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Abstract Molecular extended thermodynamics is justified at the mesoscopic level by
the moment equations associated with the Boltzmann equation. For polyatomic gases
we have a binary hierarchy of moments in contrast with the usual single hierarchy for
monatomic gases. In this paper, taking one-dimensional space variables for simplicity,
we review the closure of the system of the moment equations for polyatomic gases
with the use of the maximum entropy principle, which is equivalent to the entropy
principle. Then we consider the singular limit where the degrees of freedom of a
molecule approach 3, and we prove that, by imposing appropriate initial conditions,
the solutions for polyatomic gases converge to the ones for monatomic gases. As
examples of the singular limit, the asymptotic behaviors of linear waves and light
scattering based on the linearized system of field equations are briefly presented.
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1 Introduction

In order to capture a highly nonequilibrium phenomena in rarefied monatomic gases
such as the sound wave in high-frequency region and the shock wave with large
Mach number, the molecular extended thermodynamics (MET) which describes a
state of a gas by the moments of a distribution function has been proposed [1–3].
The closure of MET is achieved by the maximum entropy principle: the most suitable
distribution function maximizes the entropy density under some constraints, which is
equivalent to the entropy principle [4]. Since this theory is based on the Boltzmann
equation, the system of the moment equations has a single tensorial hierarchy starting
from the conservation laws of mass, momentum and energy, in which the flux in
one equation becomes the density in the next equation. MET is compatible with the
phenomenological approach which adopts the system of balance equations with local-
type constitutive equations satisfying the entropy, causality, and objectivity principles,
such as the 13-field theory that adopts the mass density, the velocity, the specific
internal energy, the shear stress and the heat flux as independent fields [5].

For rarefied polyatomic gases the MET theory has been proposed [6–9] based on
the kinetic model by Bourgat et al. [10] in which the distribution function depends on
an additional continuous variable representing the internal energy of a molecule. In
contrast withMET for monatomic gases, the system of moment equations has a binary
hierarchy; one hierarchy starts from the balance equations formass density,momentum
density and momentum flux, and the other one starts from the balance equations for
energy density and energy flux. This theory is in agreementwith the phenomenological
14-field theory that adopts the dynamic (nonequilibrium) pressure in addition to the
13 fields [11–13] and has been successful to explain various phenomena [14–20].

The difference of the hierarchy of moment equations between the MET theories
for rarefied monatomic gases and for rarefied polyatomic gases is due to the existence
of the nonequilibrium variables that characterize polyatomic gases. In the case of the
14-field theory for polyatomic gases, the dynamic pressure plays a role of such char-
acteristic variables. In the limit, so-called singular limit, that the degrees of freedom
D approach 3 under an appropriate initial condition compatible with a property of
monatomic gases, i.e., the dynamic pressure vanishes, the binary hierarchy of the 14-
field theory converges to the single hierarchy of themonatomic 13-field theory, and the
dynamic pressure vanishes at any time [21]. In a general case with many independent
fields, there emerge many characteristic variables. Recently, in such a case, we proved
that the ET theory of monatomic gases is also derived as a singular limit of the theory
of polyatomic gases, and the characteristic variables of polyatomic gases vanish at any
time [22].
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Molecular extended thermodynamics: comparison... 3

In the present paper, we briefly summarize the singular limit of MET for rarefied
polyatomic gases to the one for monatomic gases. And examples of the asymptotic
behavior of the solution in the limit are shown in the cases of linear waves and light
scattering. Another example was discussed in [22].

2 Molecular extended thermodynamics for rarefied polyatomic gases in
one-dimensional case

A rarefied polyatomic gas in equilibrium is characterized by the equations of state:

p = kB
m

ρT, ε = D

2

kB
m

T, (1)

where p, ε, ρ, T , D, kB , m are, respectively, the pressure, specific internal energy,
mass density, temperature, degrees of freedom of a molecule, Boltzmann constant
and mass of a molecule. In a temperature range where the translational degrees of
freedom are fully excited and the equipartition law of energy is satisfied, the degrees
of freedom satisfy D > 3 since the internal degrees of freedom, that is, the rotational
and vibrational degrees of freedom, are excited. In the present study, we assume that
other internal degrees of freedom are not excited.

From a kinetic theoretical viewpoint, the model for a polyatomic gas is proposed
by Bourgat et al. [10] in the framework of the Borgnakke–Larsen procedure [23].
The basic feature of the model is the presence of a non-negative parameter I that
reflects the internal degrees of freedom of a molecule. The model is prescribed by
the one-body distribution function f (x, c, t, I ), where x, c, t and I are, respectively,
the position, the velocity of a molecule, the time and the specific internal energy of
a molecule. The rate of change of the distribution function in the absence of external
force is determined by the Boltzmann like equation:

∂t f + ci ∂i f = Q( f ), (2)

where the symbols ∂t and ∂i denote partial derivatives with respect to t and xi (i =
1, 2, 3).1 The collision term Q( f ) in the right-hand side of (2) also takes into account
the influence of the internal degrees of freedom through the collisional cross section.

2.1 Balance equations and velocity independent fields

Let us study a one-dimensional problem along the x(≡ x1)-axis. In the MET theory,
the evolution of a nonequilibrium state of a gas is described by the following balance
equations obtained from (2):

1 Throughout the paper, summation with respect to repeated indexes is assumed, where the range of the
sum is to be understood in the context: when the index represents a spatial coordinate, the range of the sum
is from 1 to 3; in all the other cases the sum is intended over the variability region of the repeated indexes.
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∂t Fp,q + ∂x Fp+1,q = Pp,q , ∂tG p′,q ′ + ∂xG p′+1,q ′ = Qp′,q ′ , (3)

where ∂x denotes the partial derivative with respect to x , and the indexes are the
non-negative integers satisfying

0 � p + 2q � N , 0 � p′ + 2q ′ � M.

The system (3) is denoted as “(N , M)-system”. The moments are defined as follows:

Fp,q =
∫
R3

∫ ∞

0
m f (c1)

p
(
c2

)q
I δ d Idc,

Gp′,q ′ =
∫
R3

∫ ∞

0
m f

(
c2 + 2I

m

)
(c1)

p′ (
c2

)q ′
I δ d Idc,

and the production terms Pp,q and Qp′,q ′ are defined in a similar way as follows:

Pp,q =
∫
R3

∫ ∞

0
mQ( f )(c1)

p
(
c2

)q
I δ d Idc,

Qp′,q ′ =
∫
R3

∫ ∞

0
mQ( f )

(
c2 + 2I

m

)
(c1)

p′ (
c2

)q ′
I δ d Idc,

where c2 = ci ci and δ = (D − 5)/2 (δ > −1) so as to recover the caloric equation of
state for polyatomic gases in equilibrium (1)2.

It is worth noting that the first two equations of the F-hierarchy represent the
conservation laws of mass and momentum, the first equation of the G-hierarchy rep-
resents the conservation law of energy. Therefore the first 14 fields are identified as
the macroscopic variables commonly used:

F0,0 = ρ, F1,0 = ρv, F2,0 = p + � − σ + ρv2, F0,1 = 3(p + �) + ρv2,

G0,0 = 2ρε + ρv2, G1,0 = 2q + 2(ρε + p + � − σ)v + ρv3,

(4)
where v, q, �, and σ being, respectively, the velocity, the heat flux, the dynamic
pressure and the shear stress.

In [8], it was proved that the requirement of the Galilean invariance of the system
implies M � N − 1. This requirement and one more requirement that equilibrium
characteristic velocities depend on the degrees of freedom D bring us to the conclusion:
M = N − 1. The Euler system ((1, 0)-system) with 5 moments: F0,0, F1,0,G0,0, and
the ET theory with 14 moments: F0,0, F1,0, F2,0, F0,1,G0,0,G1,0 ((2, 1)-system) are
typical examples of this case. In the present and next section, we concentrate on the
study of the (N , N − 1)-system.

By adopting the peculiar velocity C1 = c1 −v instead of the velocity of a molecule
c1, themoments are expressed in termsof the velocity independent variables as follows:
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Fp,q =
N∑

r=0

[r/2]∑
s=0

X p,q,r−2s,s F̂r−2s,s,

Gp′,q ′ =
N−1∑
r ′=0

[r ′/2]∑
s′=0

X p′,q ′,r ′−2s′,s′
(
Ĝr ′−2s′,s′ + 2v F̂r ′−2s′+1,s′ + v2 F̂r ′−2s′,s′

)
,

where variables with a hat are the velocity independent variables. The coefficients are
defined as follows:

X p,q,r,s

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min(p+q−r−s,q−s)∑
j=max(0,q−r−s)

(
p

p + q − r − s − j

)(
q

q − s

)(
q − s

j

)
2q−s− jv p+2q−(r+2s)

if q � s and p + q � r + s

0 otherwise

.

(5)

2.2 Closure by means of MET near equilibrium

In equilibrium, the distribution function f E is obtained by Pavić, Ruggeri and Simić
[7] (see also [24]) as follows:

f E = 1

A(T )

ρ

m

(
m

2πkBT

)3/2

exp

(
− m

2kBT

(
C2 + 2I

m

))
.

The normalization function A(T ) is given by

A(T ) =
∫ ∞

0
exp

(
− I

kBT

)
I δ d I = (kBT )1+δ	(1 + δ),

where 	 denotes the gamma function.
Near equilibrium, the distribution function f is expanded around f E . Then the

constitutive equations for fluxes are obtained explicitly by means of MET [1,6]. For
simplicity, let us introduce a vector Û that denotes a set of velocity independent part

of densities and a vector Û
1
that denotes a set of velocity independent part of fluxes:

Û =
(

F̂p,q

Ĝ p′,q ′

)
, Û

1 =
(

F̂p+1,q

Ĝ p′+1,q ′

)
.

As the result of the closure, the fluxes are expressed by the densities as follows:

˜̂U1 = Ĵ
1
(
Ĵ
)−1 ˜̂U,

˜̂U = Û − Û
E
,

˜̂U1 = Û
1 −

(
Û

1
)E

, (6)

where the superscript “E”means that a quantity is evaluated in a local equilibrium state
and therefore a quantity with a tilde indicates the nonequilibrium part. The coefficient
matrices are defined as follows [8]:
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Ĵ =
(

ĴMp+r,q+s Ĵ 1|Ep+r ′,q+s′

Ĵ 1|Ep′+r,q ′+s Ĵ 2|Ep′+r ′,q ′+s′

)
, Ĵ

1 =
(

ĴMp+r+1,q+s Ĵ 1|Ep+r ′+1,q+s′

Ĵ 1|Ep′+r+1,q ′+s Ĵ 2|Ep′+r ′+1,q ′+s′

)
,

where the elements are given by

ĴMp,q = − m

kB
ρ

(
kBT

m

) p
2 +q 2

p
2 +q

p + 1
	

(
p + 3

2
+ q

)
1 + (−1)p√

π
,

Ĵ 1|Ep,q = ĴMp,q+1 + 2
kB
m

T (1 + δ) ĴMp,q ,

Ĵ 2|Ep,q = ĴMp,q+2 + 4
kB
m

T (1 + δ)(2 + δ)

(
ĴMp,q+1 + kB

m
T (2 + δ) ĴMp,q

)
.

3 Singular limit of polyatomic gases to monatomic gases

In [22], it was shown that the nonequilibrium parts of the difference between F and
G-series play a role of the characteristic nonequilibriumvariables of polyatomic gases:

Π̂p′′,q ′′ = ˜̂Fp′′,q ′′+1 − ˜̂Gp′′,q ′′ , (0 � p′′ + 2q ′′ � N − 2).

The dynamic pressure Π is the first component of Π̂p′′,q ′′ except for the factor 1/3.
We call these multi-index tensors Π̂p′′,q ′′ the dynamical multi-index pressure tensors.

The evolutionof thedynamicpressure tensors canbe studiedby taking {F̂p,0, Ĝ p′,q ′ ,
Π̂p′′,q ′′ , v}} as independent variables instead of {F̂p,q , Ĝ p′,q ′ , v}. In the limit of
D → 3 (δ → −1) where D is assumed to be a continuous variable, it is proved
that the field equations of Π̂p′′,q ′′ with closed fluxes (6) are the first-order quasi-linear
partial differential equations with respect to Π̂p′′,q ′′ . Imposing the initial condition
compatible with a property of monatomic gases, i.e.,

Π̂p′′,q ′′(x, 0) = 0,

and assuming the uniqueness of the solution of Π̂p′′,q ′′ , we obtain

Π̂p′′,q ′′(x, t) = 0, ∀t.

It is also proved that the balance equations of non-vanishing fields {Fp,0,Gp′,q ′ }
have the same hierarchy structure as that of monatomic gases. In the singular limit,
since we have

lim
D→3

Gp′,q ′ = lim
D→3

Fp′,q ′+1,

the system of field equations of {limD→3 Fp,0, limD→3 Gp′,q ′ } can be rewritten as
follows:

123



Molecular extended thermodynamics: comparison... 7

∂t

(
lim
D→3

Fp,q

)
+ ∂i

(
lim
D→3

Fp+1,q

)
= lim

D→3
Pp,q ,

∂t

(
lim
D→3

Fp∗,q∗+1

)
+ ∂i

(
lim
D→3

Fp∗+1,q∗+1

)
= lim

D→3
Pp∗,q∗+1,

where the non-negative integers satisfy p∗ + 2q∗ = N − 1. This system of balance
equations, called ((N + 1)−)-system, has a single hierarchy. The (3−)-system with
13 moments; F0,0, F1,0, F2,0, F0,1, F1,1 is a particular example.

To sum up, in the singular limit, the dynamical pressure tensors vanish and the
polyatomic (N , N − 1)-system with binary hierarchy structure coincides with the
monatomic ((N + 1)−)-system with single hierarchy structure.

Similar to this result it is also proved that ((N + 1)−, M)-system with M ≤ N − 1
of which characteristic velocities do not depend on D also converges to ((N + 1)−)-
system. One of the examples is the ET theory with 6 moments; F0,0, F1,0, F0,1,G0,0,
((2−, 0)-system) [25–27]. This theory is the simplest theory next to the Euler sys-
tem, and recently the theory with nonlinear constitutive equations was proposed and
developed [28–32]. In the singular limit, the (2−, 0)-system converges to the Euler
system for monatomic gases ((2−)-system) [21]. The ET theory with 17 moments;
F0,0, F1,0, F2,0, F0,1, F1,1,G0,0,G1,0, ((3−, 1)-system) is another example. This the-
ory is in full agreement with the kinetic theory of polyatomic gases [33] that introduces
an internal mode of the energy and the internal heat flux. In the singular limit, the
(3−, 1)-system converges to the (3−)-system.

4 Examples of the convergence of the solutions in the singular limit

Let us study the asymptotic behaviors in the dispersion relation of sound waves and
the dynamic structure factor in light scattering when D approaches 3. See also [22].
As particular examples, we consider the convergence of the (2, 1) and (3−, 1)-systems
to (3−)-system, and of the (3, 2) and (4−, 2)-systems to (4−)-system. As seen in (4),
the dynamical pressure tensor of (2, 1)-system is only the dynamic pressure Π . For
(3−, 1) and (3, 2)-systems and (4−, 2)-system, the dynamical pressure tensors are,
respectively, Π and Π̂1,0, and Π , Π̂1,0 and Π̂2,0.

In the present analysis, we adopt, as simplest example, the BGK-model which close
the production terms by the densities as follows:

Pp,q = −1

τ
F̃p,q , Qp′,q ′ = −1

τ
G̃ p′,q ′ ,

where τ denotes the relaxation time.

4.1 Linearized system

Usually we are interested in the time evolution of the nonequilibrium part of the fields
in addition to the hydrodynamic variables ρ, v and ε. Therefore we adopt the following
variables as independent fields:
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8 Arima et al.

û =
(
ρ, v,

˜̂F0,1, ˜̂F2,0, . . . ,
˜̂Fp,q , ε,

˜̂G1,0, . . . ,
˜̂Gp′,q ′

)T
.

Let û0 be a constant equilibrium state, then the linearized system for the perturbed
field ū around û0 (û = û0 + ū) is written as follows:

H0
i j∂t ū j + H1

i j∂x ū j = HP
i j ū j . (7)

The coefficients are defined by

H0
i j =

⎧⎨
⎩

(
BikÛk

)
0

if ū j = v̄(
∂Ûi
∂ ū j

)
0

otherwise
, H1

i j =

⎧⎪⎨
⎪⎩

(
Ûi + BikÛ 1

k

)
0

if ū j = v̄(
∂Û1

i
∂ ū j

)
0

otherwise
,

HP
i j =

{
0 if ū j = ρ̄, v̄, ε̄

− 1
τ
δi j otherwise

,

where the subscript “0” indicates a quantity evaluated at the reference equilibrium
state, and Bik is an element of the following matrix:

B =
(

Ap,q,r,s 0
2δp′+1,rδq ′,s Ap′,q ′,r ′,s′

)
.

The element Ap,q,r,s is determined by (5) [1,34] as follows:

Ap,q,r,s

=

⎧⎪⎪⎨
⎪⎪⎩

min(p+q−r−s,q−s)∑
j=max(0,q−r−s)

(
p

p+q − r − s − j

)(
q

q − s

)(
q − s

j

)
(p+2q − (r + 2s)) 2q−s− j δp+2q,r+2s+1 if q � s and p + q � r + s

0 otherwise

.

4.2 Dispersion relation of sound wave in the singular limit

We study one-dimensional linear harmonic waves with the wave form:

ū = ūAmpei(ωt−kx), (8)

where ūAmp is the constant amplitude vector, ω is the frequency, and k is the complex
wave number. In [22], the asymptotic behaviors of the phase velocity and the attenua-
tion factor are studied. Hereafter, we study the attenuation per wavelength αλ because
this qunaitity is important in experiments and is discussed in the context of ET [15].

By inserting the waveform (8) into the linearized system of field equations (7), we
obtain the dispersion relation [14,35,36], fromwhichαλ is derived as the function ofω:

αλ(ω) = −2π

(k)

�(k)
.
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D=3.5

D=3

Fig. 1 Dependence of the attenuation per wavelength of (2, 1), (3−, 1) and (3−)-systems (left) and of
(3, 2), (4−, 2) and (4−)-systems (right) on the dimensionless frequency for D = 6, 3.5, 3. The solid
lines denote the monatomic (3−) and (4−)-systems. The dashed lines denote the polyatomic (2, 1) and
(3, 2)-systems. The dotted lines denote the polyatomic (3−, 1) and (4−, 2)-systems

In Fig. 1, we show the dependence of αλ with D = 6, 3.5, 3 on the reduced
frequency � (= τω) in the (2, 1), (3−, 1), (3, 2) and (4−, 2)-systems. When D → 3,
the dispersion relations of both (2, 1) and (3−, 1)-systems approach uniformly the
dispersion relation of (3−)-system of monatomic gases. We notice that a mode of
(3−, 1)-system that comes from the system of the field equations of the dynamical
pressure tensors has no counterpart in ET of monatomic gases. Since the solutions of
such variables are zero in D → 3 because of the initial condition, the amplitude of this
mode is zero. Similarly, the dispersion relations of both (3, 2) and (4−, 2)-systems
approach uniformly the dispersion relation of (4−)-system of monatomic gases.

4.3 Light scattering

We analyze the asymptotic behavior of light scattering. The light scattering occurs
due to the fluctuations in the mass density ρ through the dielectric constant ε(ρ), and
the intensity of scattered light is directly related to the dynamic structure factor [1,6]:

S(q, ω) = 1

π

(
∂ε

∂ρ

)2

�〈δρ∗(q, 0)δρ̂(q, s)〉s=iω.

where q is the scattering vector, magnitude of which is q = (4π/�) sin(θ/2) with
� and θ being the wavelength of the incident light and the scattering angle, ω is the
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Fig. 2 The relative intensity of the dynamic structure factor of (2, 1), (3−, 1) and (3−)-systems (left)
and of (3, 2), (4−, 2) and (4−)-systems (right) for D = 6, 3.5, 3. The solid lines denote the monatomic
(3−) and (4−)-systems. The dashed lines denote the polyatomic (2, 1) and (3, 2)-systems. The dotted lines
denote the polyatomic (3−, 1) and (4−, 2)-systems

shift in angular frequency, and 〈δρ∗(q, 0)δρ̂(q, s)〉 is the Laplace transform of the
autocorrelation of the density fluctuations 〈δρ∗(q, 0)δρ(q, t)〉 where 〈 〉 denotes the
thermal average and δρ(q, t) is the Fourier transform of the mass density fluctuation
δρ(x, t).

It is useful to introduce the following dimensionless quantities:

x = ω

v0q
, y = 1

τv0q
,

where v0 = √
2kBT0/m. The relative intensity of S(q, ω) can be expressed as a

function of x, y, D. Usually the case of large y is referred to as the hydrodynamic
region and the case of small y as the kinetic region. In particular, in the kinetic region,
the superiority of ET comparing to NSF becomes notable [1,18]. Therefore we study
the asymptotic behavior in such region.

In Fig. 2 the dependences of the relative intensity of the dynamic structure factor
Ŝ(x, y) on x with y = 0.5 are shown for D = 6, 3.5, 3. We define Ŝ(x, y) as
follows:
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Molecular extended thermodynamics: comparison... 11

Ŝ(x, y) = S(x, y)∫ x=∞
x=−∞ S(x, y)dx

=
�

((
x
τ y I + i 1

v0τ y

(
H0

)−1
H1 − (

H0
)−1

H P
)−1

)
11∫ x=∞

x=−∞ �
((

x
τ y I + i 1

v0τ y

(
H0

)−1
H1 − (

H0
)−1

H P
)−1

)
11
dx

,

where I is an identity matrix. We notice that the profiles of Ŝ(x, y) of (2, 1) and
(3−, 1)-systems and of (3, 2) and (4, 2−)-systems, respectively, approach uniformly
the corresponding profiles of monatomic gases in the singular limit.

5 Summary and concluding remarks

We have briefly summarized the singular limit of MET for polyatomic gases to the
one for monatomic gas, that is, the convergence of the (N , N −1)-system with binary
hierarchy to the ((N + 1)−)-system with single hierarchy. Basing on this result we
have shown the asymptotic behaviors of attenuation per wavelength of sound wave
and of the dynamic structure factor. From these behaviors the role of the dynamical
pressure tensors has been shown explicitly.

We make the following two remarks:

(i) The results exhibited in the present paper are also true for other systems [22].
In particular, (N )-system that is usually studied in the context of ET is derived
as the singular limit of (N , M)-system with M < N − 1 where equilibrium
characteristic velocities do not depend on D. In other words, the physically
relevant system for monatomic gases is (N−)-system instead of (N )-system.

(ii) In the present study, we adopt the BGK model. However, in practical problems,
there exist several kinds of the relaxation times and the difference of the order
of magnitude between the relaxation times plays an important role [37].

Acknowledgements This work was partially supported by Japan Society of Promotion of Science (JSPS)
No. 15K21452 (T.A.) and No. 25390150 (M.S.), and by National Group of Mathematical Physics GNFM-
INdAM and by University of Bologna: FARB 2012 Project Extended Thermodynamics of Non-Equilibrium
Processes from Macro- to Nano-Scale (T.R.).

References

1. Müller, I., Ruggeri, T.: Rational Extended Thermodynamics, Springer Tracts in Natural Philosophy,
vol. 37, II edn. Springer, New York (1998)

2. Müller, I., Ruggeri, T.: Extended Thermodynamics, Springer Tracts in Natural Philosophy, vol. 37, I
edn. Springer, New York (1993)

3. Dreyer, W.: Maximization of the entropy in non-equilibrium. J. Phys. A Math. Gen. 20, 6505–6517
(1987)

4. Boillat, G., Ruggeri, T.: Moment equations in the kinetic theory of gases and wave velocities. Contin.
Mech. Thermodyn. 9, 205–212 (1997)

5. Liu, I.-S., Müller, I., Ruggeri, T.: Relativistic thermodynamics of gases. Ann. Phys. 169, 191–219
(1986)

123



12 Arima et al.

6. Ruggeri, T., Sugiyama, M.: Rational Extended Thermodynamics beyond the Monatomic Gas ISBN
978-3-319-13340-9. Springer, Cham (2015)
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