0
Dα
(
ηFT

α
i (t)

) (
ηFT

α
j (t)

)
w(t)dt.

Since DαFT α
0 (t) = 0, therefore D(α)

0, j = ∫ η

0 DαFT α
0 (t)FT α

j (t)w(t)dt = 0. And if

i ≤ j then deg(Dα(ηFT α
i (t))) < deg(ηFT α

j (t)), therefore by theorem 2, D(α)
i, j = 0

for any i ≤ j . Now for i > j we have:

D(α)
i, j = 2α

πc j

∫ η

0

i∑
k=1

βi,k,η,α

�(αk + 1)tαk−α

�(αk − α + 1)

j∑
s=0

β j,s,η,αt
αs t

α
2 −1

√
ηα − tα

dt

= 2α

πc j

i∑
k=1

j∑
s=0

βi,k,η,αβ j,s,η,α

�(αk + 1)

�(αk − α + 1)

∫ η

0

tα(k+s− 1
2 )−1

√
ηα − tα

dt.

Now, by integration of above equation, the theorem can be proves. ��
Remark The fractional derivative operational matrix of GFCFs is an lower-triangular
matrix and for α = 1, η = 1 is same as shifted Chebyshev polynomials [57].

4 Application of the method

In this section, we apply the GFCFs collocation method to solve the Volterra’s popu-
lation model of arbitrary order.
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1. Volterra’s population model of integer order: for satisfying the boundary con-
dition, we satisfy condition (11) by multiplying the operator (17) by t and adding
it to u0 as follows:

ŷm(t) = u0 + t ym(t), (22)

where ym(t) is defined in Eq. (17). Now, ŷm(t) = u0 when t tends to zero, so that
the condition (11) is satisfied.

To apply the collocation method, we construct the residual function by substi-
tuting ŷm(t) in Eq. (22) for u(t) in the Volterra’s population model Eq. (10):

Res(t) = κ
d ̂ym(t)

dt
− ̂ym(t) + ̂ym(t)

2 + ̂ym(t)
∫ t

0

̂ym(x)(x)dx . (23)

The equations for obtaining the coefficient {ai }m−1
i=0 arise from equalizing Res(t)

to zero on m collocation points:

Res(ti ) = 0, i = 0, 1, . . . ,m − 1.

2. Volterra’s population model of fractional order: to apply the collocation
method, we construct the residual function by substituting ym(t) = AT�(t) in

Table 1 Values of umax by the present method and comparison with exact values

κ m Critical t Exact umax Present method Abs. Err.

0.02 40 0.1245628334 0.9234271720702180 0.9234271720702179 1.637e−16

0.04 60 0.2233159574 0.8737199831539954 0.8737199831539963 8.585e−16

0.10 55 0.4742349274 0.7697414907005954 0.7697414907005952 1.870e−16

0.20 60 0.8215380043 0.6590503815523149 0.6590503815523095 5.428e−15

0.40 50 1.3852043200 0.5285380014633415 0.5285380014633421 6.121e−16

0.50 45 1.6259467670 0.4851902914094208 0.4851902914094068 1.407e−14

0.70 40 2.0510984524 0.4213249987708724 0.4213249987708724 2.272e−17

Table 2 Values of umax by present method and [23,26,27], comparison with exact values

κ Present method Bessel [27] RBF [26] ADM [23]

0.02 0.9234271720702179 0.923427172060 0.9234271721 0.9038380533

0.04 0.8737199831539963 0.873719983153 0.8737199832 0.8612401770

0.10 0.7697414907005952 0.769741490700 0.7697414907 0.7651130834

0.20 0.6590503815523095 0.659050381552 0.6590503815 0.6579123080

0.40 0.5285380014633421

0.50 0.4851902914094068 0.485190291408 0.4851902914 0.4852823482

0.70 0.4213249987708724
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Eq. (17) for u(t) in the Volterra’s population model of fractional order Eq. (12):

Res(t) = κAT D(α)�(t) − AT�(t) + (AT�(t))2 + AT�(t)
∫ t

0
AT�(x)dx,

(24)

where D(α) is defined in Eq. (20).
The equations for obtaining the coefficient {ai }m−1

i=0 arise from equalizing Res(t)
to zero on m − 1 collocation points:

Res(ti ) = 0, i = 1, 2, . . . ,m − 1,

and the initial condition

AT�(0) = u0.

In this study, we used the roots of the GFCFs in the interval [0, η] (Theorem
4), as collocation points. By solving the obtained set of equations, we have the
approximating function ŷm(t).
And also consider that all of the computations have been done by Maple 18 on a
laptop with CPU Core i7, Windows 8.1 64bit, and 8GB of RAM.

Tau-Collocation algorithm

To obtain the Spectral coefficients {ai }m−1
i=0 in the Eq. (17) and approximate of ym(t),

we define the Tau-Collocation algorithm as follows:

Table 3 Convergence of the method with κ = 0.70, κ = 0.50 and α = 0.25 by umax

m Obtained umax κ = 0.7 Abs. Err. m Obtained umax κ = 0.5 Abs. Err.

10 0.4213620931546095 3.709e−05 10 0.486052203262733 8.619e−04

20 0.4213250901693791 9.139e−08 20 0.485194794786708 4.503e−06

35 0.4213249987704617 4.106e−13 40 0.485190291405426 3.994e−12

40 0.4213249987708724 2.272e−17 45 0.485190291409406 1.407e−14

Table 4 Convergence of the method with κ = 0.2, κ = 0.02 and α = 0.50 by umax

m Obtained umax κ = 0.2 Abs. Err. m Obtained umax κ = 0.02 Abs. Err.

15 0.659101110345644 5.072e−05 10 0.9234372274866364 1.005e−05

20 0.659056216308113 5.834e−06 20 0.9234271754507209 3.380e−09

50 0.659050381553408 1.093e−12 30 0.9234271720705592 3.411e−13

60 0.659050381552309 5.428e−15 40 0.9234271720702179 1.637e−16
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Table 5 Convergence of the method with κ = 0.10, κ = 0.04 and α = 0.25 by umax

m Obtained umax κ = 0.1 Abs. Err. m Obtained umax κ = 0.04 Abs. Err.

10 0.7686320613126001 1.109e−03 10 0.8743734228876741 6.534e−04

20 0.7697402823431305 1.208e−06 20 0.8737259778055016 5.994e−06

30 0.7697414951183095 4.417e−09 30 0.8737200353741775 5.222e−08

40 0.7697414906970684 3.526e−12 40 0.8737199834681474 3.141e−10

55 0.7697414907005952 1.870e−16 60 0.8737199831539963 8.585e−16

(a)

(b)

Fig. 2 Graphs of Volterra’s population model for various values κ by the present method. a Integer order.
b Fractional order for α = 0.50

BEGIN

1. Construct series in the Eq. (17).
2. If operator of L is integer order then we calculate the function ŷm(t) by the Eq.

(22), else we calculate the operational matrix D(α) by the Eq. (20).
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(a) (b)

Fig. 3 The logarithm absolute error for various values m, to express convergence of the present method.
a κ = 0.20. b κ = 0.70. a The logarithm absolute error κ = 0.20. b The logarithm absolute error κ = 0.70

3. Construct the residual function as follows: if operator of L is integer order then
we calculate Res(t) using the Eq. (23) else using the Eq. (24).
Nowwe havem unknown {ai }m−1

i=0 . To obtain these unknown coefficients, we need
m equations.

4. Choosem points ti , i = 0, 1, . . . ,m−1 in the domain of the problemas collocation
points and substituting them in Res(t), and using the boundary conditions, we
construct a system which contains m nonlinearly independent equations.

5. Solve this system of equations by a suitable method (e.g. Newton’s method) to
find the {ai }m−1

i=0 .

END.
In step 1, according to the Eq. (17), the order of complexity is O(m). In step 2, if

operator of L is integer order then the order of complexity is O(1) else is O(m4). In
step 3, according to the Eqs. (23) and (24), the order of complexity is O(m4). The
order of complexity in step 4 is O(m). The order of complexity in step 5 is dependent
on the method of choice. it is worthwhile to note that it is common to solve a system of
nonlinear equations, is applying the Newton’smethod.We used the command “fsolve”
in the software Maple to solve this system of nonlinear equations, that this software
uses the Newton’s method. Thus, the order of complexity in the above algorithm is at
least O(m4).

5 Results and discussion

In this section, we consider the obtained results with the present method for solving
Volterra’s population models.

5.1 Volterra’s population model of integer order

We solve Eq. (10) with u0 = 0.1 and κ = 0.02, 0.04, 0.1, 0.2, 0.4, 0.5 and 0.7.
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Table 6 Values of umax by the present method for Volterra’s model of fractional order

κ m Critical t Obtained umax Res. Err.

0.01 7 0.071179571035 0.966070978818 2.6606e−3

0.10 7 0.144217100236 0.760316997861 6.7219e−5

0.20 7 0.328579609811 0.626359461356 7.3170e−3

0.50 10 0.829001700984 0.425308907427 1.8068e−4

0.90 10 1.456041443677 0.295409839572 1.3270e−3

2.50 10 2.813613343449 0.166346253136 3.4555e−5

Table 7 Values of obtained ym (t) from solving Volterra’s population model of fractional order by the
present method with κ = 0.01 and m = 7

t α = 0.50 α = 0.75 α = 0.90

ym (t) |Res(t)| ym (t) |Res(t)| ym (t) |Res(t)|
0.25 0.7839448447 7.190e−3 0.8603035748 4.200e−2 0.7961465414 3.957e−2

0.50 0.5846462367 1.520e−2 0.6658100068 2.421e−2 0.7337195833 5.093e−2

0.75 0.4707121516 5.068e−3 0.4741979498 8.387e−3 0.5366839359 1.370e−2

1.00 0.3852676893 3.404e−3 0.3581147304 1.109e−2 0.3759395805 8.799e−3

1.25 0.3087726634 5.204e−3 0.2937246989 3.972e−3 0.2825016363 9.333e−3

1.50 0.2390213341 3.044e−3 0.2491664705 2.368e−3 0.2356862450 3.005e−3

1.75 0.1795251537 3.936e−4 0.2053072965 4.221e−3 0.2050448132 2.410e−3

2.00 0.1339491033 1.012e−3 0.1579055132 2.371e−3 0.1703341975 3.620e−3

2.25 0.1034278670 1.109e−3 0.1131307675 2.964e−4 0.1279835636 1.491e−3

2.50 0.0852804652 5.109e−4 0.0804349852 8.966e−4 0.0880324236 4.246e−4

2.75 0.0724340944 5.965e−6 0.0643600116 4.131e−4 0.0637547716 4.213e−4

3.00 0.0532200015 6.3e11−4 0.0559812395 7.7e49−7 0.0553498772 2.0e28−4

Weobtain the approximation function ŷm(t). Then,we evaluate the important values
umax , that obtained by TeBeest [21]:

umax = 1 + κln

(
κ

1 + κ + u0

)
. (25)

Table 1 represents the obtained values umax of the GFCF collocation method and
it compares with umax exact values. We can see the approximate solution is in a very
good accuracy with the exact solution.

Wazwaz [23] has calculated an analytical approximation by using the Adomian
decomposition method, and Parand et al. [26,27] have calculated the numerical
approximations by using radial basis functions and the modified Bessel functions,
respectively. Table 2 represents the obtained values umax of GFCF collocation method
and obtained values by [23,26,27] and compare them with each other. In Refs.
[23,26,27] the values for κ = 0.40 and 0.70 have not been calculated. We can see that
the obtained values by the present method have very good accuracy.
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Table 8 Values of obtained ym (t) from solving Volterra’s population model of fractional order by the
present method with κ = 0.10 and m = 7

t α = 0.50 α = 0.75 α = 0.90

ym (t) |Res(t)| ym (t) |Res(t)| ym (t) |Res(t)|
0.25 0.7327309110 1.096e−4 0.7665337312 1.105e−2 0.7466387495 1.370e−3

0.50 0.6134554059 1.533e−3 0.6741997450 3.738e−3 0.7359486477 2.234e−2

0.75 0.5033279354 7.03e−38 0.5384750753 6.844e−3 0.5882086039 1.001e−3

1.00 0.4115035980 1.069e−3 0.4323036943 4.432e−3 0.4496288195 1.050e−3

1.25 0.3355532653 9.108e−4 0.3543534489 1.179e−3 0.3528787223 4.621e−3

1.50 0.2732639985 1.356e−4 0.2920971737 3.613e−3 0.2885246072 2.876e−3

1.75 0.2231010719 5.332e−4 0.2372916249 2.099e−3 0.2384157189 4.768e−3

2.00 0.1837217045 6.933e−4 0.1884119060 8.273e−4 0.1910932101 1.333e−3

2.25 0.1535599494 3.196e−4 0.1483988704 2.153e−3 0.1461650297 2.475e−3

2.50 0.1305582655 2.850e−4 0.1205076920 7.333e−4 0.1108956885 2.037e−3

2.75 0.1120087193 5.211e−4 0.1033670513 1.498e−3 0.0908176191 1.624e−3

3.00 0.0944658706 4.997e−4 0.0857408233 1.468e−3 0.0754890072 1.922e−3

Table 9 Values of obtained ym (t) from solving Volterra’s population model of fractional order by the
present method with κ = 0.50 and m = 10

t α = 0.50 α = 0.75 α = 0.90

ym (t) |Res(t)| ym (t) |Res(t)| ym (t) |Res(t)|
0.25 0.2939302894 3.223e−5 0.2034464094 1.881e−3 0.1678119888 2.087e−4

0.50 0.3898552838 6.883e−5 0.3028274669 1.837e−3 0.2493292993 3.357e−4

0.75 0.4236589913 2.923e−4 0.3851856866 5.462e−4 0.3359135029 1.183e−4

1.00 0.4191389301 5.140e−6 0.4336752391 7.426e−4 0.4093142354 3.311e−4

1.25 0.3954010375 2.750e−4 0.4481330338 1.917e−4 0.4550431547 2.322e−4

1.50 0.3639613008 1.124e−4 0.4364284547 4.113e−4 0.4686746344 2.634e−4

1.75 0.3306829264 1.839e−4 0.4083125729 2.017e−5 0.4549883985 2.190e−4

2.00 0.2982135483 1.935e−4 0.3721472160 2.098e−4 0.4232382634 1.864e−4

2.25 0.2677908507 7.580e−5 0.3336957843 5.526e−5 0.3823045128 2.141e−4

2.50 0.2401888416 1.942e−4 0.2962104849 1.103e−4 0.3382781679 2.990e−5

2.75 0.2158392773 1.010e−4 0.2612097290 1.169e−5 0.2949164719 1.439e−4

3.00 0.1942319734 1.815e−4 0.2294738684 6.134e−5 0.2547393156 1.690e−4

Tables 3, 4 and 5 represents the obtained values of umax and the absolute errors for
various values of m to express convergence of the present method.

Figure 2a shows the graphs of solutions of Volterra’s population model of integer
order for various values of κ .

Figure 3 shows the logarithm absolute error for various values ofm and κ to express
convergence of the present method.
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Table 10 Values of obtained ym (t) from solving Volterra’s population model of fractional order by the
present method with κ = 2.50 and m = 10

t α = 0.50 α = 0.75 α = 0.90

ym (t) |Res(t)| ym (t) |Res(t)| ym (t) |Res(t)|
0.25 0.1229256068 1.967e−5 0.1145834541 1.458e−4 0.1111711222 1.749e−5

0.50 0.1334421475 4.548e−5 0.1254528041 2.176e−4 0.1213763795 2.853e−5

0.75 0.1414829327 8.655e−7 0.1352676694 1.435e−5 0.1314234036 8.437e−6

1.00 0.1479563540 3.430e−5 0.1443434549 9.331e−5 0.1413454002 1.666e−5

1.25 0.1532058032 3.974e−5 0.1527588553 9.909e−5 0.1510801425 6.514e−6

1.50 0.1574137942 2.515e−5 0.1605083175 5.499e−5 0.1605307577 4.660e−6

1.75 0.1607011556 2.642e−6 0.1675518718 3.783e−6 0.1695836360 8.933e−6

2.00 0.1631609755 1.810e−5 0.1738386791 3.204e−5 0.1781172928 6.559e−6

2.25 0.1648723170 3.143e−5 0.1793199078 4.633e−5 0.1860090578 1.292e−6

2.50 0.1659062816 3.538e−5 0.1839560178 4.255e−5 0.1931411613 3.218e−6

2.75 0.1663288062 3.068e−5 0.1877206720 2.808e−5 0.1994063620 5.072e−6

3.00 0.1662019505 1.969e−5 0.1906024560 1.044e−5 0.2047128751 4.224e−6

(a)

(b)

Fig. 4 Graphs of fractional order for κ = 0.01, m = 7 and various values α. a The approximate solutions.
b The logarithm residual error functions

5.2 Volterra’s population model of fractional order

Thismodel is studiedwith two different approaches by researchers: analyticalmethods
and numerical methods. Erturk et al. [34], Momani et al. [35], Khan et al. [39], and
Ghasemi et al. [40] have used analytical methods to solve this model, and Yuzbasi
[36], Parand et al. [37], and Maleki et al. [38] have used numerical methods to solve
this model. Nowwe solve this model by the GFCFs collocationmethod, with u0 = 0.1
and κ = 0.01, 0.10, 0.20, 0.50, 0.90 and 2.5.

Table 6 represents the obtained values umax of the GFCF collocation method with
α = 0.50 and various values of κ .
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(a)

(b)

Fig. 5 Graphs of fractional order for κ = 0.10, m = 7 and various values α. a The approximate solutions.
b The logarithm residual error functions

(a)

(b)

Fig. 6 Graphs of fractional order for κ = 0.20, m = 7 and various values α. a The approximate solutions.
b The logarithm residual error functions

(a)

(b)

Fig. 7 Graphs of fractional order for κ = 0.50, m = 10 and various values α. a The approximate solutions.
b The logarithm residual error functions

Tables 7, 8, 9 and 10 represents the obtained values of ym(t) and the residual error
for various values of α, κ and t .
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(a)

(b)

Fig. 8 Graphs of fractional order for κ = 0.90, m = 10 and various values α. a The approximate solutions.
b The logarithm residual error functions

(a)

(b)

Fig. 9 Graphs of fractional order for κ = 2.50, m = 10 and various values α. a The approximate solutions.
b The logarithm residual error functions

Figure 2b shows the graphs of solutions of Volterra’s populationmodel of fractional
order for α = 0.50 and various values of κ .

Figures 4, 5, 6, 7, 8 and 9 shows the graphs of solutions of Volterra’s population
model of fractional order for various values of κ and α.

6 Conclusion

Attempts to explain the balance of nature through mathematics began to appear during
the last twodecades.Volterra’smodel for populationgrowth in a closed system includes
an integral term to indicate the accumulated toxicity in addition to the usual terms of
the logistic equation. This model has been considered by some mathematicians as
mentioned before. The main goal of this paper was to introduce a new orthogonal
basis, namely the generalized fractional order of the Chebyshev orthogonal functions
(GFCFs) of the first kind to construct an approximation to the solution of Volterra’s
population model of arbitrary order. For the first time, a fractional basis was used
for solving an integro-differential equation, that it provided insight into an important
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issue. The present results show that the introduced basis for the collocation spectral
method is efficient and applicable. Our results have better accuracy with lesserm, and
the absolute error as compared to other results. A comparison was made of the exact
solution, the numerical solutions of Parand et al. [26,27], the analytical solution of
Wazwaz [23] and the present method. It has been shown that the present work has
provided an acceptable approach for solving Volterra’s population model of arbitrary
order.

Acknowledgments The authors are very grateful to reviewers and editor for carefully reading the paper
and for their comments and suggestions which have improved the paper.
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