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Abstract In this paper the Turing pattern formation mechanism of a two components
reaction-diffusion systemmodeling the Schnakenberg chemical reaction is considered.
In Ref. (Madzavamuse et al., J Math Biol 70(4):709–743, 2015) it was shown how
the presence of linear cross-diffusion terms favors the destabilization of the constant
steady state. We perform the weakly nonlinear multiple scales analysis to derive the
equations for the amplitude of the Turing patterns and to show how the cross-diffusion
coefficients influence the occurrence of super-critical or sub-critical bifurcations. We
present a numerical exploration of far from equilibrium regimes and prove the exis-
tence of multistable stationary solutions.

Keywords Activator-inhibitor kinetics · Cross-diffusion · Turing instability ·
Amplitude equations
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1 Introduction

The aim of this paper is to describe the Turing pattern formation for the following
reaction-diffusion system, recently considered in [25]:
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∂u

∂t
= Du∇2u + Duv∇2v + γ f (u, v),

∂v

∂t
= Dv∇2v + Dvu∇2u + γ g(u, v),

(1)

where Du, Dv > 0 are the linear diffusion coefficients, Duv, Dvu are the cross-
diffusion coefficients, and γ is a positive constant describing the relative strength
of reaction terms (or, alternatively, the size of the spatial domain and the time scale).
The nonlinear kinetics:

f (u, v) = k1a1 − k2u + k3u2v,

g(u, v) = k4b1 − k3u2v,
(2)

describe the Schnakenberg chemical reaction, where all the coefficients a1, b1,
k1, k2, k3 and k4 are positive constants. In (1), u(x, t) and v(x, t) with x ∈ R

n are
the two chemical concentrations. We shall treat the 1D case Ω = [0, 2π ].

The system is supplemented with initial conditions and Neumann boundary condi-
tions.

Reaction-diffusion systems have been largely employed in literature to predict the
occurrence of spatial patterns in different contexts such as biological sciences, geology,
industrial process and networks of electrical circuits [2–4,7,8,20,23,27,28]. Recently,
cross-diffusion effects have been considered in models where the gradient of the
density of one species induces a flux of another species [11,12,24,30,32,33,38]. It
has been shown that, for a large class of predator-prey or competitive kinetics without
an autocatalytic term, cross-diffusion is the responsible of Turing instability [15,17,
34,35] and favors pattern formation [16,18]. With the introduction of linear cross-
diffusion terms in the Schnakenberg model, the destabilization of the constant steady
state occurs even if the diffusion constant of the inhibitor is smaller or equal to the
diffusion constant of the activator, see [25]. In this paper we investigate the role of the
cross-diffusion coefficients in the occurrence of super-critical or sub-critical Turing
bifurcations. When the bifurcation is super-critical, the pattern is spatially extended,
it is born from zero amplitude and it is subject to further instabilities in large domains,
due to the presence of different unstable modes which interact. In contrast, when
the Turing bifurcation is sub-critical, the arising spatial structure jumps to a finite
amplitude pattern (which corresponds to a large branch amplitude into the bifurcation
diagram). Such sub-critical pattern is localized in the spatial domain, and robust to
small fluctuations in the bifurcation parameter values [26]. It is therefore important
to investigate what is the mechanism which helps the sub-critical Turing instability.
Here we will apply the weakly nonlinear analysis (WNL), a nonlinear bifurcation
technique based on the method of multiple scales, to derive a reduced description of
the near-critical bifurcation structure of the patterns in terms of their amplitude and
to distinguish the super-critical and the sub-critical pattern forming region. We have
observed that the occurrence of super- or sub-critical instability strictly depends on
the distance between the values of the cross-diffusion coefficients in the inhibitor and
the activator component.

123



Super-critical and sub-critical bifurcations in a reaction-diffusion. . . 451

On the other hand, the WNL theory yields a reliable approximation of the solution
only close to the bifurcation threshold but it is not able to capture the far from the equi-
librium dynamics. Therefore we numerically investigate the fully nonlinear regimes
computing a bifurcation diagram which proves the existence of stationary non-Turing
solutions which are bistable with the Turing pattern. The paper is organized as follows:
in Sect. 2 we perform the linear stability analysis to find the conditions on the system
parameters for the onset of diffusion-driven instability, draw the corresponding Turing
instability region and show how cross-diffusion favors the instability occurrence. In
Sect. 3 we carry out the WNL analysis, deriving the equations for the amplitude of
the pattern both in the super-critical and the sub-critical bifurcation case and pointing
out how cross-diffusion coefficients influence the appearance of super-critical or sub-
critical bifurcations. In the case of sub-critical bifurcation, we show that the amplitude
equation well describes the hysteretic phenomenon which emerges due to the presence
of a multiplicity of stable equilibria. Finally, we numerically investigate far from equi-
librium regimes, showing the occurrence of multistability between stationary Turing
and non-Turing solutions.

2 Turing instability

We consider the following non dimensional form of the system (1):

∂u

∂t
= ∇2u + dv∇2v + γ f (u, v),

∂v

∂t
= d∇2v + du∇2u + γ g(u, v),

(3)

where d = Dv/Du is the ratio of the linear diffusion coefficients, du = Dvu/Du and
dv = Duv/Du are the ratios of the cross-diffusion coefficients and the linear diffusion
coefficients, and the reaction term is given by:

f (u, v) = a − u + u2v,

g(u, v) = b − u2v.
(4)

The details of the above given non-dimensionalization can be found in [25]. Lin-
earizing the system (3)–(4) in the neighborhood of its unique positive steady state:

P0 = (u0, v0) =
(
a + b,

b

(a + b)2

)
, (5)

one gets:

ẇ = γ J (P0)w + Dd∇2w , w ≡
(
u − u0
v − v0

)
, (6)

where:

Dd =
(
1 dv

du d

)
and J (P0) = J =

( b−a
a+b (a + b)2

− 2b
a+b −(a + b)2

)
.
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We impose that the following condition holds:

det(Dd) = d − dudv > 0, (7)

in such a way that the reaction-diffusion system (3) is well posed.
Through linear stability analysis the following dispersion relation is found, which

gives the growth rate λ as a function of the wavenumber k:

λ2 − t (k2)λ + h(k2) = 0, (8)

where:

t (k2) = γ tr J − k2(1 + d),

h(k2) = det(Dd)k4 + γ qk2 + γ 2det(J ), with q = −J11D
d
22 − J22D

d
11. (9)

Being det(J ) = (a + b)2 > 0, in order for the steady state P0 to be stable to
the spatially homogeneous mode k = 0, one has to require that tr(J ) < 0. The
equilibrium loses its stability via Turing bifurcation if Re(λ) > 0 for some k �= 0,
which is equivalent to impose h(k2) < 0 for some k �= 0. Since, from (7), h(k2) is
an upward opening parabola (see Fig. 1a), the following two conditions have to be
satisfied:

q < 0, (10)

q2 − 4 det(Dd)det(J ) > 0. (11)

As Dd
ii > 0, i = 1, 2 and J22 < 0, condition (10) and the expression in (9) for q

imply that J11 > 0 is a necessary condition for Turing instability, which is equivalent
to assume b > a. Therefore, the Schnakenberg model has to belong to the class of
activator-inhibitor system; in particular, being J22 < 0, J12 > 0 and J21 < 0, it is
a so called cross activator-inhibitor system. The neutral stability Turing boundary
corresponds to h(k2) = 0, which has a single minimum (k2c , dc) attained when:

k2c = γ

√
det(J )

dc − dudv

, (12)

and, by imposing q2 − 4 det(Dd)det(J ) = 0, the corresponding Turing bifurcation
value dc is obtained as follows:

dc = (det(J ) − J12 J21 + J11 (dv J21 + du J12))/J
2
11

+ 2

√
det(J )(dv J11 − J12)(J21 − du J11)

J11
. (13)

From the above discussion we can state the following theorem that was originally
formulated in [25].

Theorem 1 The necessary conditions for diffusion driven instability of the system (3)
are:
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Fig. 1 a Plot of h(k2). b Turing instability region in the plane (a, b) is shadowed: in grey the super-critical
region, in black the sub-critical region (see details in Sect. 3). The other parameter values are chosen as
γ = 1, d = 15, du = 1 and dv = 1

(i) tr(J ) < 0;
(ii) q = −J11Dd

22 − J22Dd
11 < 0;

(iii) J11 > 0;
(iv) q2 − 4 det(Dd)det(J ) > 0.

Therefore at d = dc as defined in (13), stationary spatially periodic solution whose
wavenumber kc given in (12), bifurcate from the homogeneous steady state. In Fig.
1b, the Turing instability region, i.e. the region in the parameter space where the con-
ditions (i)–(iv) are satisfied, is shown in the section (a, b) of the parameter space. The
parameter γ plays no role in the characterization of the Turing instability region, as the
conditions (i)–(iv) do not depend on its value. For d > dc the system admits a finite
k pattern-forming stationary instability, see Fig. 1a. However, since the spatial eigen-
modes allowed by the boundary conditions form a discrete set, it could happen that
none of the admissible modes has positive growth factor. To guarantee the emergence
of spatial patterns at least one of the modes allowed by the boundary conditions must
fall within the interval of instability [k21; k22], where k1 and k2 are the roots of h(k2)
and are proportional to γ . Recalling that the modes allowed by the no-flux boundary
conditions on the spatial domain [0, 2π ] are of the form k = n/2 with n ∈ N, one can
therefore state the following theorem.

Theorem 2 Let k1 and k2 be the roots of h(k2), then the formation of the pattern
occurs if

• conditions (i)–(iv) of Theorem 1 are satisfied;
• γ is large enough so that there exists at least one integer n̄ such that k1 ≤ n̄/2 ≤ k2.

In absence of cross-diffusion, condition (ii) of Theorem1 reduces to d J11+J22 > 0.
This condition, together with (i), leads to d > − J22

J11
> 1, therefore the diffusion

coefficients of the two species can not be equal and the inhibitor v must diffuse
faster than the activator u. This does not hold true in presence of the cross diffusive
coefficients (as it has been observed in [25]).
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Moreover, dc in (13) must be a real number, i.e. det(J )(dv J11 − J12)(J21 − du J11)
has to be non-negative. Being det(J ) > 0, the cross-diffusion coefficients du and dv

should be chosen in one of the following two sets:

S1 =
{
(du, dv) : du ≥ J21

J11
, dv ≤ J12

J11

}
, S2 =

{
(du, dv) : du ≤ J21

J11
, dv ≥ J12

J11

}
.

If (du, dv) ∈ S2, then du ≤ J21/J11 < 0. The negative cross-diffusion, discussed
e.g. in [10,31], represents an unnatural tendency of a species to move against the
concentration gradient of the other species and it is quite rare. Therefore, in what
follows, the cross-diffusion coefficients will be chosen in S1.

Let us now investigate the cases in which du or dv is equal to zero.
If du = 0 the derivative of dc with respect to dv computed at du = 0, i.e. in absence

of cross-diffusion, is given by:

∂dc
∂dv

|du=0 = − 2b

b − a

[
1 + (a + b)2√

dv(b − a) + (a + b)3

]

and it is always negative. Therefore, the threshold value dc decreases as dv increases
and, correspondingly, the Turing instability region becomes larger. Notice, however,
that the Turing instability does not arise if the cross-diffusion coefficient becomes too
large, i.e. exceeds J12/J11 = (a + b)3/b − a. If dv = 0, the effect is opposite. In fact,
the derivative of dc with respect to du , computed at dv = 0:

∂dc
∂du

|dv=0 = (a + b)3

b − a

[
1 + b − a

(a + b)
√
2b + du(b − a)

]

is positive. Hence, the bifurcation value dc increases as du increases and the corre-
sponding Turing instability region becomes smaller. In Fig. 2 we plot the bifurcation
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Fig. 2 a dc vs dv when du = 0; b dc vs du when dv = 0. The other parameters are fixed as a = 0.1,
b = 0.5 and γ = 1
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Fig. 3 Turing region in the parameter space (a, b) for d = 15. A grey-scale is used to show the following
inclusion chain of Turing regions: the Turing region with du = 1 and dv = 0 (in dark) is the smallest one,
it is included in the Turing region in absence of cross-diffusion (in dark grey), which in turn is included in
the Turing region with du = 1 and dv = 1 (in light grey), which is finally included in that one with du = 0
and dv = 1 (in lighter grey)

value dc respectively versus dv and du , choosing a = 0.1 and b = 0.5. The mini-
mum value of the Turing bifurcation parameter dc attained at the boundaries of the
set S1 {(du, dv) : du ≥ −2.5, dv ≤ 0.54} is 0.81, i.e. a value less than 1, which means
that, in presence of cross-diffusion, Turing instability occurs also not assuming short
range activation-long range inhibition. Our results are in agreement with [25]. We can
conclude, in agreement with the results in [25], that cross-diffusion in the inhibitor
component only (dv = 0) produces the smallest parameter space, cross-diffusion in the
activator component only (du = 0) gives the biggest parameter space and it contains
the former one. Moreover, the Turing region corresponding to the reaction-diffusion
systemwithout cross-diffusion (du = 0 and dv = 0) is a subspace of the Turing region
of the reaction-diffusion systemwith cross-diffusion in both u and v. These behaviours
are summarized in Fig. 3.

3 WNL analysis and pattern formation

Once the conditions on the system parameters for the onset of diffusion driven insta-
bility have been obtained, we perform aWNL analysis to derive a reduced description
of the near-critical bifurcation structure of the patterns in terms of their amplitude.
Defining the control parameter as the dimensionless distance from the threshold
ε2 = (d − dc)/dc, the solution of the original system (3) is written as a weakly
nonlinear expansion in ε:

w = εw1 + ε2w2 + ε3w3 + · · · , (14)

Close to the bifurcation the amplitude of the pattern evolves on a slow temporal
scale, therefore we separate the fast time t and slow time T :

∂

∂t
= ε

∂

∂T1
+ ε2

∂

∂T2
+ ε3

∂

∂T3
· · · . (15)
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Moreover, we expand the bifurcation parameter d as follows:

d = dc + εd(1) + ε2d(2) + ε3d(3) + · · · . (16)

Upon substitution of the expansions (14)–(16) into (3), we collect the terms at each
order in ε obtaining the following sequence of equations for the wi : O(ε) :

Ldcw1 = 0, (17)

O(ε2) :
Ldcw2 = F, (18)

O(ε3) :
Ldcw3 = G, (19)

where Ldc = J + Ddc∇2 and:

F = ∂w1

∂T1
−

(
0 0
0 d(1)

)
∇2w1 − γ

(
2(a + b)u1v1 + b

(a+b)2
u21

−2(a + b)u1v1 − b
(a+b)2

u21

)
,

G = ∂w1

∂T2
+ ∂w2

∂T1
−

(
0 0
0 d(1)

)
∇2w2 −

(
0 0
0 d(2)

)
∇2w1 − γ

(
u21v1

−u21v1

)

−γ

( 2b
(a+b)2

u1 + 2(a + b)v1 2(a + b)u1

− 2b
(a+b)2

u1 − 2(a + b)v1 −2(a + b)u1

)
w2.

The solution to the linear problem (17), which satisfies the Neumann boundary
conditions, is:

w1 = A(T1, T2, . . .)r cos(k̄cx), with r ∈ Ker(J − k̄2c D
dc), (20)

where the amplitude of the pattern A(T1, T2, . . .) is still arbitrary at this level, k̄c is the
first unstable admissible mode and the vector r, defined up to a constant, is normalized
as follows:

r =
(
1
M

)
with M = −k̄2c − γ 2b

a+b

γ (a + b)2 + k̄2c dc
. (21)

Substituting the solution (20) in (18), we assume T1 = 0 and d(1) = 0 in such a
way that the vector F is automatically orthogonal to the kernel of the adjoint of Ldc .
Hence the solution of (18) can be straightforwardly computed and, once substituted
into (19), yields the following expression for the source term G:

G =
(
d A

dT
r + AG(1)

1 + A3G(3)
1

)
cos(k̄cx) + G∗, (22)

where T = T2 and the vectorsG
j
1, j = 1, 3 andG∗ (containing only orthogonal terms

to the kernel of the adjoint of Ldc ) are computed in terms of the parameters of the
original system (3) as follows:
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G(1)
1 =

(
0

d(2)k2c M

)
, G(3)

1 = −γ Ḡ
(
w20 + 1

2
w22

)
− 3

4
γ M

[
1

−1

]
,

G∗ = −1

2
γ Ḡw22 − 1

4
γ M

[
1

−1

]
, Ḡ =

⎛
⎝

2b
(a+b)2

+ 2(a + b)M 2(a + b)

− 2b
(a+b)2

− 2(a + b)M −2(a + b)

⎞
⎠ .

Upon setting:

σ = −
〈
G(1)

1 ,ψ
〉

〈r,ψ〉 , L =
〈
G(3)

1 ,ψ
〉

〈r,ψ〉 , (23)

where ψ ∈ Ker
{(

J − k̄2c D
dc

)†}
, the solvability condition 〈G,ψ〉 = 0 for the Eq.

(22), leads to the following Stuart–Landau equation:

d A

dT
= σ A − L A3. (24)

The stability behavior of the Stuart–Landau equation (24) and consequently the
pattern formation for the model system is dependent upon the sign of the Landau
constant L . When L > 0 the WNL analysis provides an asymptotic solution for the
reaction-diffusion system (3):

Theorem 3 (Super-critical bifurcation) Assume that:

1. ε2 = (d − dc)/dc is small enough so that the uniform steady state (u0, v0) is
unstable to modes corresponding only to the eigenvalue k̄c;

2. the Landau coefficient L in (23) is greater than zero.

Then the emerging solution of the reaction-diffusion system (3) is given by:

w = εrA∞ cos(k̄cx) + O(ε2), (25)

where A∞ = √
σ/L is the stable stationary state of the Stuart–Landau equation (24)

and r ∈ Ker(J − k̄2c D
dc).

We pick the system parameters in the super-critical parameter region shown in
Fig. 1b and in such a way that, in the domain [0, 2π ] the only admitted discrete
unstable mode is k̄c = 2.5. Comparing the asymptotic solution predicted by the
WNL analysis and the numerical solution of the system (3) computed with a spectral
numerical code starting from a random periodic perturbation of the constant state, we
obtain a very good agreement, see Fig. 4a. In particular, in all the performed numerical
experiments, we have verified that the distance, evaluated in the L1 norm, between
the WNL approximation (25) and the numerical solution of the system is O(ε3).

For some choices of the system parameters, the Landau coefficient L has a negative
value. In these cases a sub-critical bifurcation occurs and Eq. (24) is not able to predict
the amplitude of the pattern. In order to capture the evolution of pattern amplitude we
push the WNL analysis up to O(ε5), obtaining the following quintic Stuart–Landau
equation for the amplitude A:
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Fig. 4 a Comparison between the WNL approximated solution (dotted line) and the numerical solution
of the reaction-diffusion system (3) (solid line). b Pattern evolution in the space-time plane. Here the
parameters are chosen in the super-critical region: a = 0.34 and b = 0.64, du = 1, dv = 1, γ = 42 so that
dc = 43.9864 and k̄c = 2.5; d = dc(1 + ε2) with ε2 = 0.04

d A

dT
= σ̄ A − L̄ A3 + R̄ A5. (26)

The details of the analysis and the expressions of the coefficients of the above
equation are given in “Appendix”. The results can be summarized as follows:

Proposition 1 (WNL analysis results in the sub-critical case)
Assume that the hypotheses (1) and (2) of Theorem 3 hold and that

(3) the Landau coefficient L into (24) is negative;
(4) the coefficient R̄ into (26) is positive.

Then the emerging solution of the reaction-diffusion system (3) is given by:

w = εrA∞ cos(kcx) + O(ε), (27)

where A∞ is a stable stationary state of the quintic Stuart–Landau equation (26).

The emerging pattern in the sub-critical case is an O(1) perturbation of the equi-
librium (in fact the amplitude A is order ε−1, see e.g. [17]). This is of course a
contradiction with the basic assumption of the perturbation scheme, so that, in the
sub-critical case, the expected solution by the WNL analysis may fail to capture the
quantitative features of the emerging structures. Nevertheless, our simulation in Fig. 5
show that such an expansion gives a reasonable qualitative insight on the pattern close
to the sub-critical threshold.

In order to detect how too cumbersome and, therefore, are here omitted the
cross-diffusion coefficients influence the occurrence of supercritical or sub-critical
bifurcation, we represent the Turing super- and sub-critical regions for suitable values
of du and dv . In Fig. 6a we observe that, when du < dv the Turing instability occurs
through a supercritical bifurcation for most of the values. The sub-critical region
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Fig. 5 aComparison between theweakly nonlinear solution (solid line) and the numerical solution of (3). b
Pattern evolution in the space-time plane. The parameters are chosen as a = 0.1, b = 0.85, γ = 5, du = 5,
dv = 1, so that dc = 9.9431 and k̄c = 1.5; d = dc(1 + ε2) with ε2 = 0.15. This pattern corresponds, in
the numerically computed bifurcation diagram Fig. 8, to the point labeled by ∗
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Fig. 6 Turing instability regions: in grey the super-critical region and in black the sub-critical region. The
parameters are chosen as d = 1 and γ = 1

increases as the distance between du and dv decreases. When du > dv the behav-
iour is opposite, as shown in Fig. 6b. In fact, the Turing instability occurs through
a sub-critical bifurcation for most of the values and the supercritical region arises in
correspondence of a decreasing of the distance between du and dv .

3.1 Sub-critical bifurcation and bistability

The Eq. (26) is also able to describe the interesting phenomenon of hysteresis. In the
bifurcation diagram predicted by the WNL analysis, shown in Fig. 7a, one can see
that two qualitatively different stable states coexist when ds < d < dc. The hysteresis
cycle in Fig. 7b shows that, starting with a value of the parameter above dc, the
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Fig. 7 aThe bifurcation diagrampredicted byWNLanalysis in the sub-critical case (the stable branches are
drawn with red thick line, the unstable ones with black thin line). bA hysteresis cycle and the corresponding
pattern evolution in the sub-critical case. As d varies, the fixed values of the other parameters are the same
as in Fig. 5
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Fig. 8 Numerically calculated bifurcation diagram: the stable branches are drawn in red thick line, the
unstable ones in black thin line. As d varies, the fixed values of the other parameters are the same as in
Fig. 5. The patterns corresponding to the points marked by asterisk and bullet are shown in Figs. 5 and 9,
respectively

solution stabilizes to a pattern corresponding to the stable large amplitude branch of
the bifurcation diagram. Decreasing d below dc the pattern does not disappear, as the
stable amplitude solution persists on the upper branch. Still decreasing d below ds the
pattern disappears, as the amplitude solution jumps to the constant steady state. The
formation of the pattern is again obtained only increasing the parameter d above dc.

To investigate the system behavior far from equilibrium, we computed the corre-
sponding bifurcation diagram as the parameter d is varied in the interval d ∈ [9, 18],
using the numerical continuation software AUTO. In Fig. 8 the numerically calculated
bifurcation diagram of the point xmax where the species u attains its maximum Umax

on the large amplitude branch is shown.
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Fig. 9 Stationary solution far from the equilibrium. a Profile of the solution. b Pattern evolution in the
space-time plane. The parameters are chosen as in Fig. 5 and d = 11.45

Near the threshold dc, the bifurcation diagram predicted using the WNL analysis
qualitative agrees with the one numerically computed. As d increases from dc, the
homogeneous unstable steady state undergoes to a bifurcation at dA  12.11, at the
point labeled by A in Fig. 8, where two different unstable branches emerge. Secondary
bifurcations occur on both branches, at the points B (with dB  11.12) and C (with
dC  14.52), respectively, which give rise to stable stationary patterns, whose exis-
tence cannot be predicted by the weakly nonlinear expansion. The pattern computed
on the upper branch for d  11.45 (at the point labeled by a solid bullet in Fig. 8) is
shown in Fig. 9. It is a far-from-equilibrium stationary solution which is different, for
amplitude and form, from the expected pattern on the basis on the WNL theory for
the same value of the parameter d, which has been depicted in Fig. 5. Its analytical
investigation is a subject of great interest (see e.g. [21,22]) and will be the object of a
forthcoming paper. Therefore, for a fixed value of the bifurcation parameter, bistability
occurs and two different stable patterns coexist when d > dB .

The pattern solution computed on the lower stable branch arising from the point
C differs from the corresponding one on the upper branch only for a phase shift and,
therefore, is not shown here.

4 Conclusions

In this paper we have investigated the Turing instability induced by linear cross-
diffusion for the Schnakenberg reaction-diffusion system. By performing a WNL
analysis, we have predicted the amplitude of the pattern near the threshold andwe have
determined the super- and the sub-critical instability regions whose extent depends on
the distance between the values of the cross diffusion coefficients. Multiple branches
of stable solutions are also observed leading to hysteresis next to the threshold and far
from the equilibrium.

Other aspects of the problem could be examined. For example it is well known how
the interaction between theTuring and theHopf instabilitymechanisms, can give rise to
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non-stationary patterns [37]; the Schnakenberg kinetics supports the Hopf bifurcation
and one should analyze the parameter region where spatio-temporal structures could
emerge as the result of this codimension-2 bifurcation. Moreover it has been recently
shown [1,34] how oscillatory dynamics can also be induced, away from threshold,
by strong nonlinear mechanisms, leading also to the onset of chaotic phenomena
[5,6]: one could ask whether this behavior is supported by the system considered in
the present paper. We mention that a typical far from the equilibrium phenomenon
is the appearance of localized structures like spots or mesa patterns that could be
rigorously constructed though matched asymptotic procedures. We also report that
in some of our numerical tests we have seen the appearance of metastable structure
that, either disappear giving rise to different patterns or decay to equilibrium; it would
be of interest to study these long time behaviors via the techniques used in [29]; or
to investigate how the coherent structures supported by the Schnakenberg system are
modified by the presence of non-autonomous kinetic terms of the form considered in
[9]. The design of suitable finite-dimensional controls of feedback or adaptive type
[13,14,19,36] to control the complex behavior supported by our system would also
deserve some attention.
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Appendix: The quintic Stuart–Landau equation

Taking into account that (24) still holds for the amplitude A (although now the deriv-
ative with respect to T is a partial derivative), the solvability condition 〈G, ψ〉 = 0
for (19) is satisfied and the solution is:

w3 =
(
Aw31 + A3w32

)
cos (kcx) + A3w33 cos (3kcx) , (28)

where the expression for the vectors w3i , i = 1, 2, 3 can be computed solving the
following linear systems:

L1w31 = σr + G(1)
1 , L2w32=−Lr+G(3)

1 , L3w33=G3,

where we have defined Li = Γ J − i2k2c D
dc .

At O(ε4) the resulting equation is Ldcw3 = H, where:

H = 2A
∂A

∂T2
w20 + A2H(2)

0 + A4H(4)
0 +

(
2A

∂A

∂T
w22+A2H(2)

2 + A4H(4)
2

)
cos(2k̄cx)

+ A4H(4)
4 cos(4k̄cx),
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and:

H(2)
0 = 1

2
γ

( 2b
(a+b)2

+ 2(a + b)M 2(a + b)

− 2b
(a+b)2

− 2(a + b)M −2(a + b)

)
w31,

H(4)
0 = 1

2
γ

( 2b
(a+b)2

+ 2(a + b)M 2(a + b)

− 2b
(a+b)2

− 2(a + b)M −2(a + b)

)
w32

+ γ

( b
(a+b)2

w20(1) + 2(a + b)w20(2) + M 1
2

− b
(a+b)2

w20(1) − 2(a + b)w20(2) − M − 1
2

)
w20

+ 1

2
γ

( b
(a+b)2

w22(1) + 2(a + b)w22(2) + M 1
2

− b
(a+b)2

w22(1) − 2(a + b)w22(2) − M − 1
2

)
w22

H(2)
2 =

(
0 0
0 4d(2)k2c

)
w22 + 1

2
γ

( 2b
(a+b)2

+ 2(a + b)M 2(a + b)

− 2b
(a+b)2

− 2(a + b)M −2(a + b)

)
w31,

H(4)
2 = 1

2
γ

( 2b
(a+b)2

+ 2(a + b)M 2(a + b)

− 2b
(a+b)2

− 2(a + b)M −2(a + b)

)
(w32 + w33)

+ γ

( b
(a+b)2

w20(1) + 2(a + b)w20(2) + M 1
2

− b
(a+b)2

w20(1) − 2(a + b)w20(2) − M − 1
2

)
w22

+ γ

( b
(a+b)2

w22(1) + 2(a + b)w22(2) + M 1
2

− b
(a+b)2

w22(1) − 2(a + b)w22(2) − M − 1
2

)
w20,

H(4)
4 = 1

2
γ

( 2b
(a+b)2

+ 2(a + b)M 2(a + b)

− 2b
(a+b)2

− 2(a + b)M −2(a + b)

)
w33

+ 1

2
γ

( b
(a+b)2

w22(1) + 2(a + b)w22(2) + M 1
2

− b
(a+b)2

w22(1) − 2(a + b)w22(2) − M − 1
2

)
w22.

The solvability condition for is automatically satisfied and the solution is:

w4 = A2w40 + A4w41 +
(
A2w42 + A4w43

)
cos(2kcx) + A4w44 cos(4kcx) , (29)

where the vector w4i , i = 1, . . . , 4, are the solutions of the following linear systems:

Γ Kw40 = 2σw20 + H(2)
0 , Γ Kw41 = −2Lw20 + H(4)

0 ,

L2w42 = 2σw22 + H(2)
2 , L3w43 = −2Lw22 + H(4)

2 , L4w44 = H4.
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At O(ε5) the resulting equation is Ldcw3 = P, where:

P =
(

∂A

∂T4
r + ∂A

∂T2
w31 + 3A2 ∂A

∂T2
w32 + AP(1)

1 + A3P(3)
1 + A5P(5)

1

)
cos(k̄cx)

(30)

+
(
3A2 ∂A

∂T2
w33 + A3P(3)

3 + A5P(5)
3

)
cos(3k̄cx) + A5P(5)

5 cos(5k̄cx), (31)

and:

P(1)
1 =

(
0 0
0 d(2)k2c

)
w31 +

(
0

d(4)k2c M

)
,

P(3)
1 =

(
0 0
0 d(2)k2c

)
w32 − γ

( 2b
(a+b)2

+ 2(a + b)M 2(a + b)

− 2b
(a+b)2

− 2(a + b)M −2(a + b)

) (
w40 + 1

2
w42

)

− γ

( 2b
(a+b)2

w20(1) + 2(a + b)w20(2) 2(a + b)w20(1) + 1
2

− 2b
(a+b)2

w20(1) − 2(a + b)w20(2) −2(a + b)w20(1) − 1
2

)
w31

− 1

2
γ

( 2b
(a+b)2

w22(1) + 2(a + b)w22(2) 2(a + b)w22(1) + 1
2

− 2b
(a+b)2

w22(1) − 2(a + b)w22(2) −2(a + b)w22(1) − 1
2

)
w31,

P(5)
1 = −γ

( 2b
(a+b)2

+ 2(a + b)M 2(a + b)

− 2b
(a+b)2

− 2(a + b)M −2(a + b)

) (
w41 + 1

2
w43

)

− γ

( 2b
(a+b)2

w20(1) + 2(a + b)w20(2) 2(a + b)w20(1) + 1
2

− 2b
(a+b)2

w20(1) − 2(a + b)w20(2) −2(a + b)w20(1) − 1
2

)
w32

− γ

( 2b
(a+b)2

w20(1) + 2(a + b)w20(2) 2(a + b)w20(1) + 1
2

− 2b
(a+b)2

w20(1) − 2(a + b)w20(2) −2(a + b)w20(1) − 1
2

)
(w32+w33)

− γ

( (
w20(1) + 1

2w22(1)
)
M 2w20(1) + w22(1)

− (
w20(1) + 1

2w22(1)
)
M −2w20(1) − w22(1)

)
w20

− 1

2
γ

⎛
⎝

(
w20(1) + w22(1)

)
M 2

(
w20(1) + w22(1)

)

−
(
w20(1) + w22(1)

)
M −2

(
w20(1)+w22(1)

)
⎞
⎠w22,

P(3)
3 =

(
0 0

0 9d(2)k2c

)
w33 − 1

2
γ

( 2b
(a+b)2

+ 2(a + b)M 2(a + b)

− 2b
(a+b)2

− 2(a + b)M −2(a + b)

)
w42

− γ

( 2b
(a+b)2

w20(1) + 2(a + b)w20(2) 2(a + b)w20(1) + 1
2

− 2b
(a+b)2

w20(1) − 2(a + b)w20(2) −2(a + b)w20(1) − 1
2

)
w31,
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P(5)
3 = −1

2
γ

( 2b
(a+b)2

+ 2(a + b)M 2(a + b)

− 2b
(a+b)2

− 2(a + b)M −2(a + b)

)
(w43 + w44)

− γ

( 2b
(a+b)2

w20(1) + 2(a + b)w20(2) 2(a + b)w20(1) + 1
2

− 2b
(a+b)2

w20(1) − 2(a + b)w20(2) −2(a + b)w20(1) − 1
2

)
w33

− 1

2
γ

( 2b
(a+b)2

w20(1) + 2(a + b)w20(2) 2(a + b)w20(1) + 1
2

− 2b
(a+b)2

w20(1) − 2(a + b)w20(2) −2(a + b)w20(1) − 1
2

)
w32

− 1

2
γ

(
Mw20(1) 2w20(1)

−Mw20(1) −2w20(1)

)
w22

− 1

2
γ

(
Mw22(1) 2w22(1)

−Mw22(1) −2w22(1)

) (
w20 + 1

2
w22

)
,

P(5)
5 = −1

2
γ

( 2b
(a+b)2

+ 2(a + b)M 2(a + b)

− 2b
(a+b)2

− 2(a + b)M −2(a + b)

)
w44

− 1

2
γ

( 2b
(a+b)2

w20(1) + 2(a + b)w20(2) 2(a + b)w20(1) + 1
2

− 2b
(a+b)2

w20(1) − 2(a + b)w20(2) −2(a + b)w20(1) − 1
2

)
w33

− 1

4
γ

(
Mw22(1) 2w22(1)

−Mw22(1) −2w22(1)

)
w22.

Putting:

σ̃ = −
〈
P(1)
1 ,ψ

〉
〈r,ψ〉 , L =

〈
3σw32 − Lw31 + P(3)

1 ,ψ
〉

〈r,ψ〉 ,

R =
〈
3Lw32 + P(5)

1 ,ψ
〉

〈r,ψ〉 (32)

the Fredholm alternative 〈P,ψ〉 for the Eq. (31) leads to:

∂A

∂T4
= σ̃ A − L̃ A3 + R̃ A5. (33)

Adding up (33) to (24) one gets (26), with:

σ̄ = σ + ε2σ̃ , L̄ = L + ε2 L̃, R̄ = ε2 R̃. (34)
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