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Abstract A theorem providing necessary conditions enabling one to map a non-
linear system of first order partial differential equations to an equivalent first order
autonomous and homogeneous quasilinear system is given. The reduction to quasi-
linear form is performed by constructing the canonical variables associated to the Lie
point symmetries admitted by the nonlinear system. Some applications to relevant
partial differential equations are given.
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1 Introduction

Lie group analysis [1-6] provide a unified and elegant algorithmic framework for a
deep understanding and fruitful handling of differential equations. It is known that
Lie point symmetries admitted by ordinary differential equations allow for their order
lowering; on the contrary, in the case of partial differential equations the symmetries
can be used for the determination of special (invariant) solutions of initial and boundary
value problems. Also, the Lie symmetries are important ingredients in the derivation of
conserved quantities, or in the construction of relations between different differential
equations that turn out to be equivalent [5—12]. The use of Lie point symmetries is
especially useful when we have to deal with nonlinear partial differential equations.
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In this paper, we shall consider nonlinear systems of first order partial differential
equations; nevertheless, itis worth of being recalled that higher order partial differential
equations can always be rewritten (though not in a unique way'!) as first order systems.

Among the first order systems of partial differential equations, a special role is
played by quasilinear systems either for their mathematical properties or for their
ubiquity in the applications. In fact, many physical problems may be mathematically
modeled in terms of first order balance laws, say

)
S EW G, )

where u € R™ denotes the unknown vector field, x € R” the set of independent
variables, F' (u) the components of a flux, and G (u) the production term (for dynam-
ical systems the first component x| of the independent variables is the time, and the
components of F! are the densities of some physical quantities); when G(u) = 0, we
have a system of conservation laws. Systems like (1) fall in the more general class of
nonhomogeneous quasilinear first order systems of partial differential equations,
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where A’ (i = 1,...,n) are m x m matrices with entries depending on the field u.
Special problems may require to consider systems where the coefficients may also
depend on the independent variables x, accounting for material inhomogeneities, or
special geometric assumptions, or external actions, so that one has to consider, in
general, nonautonomous and/or nonhomogeneous quasilinear systems of the form

z Al(x, u)a—“ = G(x, u). (3)
i=1 dxi

In[12]ithas been proved a theorem establishing necessary and sufficient conditions
in order to map a system like (3) into an autonomous and homogeneous quasilinear
system under the action of a one-to-one point variable transformation like

z=72(x), w=W(xu). “4)

The possibility of reducing system (3) to autonomous and homogeneous form is
intimately related to the symmetry properties of the model under investigation [12];
remarkably, when this approach is applicable, it is possible to construct explicitly
the map transforming nonhomogeneous and/or nonautonomous quasilinear systems
to homogeneous and autonomous form. The key idea is that any homogeneous and
autonomous first order quasilinear system is invariant with respect to n independent
translations of the independent variables and with respect to a uniform scaling of all
independent variables. These symmetries span an (n + 1)-dimensional solvable Lie
algebra containing an n-dimensional Abelian Lie subalgebra.
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In this paper, we consider systems of first order nonlinear partial differential equa-
tions with the aim of investigating whether they can be reduced by an invertible point
transformation to an equivalent first order system of autonomous and homogeneous
quasilinear equations. First order homogeneous and autonomous quasilinear systems
possess many relevant features: for instance, they admit self-similar solutions suitable
to describe rarefaction waves. Also, many efficient numerical schemes useful for inves-
tigating physically relevant problems are available for such a kind of systems. Here
we prove a theorem giving necessary conditions for the transformation of a nonlinear
first order system of partial differential equations to autonomous and homogeneous
quasilinear form. Some examples concerned with the first order systems related to
second order Monge—Ampere equations in (1 + 1), (2 + 1) and (3 4+ 1) dimensions
where the procedure works are discussed.

2 General nonlinear systems

Let us consider a general first order nonlinear system of PDEs,
A(xuu®) =0, 5)

where X = (x1, ..., x,) are the independent variables, u = (u#1(x), ..., u;; (X)) the
dependent variables, and u") denotes the set of all first order derivatives of the u;’s
with respect to the x ;’s. We want to exploit the possibility of constructing an invertible
mapping like

z=7Z(x,u), w=W(x u (6)

(z=(1,.--,20), W= (wq, ..., wy)), allowing us to map it to a quasilinear homo-
geneous and autonomous system. When this is possible then necessarily the nonlinear
system has to possess a suitable (n+ 1)-dimensional solvable Lie algebra as subalgebra
of the algebra of its Lie point symmetries.

Let us suppose that system (5) can be mapped through an invertible point transfor-
mation like (6) into an autonomous and homogeneous quasilinear system, say

" ow
> Alw)— =0, (7
, 0z;
i=1
where Ai(i = 1,...,n) are m x m matrices with entries depending at most on w.

Every system like (7) admits the Lie symmetries generated by the following vector
fields:

3 , . 9
i=—, (i=1....,n), dn+1=ZZi—; (@)
; — 9z
these vector fields span an (n 4 1)-dimensional solvable Lie algebra where the only
non-zero commutators are

[Ei, Eni]l =&, i=1,...,n. 9)

@ Springer



54 M. Gorgone, F. Oliveri

Moreover, the first n vector fields span an n-dimensional Abelian Lie algebra, and
generate a distribution of rank n.

Since neither the rank of a distribution nor the Lie bracket of two infinitesimal
generators of symmetries is affected by an invertible change of coordinates, it follows
that if a system of the form (5) can be mapped by (6) to the form (7), it has to admit,
as subalgebra of the Lie algebra of its point symmetries, an (n + 1)-dimensional Lie
algebra with a suitable algebraic structure.

Therefore, the following theorem is proved.

Theorem 1 A necessary condition in order the nonlinear system
A(xuu®) =0 (10)
be transformed by the invertible map
z=7Z(x,u), w = W(x, u) (11

into an autonomous and homogeneous first order quasilinear system is that it admits
as subalgebra of its Lie point symmetries an (n + 1)-dimensional Lie algebra spanned
by

n m
; 9 d
7. = J A -
g = ééi (x,u) o, +A§:lni (x, u)—auA, i=1,....,n+1), (12)

such that
[2i.8j]=0, [Ei. 8] =81 i.j=1,...,n (13)

Furthermore, the vector fields E1, ..., E, have to generate a distribution of rank n.
The new independent and dependent variables are the canonical variables associated
to the symmetries generated by E1, ..., By, say

Ei(zj) = 8ij, &iw)=0, i,j=1,...,n, (14)

where §;; is the Kronecker symbol. Finally, the variables w, which by construction are
invariants of &1, ..., &y, must result invariant with respect to E, 1 too.

Remark 1 For the details of the construction of the new independent and dependent
variables one can refer to [11,12].

Remark 2 The conditions required by Theorem 1 are not sufficient to guarantee the
transformation to quasilinear form. Nevertheless, if the nonlinear system of partial
differential equations involves the derivatives in polynomial form, then those condi-
tions are necessary and sufficient for the mapping into a system where each equation
is a homogeneous polynomial in the derivatives.

Remark 3 Theorem 1 can be used also when the nonlinear source system is
autonomous. In such a way, when the hypotheses of the theorem are satisfied, the
target system should be autonomous too; in fact, only in this case the invariance with
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respect to the homogeneous scaling of the independent variables of the target system
implies that the system is a homogeneous polynomial in the derivatives (a quasilinear
system if the degree of the homogeneous polynomial is 1).

3 Applications

In this section, we provide some examples of systems of first order nonlinear partial
differential equations, whose Lie symmetries satisfy the conditions of Theorem 1, and
prove that they can be transformed under suitable conditions to quasilinear autonomous
and homogeneous systems. The nonlinear first order systems are obtained from second
order (1+1)-, (2+ 1)- and (3 + 1)-dimensional Monge—Ampere equations. It is worth
of noticing that some classes of these systems have been proved to be linearizable by
invertible point transformations in [13].

Hereafter, to shorten the formulas, we use the notation u; and u ;; to indicate
the first order partial derivatives of u with respect to x;, and the second order partial
derivatives of u with respect to x; and x j, respectively. Moreover, we shall denote with
f.i and f;; the first order partial derivative of the function f with respect to u; and
the second order partial derivatives of f* with respect to u; and u ;, respectively.

3.1 Monge-Ampere equation in (1 + 1) dimensions

In 1968, Boillat [14] proved that the most general completely exceptional second order
equation in (1 + 1) dimensions is the well known Monge—Ampere equation,

2
K1 (M,uu,zz - u,lz) + Kkou 11 + Kk3u 12 + kau 22 + ks =0, (15)

with u(x1, xp) a scalar function, and «; (xl, X2, U, U1, uyz) @i =1,...,5) arbitrary
smooth functions of the indicated arguments.
By means of the positions

Uy =ujy, U2 =1upy, (16)

along with the assumptions that the functions «;(i = 1,...,5) depend at most on
(u1, uz), we obtain the following nonlinear first order system:

up —uyp =0,

(17
K1 (M1,1M2,2 — u%g) +kouy,1 +k3uy 2 + kauz 2 + k5 = 0.
Through the substitutions
up — uy +o1x; +aoxa, ur —> up + arxy; + azxo, (18)

a;(i =1,...,3) being constant, we get the system
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uz 1 —ui2 =0,
2
K1 (ul,luz,z - ul,z) + (a3ky + k2)ur1 + (20061 + k3)ur2 + (a1k1 + ka)uz 2

+ (@103 — a3k + a1k2 + @aks + azks + ks) = 0.
19)
The nonlinear system (19) becomes homogeneous if

ks = —((@103 — 3Ky + arir + @ak3 + a3Ks), (20)

and in such a case it is straightforward to recognize that it admits the Lie point sym-
metries spanned by the operators

a a
El:—, Ez:—, E3=(XI_f;l)8_xl+(xz_f;2) a—xz, (21)

where f(u1, up) is an arbitrary smooth function of its arguments, provided that

—k2fi22 + k3 fi12 — Kkafinn

K| = . 22)
I+ a3 fio+ 22 fi12 + a1 finn
Since
[E1, 221 =0, [&1, &3] =E&1, [&2 &3] =&, (23)
we introduce the new variables
z21=x1— fi1, 22=x2— f2, wi=uy, wy=uy, (24)
and the generators of the point symmetries write as
5 5 S5 = 1 + 25)
= —, Hy = —, 3 =71— +20—.
! 971 2 022 . ! 071 2812
In terms of the new variables (24), the nonlinear system (19) becomes
wy1 —wio =0,
2.1 1.2 26)

(azir + k2)wi 1 + (=221 + k3)wi 2 + (a1k1 + k4)wr 2 =0,

i.e., reads as an autonomous and homogeneous quasilinear system.
The following example provides a physical system leading to a Monge—Ampere
equation.

Example 1 (One-dimensional Euler equations of isentropic fluids) Let us consider the
Euler equations for an isentropic fluid

p1+ (pv)2 =0,
(pv).1 + (pv> + p(p, )2 =0, 27)
s1+vsp=0,
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where p is the fluid density, v the velocity, s the entropy, p(p, s) the pressure which
is a function of the density and the entropy, x; the time, and x, the space variable.
By introducing ¢ such that

p=¢2 pv=—¢; (28)

it results s = s(¢). Moreover, by introducing ¥ and u such that

pv =Y =—¢ ], pvi+p=—v1,

(29)
1//:_14,1’ ¢:u,27
we arrive to the nonlinear equation
u2
12
uir = ——+ pun,s.m)). (30)
)

This equation becomes of Monge—Ampere type for the class of fluids characterized
by the constitutive law of Von Kdrmén [15]

Kk2(s)

+ b(s), 31

where k2(s) > 0 and b(s) are functions of the entropy. What we get is
w22 — uhy + k7 (s(u2) — b(s(u2))u 2 = 0. (32)

The nonlinear first order system derived from Eq. (32) belongs to the class of Eq. (17)
and is mapped to a homogeneous and autonomous quasilinear system provided that

K2 (s(u2)) = o3 — az(ay + b(s(u2)),
b(s(z)) = 1 +as3fin +12q();?ﬁ12+a1ﬁ11’ (33)

and f(u1, up) is such that

0 1 . 2 .
( +a3fin+ Otzf,lz) _o (34)

ouy fi

3.2 Monge-Ampere equation in (2 + 1) dimensions

The most general second order hyperbolic completely exceptional equation in (24 1)
dimensions has been determined in 1973 by Ruggeri [16]; it is a linear combination of
the determinant and all minors extracted from the 3 x 3 Hessian matrix of u(x1, x3, x3)
with coefficients x; (i = 1,...,14) depending on the independent variables, the
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dependent variable and its first order derivatives. This equation can be written in the
following form:

Hy oH n 0H n oH n oH n oH n oH
K1 K2 K3 K4 Ks K6 K7
ou 11 ou 12 ou 13 ou 2 ou 23 ou 33 (35)

+ Kkgu 11 + Kou 12 + K1ou 13 + K111, 22 + k12U 23 + K131 33 + k14 = 0,

where H is the determinant of the 3 x 3 Hessian matrix of u.
Let us assume «; (i = 1, ..., 14) depending at most on first order derivatives of u.
By means of the positions

Up=ujy, up=up, U3=1Uu3, (36)
the following nonlinear first order system is obtained:

up1 —u1p =0, wuz1—u13=0, uzp—uxy3z=0,

oH oH oH oH oH oH
K1H + ko + k3 + K4 + ks + k¢ + k7 37
oup 1 ou12 ou13 oun 2 ous 3 ou33

+ kguy,1 + kouy 2 + kiou1,3 + k1u22 + kipu2 3 + k13u33 + k14 = 0.
As done in the previous subsection, the substitutions

up — uy +arx; + oaxp + o3x3,
Uy — U + aoxy + agxy + asx3, (38)
U3 —> U3z + 03X + a5x2 + X3,

a;(i =1,...,6) being constant, provided that

2 2 2 2
K14 = (Oll(xs + o506 — o406 — 2ap0305 + O[30l4)K1 — (Ol5 — 0406)K2
2
+ 2(anae — azas)i3 + 2(az0y — o)k + (03 — a1ag)Ks (39)
2
+ 2(a1as — apa3)ke + () — a1og)K7 — QK8 — 02K9 — A3K10

— Q4K1] — O5K12 — K6K13,

allows us to get a homogeneous system with the same differential structure as (37),
say

ur1 —u1p2 =0, wuz1—u13=0, uzp—ux3=0,
. _ O0H __ 0H __ O0H __ O0H _ 0H __ O0H
K1H 4+ + k3 + k4 + ks + k¢ + k7 (40)
dup, ouy our 3 ous > ouy 3 ous 3

+kgu1,1 +Koura +Kiou13 +kiuz2 +xKi2uz 3 + k13uz 3 = 0.

where the expression of &; in terms of the coefficients «;(i = 1,...,13) and the
constants o;(j = 1, ..., 6) can be easily found.
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The nonlinear system (40) admits the Lie symmetries spanned by the operators

g9 - _98 - _ 0

== axy’ 2= axy’ == ox3’

— 0
Ba= (= i) g ¥ b= fa) o+ = fa) g

(41)

where f(u1, uz, u3) is a smooth arbitrary function of its arguments, provided that the

following relations hold true:

K1 — H}lfg — H}zfg — H}}I?]o — H]%Zfll — H%3f12 — Hj3c37513 =0,
K2 + fi33k11 — fizki2 + fiok1z =0,

2i3 — f.33k9 + fi3ki0 + fizkia — 2 fik13 =0,

24 + fia3ko — fiokio — 2 fisk11 + fi2ki2 =0,

K5 + fi33k8 — fi13K10 + fi11k13 = 0,

2k — 2 f23K8 + f13K9 + fiokio — finiki2 =0,

k7 + fiokg — fi12ko + fi1k11 =0,

(42)

Hlf] denoting the cofactor of the (i, j) entry of the Hessian matrix Hy of the function
f(u1, uz, u3). It is evident that conditions (42) place severe restrictions on the coef-
ficients of system (40); in fact, they state that the functions k;(i = 1, ..., 7) have to
be expressed in terms of the coefficients k; (i = 8, ..., 13) and the function f. These

symmetries generate a 4-dimensional solvable Lie algebra,

=
=’

g]=0. I
]

o

4l=E&, (,j=1273),

whereupon we may introduce the new variables

u=x1—f1, 22=x2—f2, z=x3— f3,
wi = u1, wy = Uy, w3 = u3,

and the generators of the point symmetries write as

0 0

- - -
Ey=—, B3=

8_z3’ 971 022 3973

In terms of the new variables (44), the nonlinear system (40) reduces to

w1 —wi2=0, w31 —wi3=0, wzz—wy3;=0,

kgwi,1 + Kowi 2 + Kiowi,3 +K11w22 +Kpw2 3 +k3w3 3 =0,

i.e., an autonomous and homogeneous quasilinear system.

0
Ea=2—ty -t

(43)

(44)

(45)

(46)
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3.3 Monge-Ampere equation in (3 + 1) dimensions

The most general second order completely exceptional equation in (3 + 1) dimensions
has been characterized by Donato et al. [17] and once again it is given as a linear
combination of the determinant and all minors extracted from the 4 x 4 Hessian matrix
of u(xy, x2, x3, x4) with coefficients x; (i = 1, ..., 43) depending on the independent
variables, the dependent variable and its first order derivatives:

K H +ZK,
r

OH 3’H
+ Ky —— + K uii+ ka3 =0,
au,ij Z K 8u,klau,mn Zr: r+31Uij 43

i, jok,mn=1,...,4, i<j, k<l k<m<n, “n
i9—i on(13 —o
LK )+j—3, 5= o+ ki ( k1)+6,
2 2
1
o =4a— 1)~ D 1,

where H is the determinant of the 4 x 4 Hessian matrix of u; actually, the Monge—
Ampere equation in (3 4+ 1) dimensions involves only 42 independent coefficients
because
*H 3*H 3*H
Ou120u34  Ou130u24  Ou 140U 23

=0. (48)

Hereafter, we assume without loss of generality, k24 = 0, and the remaining functions
k; depending at most on first order derivatives.
By means of the positions

uy=uy, up=1up, U3=U3, U4s=1U4, (49)

)

the following nonlinear first order system is obtained:

up1 —ui2=0, wuz1—u13=0, us1—ui4=0,

uzp —u23 =0, ugr—u24=0, ug3z—u34=0,

) (50)
Hot S b S g S st s =0
K1 K Kg———— Kra31Ui i + k43 =0,
- r 8ui,j - s 3uk,18um,n - r+31Ui,j 3
As done in the previous subsection, the substitutions
Uy — Ul +o1x1 +axxy + o3x3 + oqaxy,
Uy — Uy +orxy) + asxy + agxz + a7x4, 1)

U3z — U3 + o3x] + agxp + agx3 + o9xy,

Ug —> U4 + 04X + a7x2 + 009x3 + ®0X4,

provided that k43 can be suitably expressed in terms of the remaining coefficients and
of the constants o; (i = 1, ..., 10), we have a homogeneous system like (50) where
we can assume x43 = 0.
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This nonlinear system admits the Lie symmetries spanned by the operators

a 0

T T T e T (52)
- 0 0 9
GSZ(xl—f:l)a—x]JF(M_ﬁZ)E+(x3—f;3)@+(x4—f;4)74’

where f(u1, uz, u3, uq) is a smooth arbitrary function of the indicated arguments,
provided that «;(i = 1,...,32) must be expressed suitably in terms of «;(j =
33,...,42) and f(uy, uz, usz, usq):

i1+ Hi'kas + Hkss + HPias + Hiiss + Hiisg + Hp kag + Hi g
+ HPkao + Hp'ka1 + Hf'kap = 0,
k2 + (f;234 — fi33fiaa)ic37 + (fi23 fiaa — fioafi3a)i3s + (fi24 f133 — fi23 fi34)K39
+ (ﬁ224 — fia fiaa)kao + (fioa fiza — fi23 fr2a)ka1 + (f;223 — fiafi33)Ka2 =0,
203 + (fi33 fuas — fagksa + (foafizs — fia3 fuaadkas + (fi23 fiza — fia f:33)K36
+ (fi1afi3a — fis fuaa)kss + (fi13 fiza — firafi33)kso + 2(fi12 fiaa — fi1a fr24) k40
+ (fazfioa = 2fnfia + faafizdka + 2(fi2 /33 — fisz fiz)kar =0,
2k4 + (f2a fi34 — f23 fraa)k34 + (fio2 fraa — ﬁ224) + (fi23f.24 — fi22.f;34)K36
+2(fi13 fiaa — faafiadksr + (fiafioa — fi12 faa)kss
+ (fi2fi3a + faafioz — 2 f13 f2a)k39 + (fr12fi24 — fr1afr22)ka
+2(fi3fiz2 — finfizz)kar =0,
2us5 + (fi23 f:34 — fi2af:33)k34 + (fi23 fi24 — fioa fi3a)kas + (fi2 fi33 — f;223)K36
+2(fiafi33 — fi3fisadsr + (fia fi3a + fi13 fioa — 214 fi23)K38
+ (fasfiaz — fia fi33)kse + 2(faafiz — fiz foadkao + (fiafizz — fiuz fiza)kar =0,
ke + (f;234 — fi33fiaa)k33 + (fi13 fraa — faafiza)iss + (faafi33 — f13 fi34)K36
+ (ﬁ214 — fir fraa)kao + (finn fiza — fias fia)kar + (f;213 — fi1f33)ke2 =0,
267 + 2(f123 fraa — foa 300633 + (friafisa — fus fiaa)ksa + (fia fioa — fin fiad)kss
+ (fiafi3a+ fizfioa — 2 fafi3)K36 + (fir1 fras — ﬁ214)/<38
+ (s fia — o faadise + (fiz fua — fin foadka + 20 fi3 — fiz fuasdkar =0,
268 + 2(fi24 f133 — f3 fi3a)K33 + (f13 fi3a — fr1a fi33)k34
+ (fiinfi34 + fiaafioz = 2fs foadkss + (fa3 fio3 — fi2fi33)K36
+ (fizfia — finn fi3a)kas + (fia1 fi33 — ﬁ213)K39 +2(fi11 fi24 — fi12 fi14)Ka0
+ (fiiafiz — fin fi2z3)kar =0,
K9 + (ﬂ224 — fia fraa)kaz + (fiaz fiaa — frafooadsa + (faafioo — fiaz fiaa)kse
+ (fis = Fuifasdkss + (Farfoa — frafaakse + (fp — far fan)kan =0,
210 + 2(fi22 fi3a — fi3f2a)i33 + (fusfioa + faafoz — 212 f3a)K34
+ (finfoa — faafiodiss + (Faafios — fas findkse + 2(fa1 fi3a — fiaz fiadksr
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+ (finfia — finfoadkss + (fiz fos — finn fizdkzo + (fin fizz — ﬁzlz)K41 =0,
ki1 + (f;223 — fiafi33)K33 + (fi12 £33 — fiz fi23)kaa + (f13 fi2 — fi12f:23)K35
+ (f;213 — fin1 fi33)k37 + (fin fizs — fi2 fia3)iss + (ﬁzlz — fi1fi2)ka0 =0,

212 — fiaakao + fi3aka1 — fi33ka2 =0,

2k13 + fiaak38 — fi3ak39 — fioakar + 2 fo3ka2 = 0,
214 — fi34k38 + fi33639 + 2 fioaka0 — fiozkar =0,
2kc15 + fiaak3s — fizakse — fiakar +2 fiizka2 =0,
2k16 — [fi34k35 + [fi33636 + 2 fi1aka0 — fi13ka1 = 0,
217 + fi3ak34 — fio3kse — firakas + fiizkar =0,
2118 — fiaak37 + fioaksg — fixokan =0,

219 + 2 fi3akc37 — fioaksg — fia3kao + fiookar =0,
220 + fiaak34 — fioak36 — fi1ak39 + 2 fi12640 = 0,
2uc01 + fioakszs — fiozkse — fiiakss + fi13k39 =0,
2k00 — fioak3a + [k + 2 fi1ak37 — fir2k39 = 0,
2k23 — fi33K37 + fiaskas — fizakao =0,

2tc25 + fi33k34 — fio3k3s — fiizksg + 2 fiiaka0 = 0,
2K26 — fi23k34 + fi22K35 + 2 fi13k37 — fi12638 = 0,
2K27 — fiaak33 + firakze — fi11ka2 =0,
2K08 + 2 f134K33 — fi14k35 — fi13k36 + fi11ka1 =0,
229 + 2 fioak3z — fiiakza — fir2ks6 + fii1k39 = 0,
2k30 — fi33633 + fi13k35 — fi11640 = 0,
2kc31 + 2 fio3k33 — fi13k34 — firzkss + fi11k38 = 0,
232 — fi22k33 + fi12k34 — fi11k37 = 0.

Also in this case, the previous conditions place severe restrictions on the coefficients

of system (50) since imply that the functions x; (i = 1, ..., 32) have to be expressed
in terms of the coefficients x; (i = 33, ..., 42) and the function f.
Due to

[2i. 5] =0, [8i,85]1=55, (.j=1,....4),

we introduce the new variables

z2i=x1—fi1, 22=x2— f2, 23=x3— f3, 24 =2X4— fu4,

wy = uy, wy = uy, w3 = u3, wq = Uy,

and the generators of the point symmetries write as

9 _ a8 _ a8 _ 2
El=—, &=—, &8=—, E4=_—,
071 022 023 024
) + b gz
Es=z1—+2 37— +24—
071 0 973 024

@ Springer

(53)

(54)

(55)
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In terms of the new variables (54), the nonlinear system (50) assumes the form of

an autonomous and homogeneous quasilinear system,

wy1—wi2=0, w3;—w3=0 w4 —wi4s=0,
w3p —w23=0, wiz—wrs=0, ws3—w34=0, (56)
K33W1,1 + K34W12 + K35W1,3 + K36W1,4 + K37W22 + K38W2 3 + K39W2 4

+ k40ws3,3 + k41W3 4 + K4pwsa 4 = 0,

where x; = «; (w1, wo, w3, wq) (( = 33,...,42).
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