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Abstract In this paper we present ROCmethodology and analyze the ROC curve.We
describe first the historical background and its relation with signal detection theory.
Some mathematical properties of this curve are given, and in particular the relation
with stochastic orders and statistical hypotheses testing are described. We present also
a medical application of the Neymann–Pearson lemma.
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1 Introduction and historical background

ROC (Receiver Operating Characteristic) methodology belongs to signal detection
theory and it was first developed during the SecondWorld War by electrical engineers
to analyze radar signals and to study the relation signal/noise, in particular in order to
detect correctly enemy objects in battlefields. It was used to quantify the ability of a
radar operator to discern between information-bearing patterns (signal) and random
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patterns that distract from the information (noise). Since the second half of the last
century, ROC analysis has been used fully in radar detection theory (Marcum [11])
and in psychophysical researches (Green and Swets [3]). About twenty years later,
both interest and application have increased in the field of medicine (Lusted [10]),
first in radiology (Goodenough [4]; Hanley and McNeil [5,6]) and then in preventive
medicine and for evaluation of diagnostic tests (Erdreich [2])! and its relevance is
increasing also in machine learning and data mining research.

ROC analysis is useful to evaluate the performance of any kind of diagnostic tests,
and more generally the accuracy of statistical models that divide subjects into two
classes. In statistics, one of the first and most important contribution to ROC analysis
is due toDonaldBamber [1], who clarified the relationship between theROCcurve and
the ordinal dominance (OD) graph and explained the relation with the Mann-Whitney
U-statistics.

Let X and Y be two random variables with F and G distribution functions, f and
g density functions, and F̄ = 1 − F and Ḡ = 1 − G survival functions. We recall
here some of the main stochastic orders (for further informations see Shaked and
Shanthikumar [14]).

We say that X is smaller than Y in the usual stochastic order, andwewrite X ≤st Y ,
if

F̄(x) ≤ Ḡ(x) for all x ∈ (−∞,+∞),

or equivalently,

F(x) ≥ G(x) for all x ∈ (−∞,+∞).

Moreover, let λF (x) = f (x)/F̄(x) and λG(x) = g(x)/Ḡ(x) be the hazard rate
functions of X and Y , respectively. X is said to be smaller than Y in the hazard rate
order, X ≤hr Y , if

λF (x) ≥ λG(x), x ≥ 0.

Consider now φF (x) = f (x)/F(x) and φG(x) = g(x)/G(x) the reversed hazard
rate functions of X and Y , respectively; X is said to be smaller than Y in the reversed
hazard rate order, and we write X ≤rh Y , if

φF (x) ≤ φG(x), x ≥ 0,

or equivalently

X(t) ≤st Y(t) for all t ≥ 0,

where X(t) and Y(t) are the residual random variables at age t , i.e.

X(t) = (
X − t |X > t

)
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and

Y(t) = (
Y − t |Y > t

)
.

Finally, X is said to be smaller than Y in the likelihood order, X ≤lr Y , if

g(x)

f (x)
increases when x ranges in the union of the supports of X and Y

or equivalently if

f (x)g(y) ≥ f (y)g(x) for all x ≤ y.

The following result is well known.

Theorem 1 If X and Y are two continuous or discrete random variables such that
X ≤lr Y , then X ≤hr Y and X ≤rh Y , and so also X ≤st Y .

In this paper we discuss some mathematical properties of the ROC curve and an
application to medical studies.

In Sect. 2 we describe the so-called “yes-no” tests and introduce the definitions of
sensitivity and specificity. The ROC curve is considered as plot of sensitivity (TPR)
versus 1-specificity (FPR) considering all possible values of the cut-off c. In Sect. 3
some properties of the ROC curve are studied, especially in relation with stochastic
orders. This relation is used in order to obtain a result about the concavity of the ROC
curve. In Sect. 4 we analyze statistical hypotheses testing, focusing on the definitions
of False Positive Rate and False Negative Rate as error of I and II type, respectively.

The last two sections are devoted to an estimation of the ROC curve and to amedical
application.

2 The ROC curve

Consider a signal detection experiment. On each trial of the experiment, we must
discriminate two events: a signal event (such as radar signals, stimuli in psycology,
etc.) or a noise event (that appears even though there is no signal and so gets the
observer confused in the detection of the “real” signal). On each trial, we obtain a
sensory impression of the event and infer whether signal or noise has been presented
to us by analyzing the strength of this impression. We must say “yes” if we think that
it is a signal and “no” otherwise. The result of this analysis can be summarized in a
2 × 2 contingency table (see Table 1).

This table can be used for all type of dichotomous tests, in particular for the so
called “yes-no” tests. The accuracy of these tests can be defined in different ways,
according to Table 1. We define:
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Table 1 The 2 × 2 table summarizes the results of a dichotomous (yes-no) test

Event Total

Signal (E+) Noise (E−)

Yes (T+) TP FP m1

No (T−) FN TN m0

Total n1 n0 N

TP represents the number of the true positive (the signal is present and the observer answers “yes”), FP the
false positive (the signal is absent and the observer says “yes”), TN the true negative (the signal is absent
and the observer says “no”) and FN the false negative (the signal is present and the observer answers “no”)

– Sensitivity or True Positive Rate, TPR, that is the conditional probability of
correctly classifying the presence of signals:

Sensitivity (SE) = P(T + |E+) = T P

T P + FN
= T P

n1

– Specificity or True Negative Rate, TNR, that is the conditional probability of
correctly classifying the absence of signals:

Specificity (SP) = P(T − |E−) = T N

T N + FP
= T N

n0

– False Positive Rate, FPR, that is the probability of type I error:

FPR = P(T + |E−) = FP

FP + T N
= FP

n0
= 1 − specificity

– False Negative Rate, FNR, that is the probability of type II error:

FNR = P(T − |E+) = FN

FN + T P
= FP

n1
= 1 − sensitivity

The true-positive rate is also known as “sensitivity” in particular in biomedical
information theory, and “recall” in machine learning. The false-positive rate is also
known as the “fall-out”.

Many tests give a quantitative result T (for instance, in the above situation, the
strength of sensory impression arising from signal events and noise events). In this case
it is necessary to define a cut-off value c to separate events into two groups: we classify
the signals as present if T ≥ c and as absent if T < c. Here the previous measures
of accuracy are not suitable to define uniquely a “good test”, because different cut-off
values have different 2 × 2 tables. In particular, as c decreases, sensitivity increases
but specificity decreases and viceversa when c increases (see Fig. 1).

Even though sensitivity and specificity do not depend on frequency of presence of
signals or noises, they strongly depend on selected cut-off value.
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Fig. 1 Sensitivity and specificity in relation with the cut-off point c

AROCcurve is a graphical plot that illustrates the performance of a binary classifier
system as its discrimination threshold is varied. By considering all possible values of
the cut-off c, the ROC curve can be constructed as a plot of sensitivity (TPR) versus
1−specificity (FPR). For any cut-off c, we can define:

TPR(c) = P(T ≥ c|E+)

FPR(c) = P(T ≥ c|E−).

Thus the ROC curve is

ROC(·) = {FPR(c),TPR(c), c ∈ (−∞,+∞)} .

We also write the ROC curve as:

ROC(·) = {(t,ROC(t)), t ∈ (0, 1)} ,

where the ROC function maps t to TPR (c), anc c is the cut-off corresponding to
FPR(c) = t .

3 Properties of the ROC curve

The ROC curve is a monotone increasing function mapping (0, 1) to (0, 1). An unin-
formative test is one such that T PR(c) = FPR(c) for every threshold c and this
situation is represented by ROC curve ROC(t) = t , which is a line with unit slope.
A perfect test completely separates the signal and noise events, i.e. T PR(c) = 1 and
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Fig. 2 Three hypothetical ROC curves representing the accuracy of an ideal test (line A) on the upper
and left axes in the unit square, a typical ROC curve (curve B), and a diagonal line corresponding to an
uninformative test (line C). As test accuracy improves, the ROC curve moves toward line A

FPR(c) = 1 for some threshold c. This ROC curve is along the left and upper borders
of the positive unit quadrant (see Fig. 2).

Proposition 1 The ROC curve is invariant with respect to strictly increasing trans-
formations of T.

Proof Let (FPR(c),TPR(c)) be a point of the ROC curve for T and let h be a strictly
increasing transformation of T :

W = h(T ) and d = h(c).

Then we have:

P(W ≥ d|E−) = P(T ≥ c|E−) and P(W ≥ d|E+) = P(T ≥ c|E+),

and hence the same point lies in the ROC curve for W . ��
The test score of a trial of the experiment can be viewed as a random variable. We

divide trials of the experiment into two groups: signal events and noise events. The test
score of a signal event is defined as a random variable X with cumulative distribution
function F and density f . Similarly the test score of a noise event can be represented
as a random variable Y with cumulative distribution function G and density g. Some
formal properties of the ROC curve can be described as follows.
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Proposition 2 Let F̄(x) = 1− F(x) and Ḡ(y) = 1−G(y) be the survival functions
for F and G, respectively. Then the ROC curve has the representation:

ROC(t) = Ḡ(F̄−1(t)) t ∈ [0, 1],

where

F̄(x) = P(X ≥ x |E−) and Ḡ(y) = P(Y ≥ y|E+).

Proof Let c = F̄−1(t), so that c is the threshold corresponding to the false positive
rate t , and hence P(X ≥ c|E−) = t . The corresponding true positive rate is

P(Y ≥ c|E+) = Ḡ(c).

Then the TPR that corresponding to the FPR = t is

ROC(t) = Ḡ(c) = Ḡ(F̄−1(t)).

The statement is proved. ��
Note that the ROC curve can be represented also using only a distribution function:

ROC(t) = 1 − G(F−1(1 − t)) t ∈ [0, 1],

with a simple change of variables.
The following result can be applied only to continuous tests.

Proposition 3 The ROC curve is the function on [0, 1] such that ROC(0) = 0 and
ROC(1) = 1 and which has slope:

∂ROC(t)

∂t
= g(F̄−1(t))

f (F̄−1(t))
,

where f and g denote the probability densities of X and Y , respectively.

Proof We have:

∂ROC(t)

∂t
= ∂Ḡ(F̄−1(t))

∂t
= Ḡ(F̄−1(t))

∂ F̄−1(t)
· F̄

−1(t)

∂t

= −g(F̄−1(t)) · ∂ F̄−1(t)

∂t
.

The statement follows because

∂ F̄−1(t)

∂t
= 1

∂
∂w

(F̄−1(w))
= 1

− f (w)
,

evaluated at w = F̄−1(t). ��
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The slope can be interpreted as the likelihood ratio

LR(c) = P(T = c|E+)/P(T = c|E−),

at the threshold c corresponding to the point (t,ROC(t)), that is c = F̄−1(t). As a
consequence, we have:

LR(c) = g(c)

f (c)
i.e.

∂ROC(c)

∂c
= LR(c),

with c = F̄−1(t).
The following result shows theROCcurve trend under particular hypotheses involv-

ing likelihhod ratio order.

Proposition 4 Let X and Y be two random variables with distribution functions F
and G and densities f and g, respectively. Then X ≤lr Y if and only if Ḡ F̄−1 is
concave.

Proof Using the definition of likelihood ratio order, we have

∂

∂t

g(t)

f (t)
≥ 0.

The statement follows now from an easy differentiation, proving that

∂2
(
Ḡ F̄−1

)

∂t2
≤ 0.

��
Considering the results of Propositions 2 and 4, it is easy to conclude that if X ≤lr

Y (where X and Y represent the test scores of a signal event and a noise event,
respectively) then the corresponding ROC curve is concave.

We can conclude that if X ≤lr Y then the ROC curve lies above the diagonal in the
unit square because ROC(0) = 0 and ROC(1) = 1.

Remark 1 As an application of Theorem 1, we can state that under the hypotheses of
Proposition 4, the two random variables X and Y are ordered in the usual stochastic
order, in the hazard rate order and in the reversed hazard rate order.

4 Analogy with statistical hypotheses testing

In statistical hypoteses tests, we define:

– H0: the null hypothesis;
– H1: the alternative hypothesis.
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Table 2 The analogy between statistical hypotheses testing and a general diagnostic testing

Statistical hypotheses testing Diagnostic testing

Possible states H0 vs H1 D− vs D+
Information Data for n subjects Test results for a subject

Denoted by W Denoted by T

Type I error α = P(reject H0|H0) FPR = P(classify D + |D−)

Type II error β = P(accept H0|H1) FNR = P(classify D − |D+)

LR function LR(W ) = P(W |H1)/P(W |H0) LR(W ) = P(T |D+)/P(T |D−)

and the region of rejection, or critical region, C as the set of values of the test statistic
for which H0 is rejected.

In statistical hypotheses tests two types of errors occur:

– error of the first kind (type I error), when the true null hypothesis is rejected; its
occurrence probability is denoted by α;

– error of the second kind (type II error), when the false null hypothesis is accepted;
its occurrence probability is denoted by β.

These errors are in strict relation with Table 1; in fact, type I error may be compared
with false positive (FP) and type II error with false negative (FN). Power of test (1−β)
is the probability for the test of correctly rejecting the null hypothesis (sensitivity).
Size of test (α) is the probability for the test of incorrectly rejecting the null hypothesis.
The complement of size is specificity (Table 2).

5 ROC curve estimation

The most important numerical index used to describe the behavior of the ROC curve
is the area under the ROC curve (AUC), defined by

AUC =
∫ 1

0
ROC(t)dt.

Referring to Fig. 2, line A represents a perfect test with AUC = 1, curve B
represents a typical ROC curve (for example AUC = 0.85), and a diagonal line
(line C) corresponding to uninformative test with AUC = 0.5. As test accuracy
improves, the ROC curve moves toward A, and the AUC approaches 1. The AUC has
an interesting interpretation. It represents both the average sensitivity over all values
of FPR and the probability that test results from a randomly selected pair of signal
and noise are correctly ordered, namely P(Y > X) (Bamber [1], Hanley and McNeil
[5]). If two tests are ordered with test A uniformly better than test B (see Fig. 2) in the
sense that

ROCA(t) ≥ ROCB(t),
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then their AUC statistics are also ordered:

AUCA ≥ AUCB .

Suppose that test results x1, . . . , xn0 are available for n0 noises and y0, . . . yn1
for n1 signal trials. Many approaches have been proposed for estimating the ROC
curve and so the relatedAUC: parametric, nonparametric and semiparametric methods
([13,15,17]).

The simplest parametric approach is to assume that F and G follows a parametric
family of distributions, and fit these distributions to the observed test results. When
we suppose that test result are normally distributed we obtain the so-called binormal
ROC curve (for details see [13]).

Nonparametric ROC methods do not require any assumption about the test result
distributions and generally do not provide a smooth ROC curve. The simplest nonpara-
metric approach involves estimating F and G by the empirical distribution functions
(for details see Hsieh and Turnbull [7,8]). An alternative nonparametric approach is
to fit a smoothed ROC curve by using the kernel density estimation of F and G (for
details see Lloyd [9]).

In recent years a lot of semiparametric ROCmethods have been introduced. A pop-
ular approach is to assume a so-called binormalmodel, that postulates the existence of
some unspecified monotonic transformation H of measurement scale that simultane-
ously converts F and G distributions to normal ones. Without loss of generality these
can be taken, respectively, to be N (0, 1) and N (μ, σ 2) and then we can analyze ROC
curve through parametric methods (for details see [7,8]). Another semiparametric
approach is represented by a generalized linear model (GLM) (see [12]).

6 A medical application

In medicine a diagnostic test is any kind of medical test performed to aid in the
diagnosis or detection of a disease. In particular, a diagnostic test should correctly
classify patients into “healthy” and “diseased” categories (Table 2). Inmany situations,
the determination of these two categories is a difficult task. In order to estimate the
accuracy of the diagnostic test, it is necessary to compare the result of the test with real
status of the patient. Such “true disease state” may be determined in different ways,
such as clinical follow-up or biopsy. The results of this analysis can be summarized
in a 2 × 2 contingency table similar to Table 1.

The accuracy of a diagnostic test can be defined in various ways, by using the
possibilities described in Table 3. As in Sect. 2, we define:

– Sensitivity or True Positive Rate, TPR, the conditional probability of correctly
classifying diseased patients;

– Specificity or True Negative Rate, TNR, the conditional probability of correctly
classifying healty patients;

– False Positive Rate, FPR, the probability of type I error;
– False Negative Rate, FNR, the probability of type II error.
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Table 3 The 2 × 2 table summarizes the results of a dichotomous diagnostic test

Disease state Total

Present (D+) Absent (D−)

Positive test (T+) TP FP m1

Negative test (T−) FN TN m0

Total n1 n0 N

TP represents the number of the true positive (diseased patients with positive test), FP the false positive
(healthy patients with positive test), TN the true negative (healthy patients with negative test) and FN the
false negative (diseased patients with negative test)

In diagnostic medicine an ideal test is called golden standard and it satisfies the
conditions:

FPR = 0 and TPR = 1.

Many diagnostic tests give a quantitative result T , so that it is necessary to define a
cut-off value c to separate patients into two groups: we classify the patients as diseased
if T ≥ c and healthy if T < c. It is clear that this is a particular situation in which
the ROC analysis can be used in order to evaluate the power of a diagnostic test. ROC
analysis is related in a direct and natural way to cost/benefit analysis of diagnostic
decision making.

All the considerations about the ROC analysis can be traslated in medical context.
Most diagnostic tests currently available are not perfect, and so strategies to combine
informations obtained by multiple tests may provide better diagnostic tools.

Recall that the likelihood ratio function for a single test result T is defined as

LR(T ) = P(T |D+)/P(T |D−).

The following result on the function LR(T ) is known.

Proposition 5 The optimal criterion based on T for classifying subjects as positive
for disease is

LR(T ) > c,

in the sense that it achieves the highest true positive rate (TPR) among all possible
criteria based on T with false positive rate (FPR) equals to

P(LR(T ) > c|D−).

The LR function is a useful tool when we consider multiple tests. If T =
(T1, . . . , Tk), we define

LR(T) = P(T|D+)

P(T|D−)
.
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Proposition 5 remains true also for multidimensional tests.
This result is essentially an application of Neymann–Pearson lemma for statistical

hypotheses testing. Let D− and D+ denote the null and the alternative hypothesis,
respectively, and letT be the sample data. The screening test based onT is the analogue
of the rule for rejecting the null hypothesis D− in favour of the alternative D+. Then
the likelihood ratio function of the k-screening test, LR(T), and the rules based on its
exceeding a threshold achieves the highest TPR among all screening tests based on T
with FPR = P(LR(T ) > c|D−).

References

1. Bamber, D.: The area above the ordinal dominance graph and the area below the receiver operating
characteristic graph. J. Math. Psychol. 12, 387–415 (1975)

2. Erdreich, L.S.: Use of relative operating characteristic analysis in epidemiology. Am. J. Epidemiol.
114, 649–662 (1981)

3. Green, D.M., Swets, J.A.: Signal Detection Theory and Psychophysics. Wiley, New York (1966)
4. Goodenough, D.J., Rossmann, K., Lusted, L.B.: Radiographic applications of receiver operating char-

acteristic (ROC) analysis. Radiology 110, 89–95 (1974)
5. Hanley, J., McNeil, B.J.: The meaning and use of the area under a receiver operating characteristic

(ROC) curve. Radiology 143, 29–36 (1982)
6. Hanley, J., McNeil, B.J.: A method of comparing the areas under Receiver Operating Characteristic

curves derived from the same cases. Radiology 148, 839–843 (1983)
7. Hsieh, F.S., Turnbull, B.W.: Non- and semi-parametric estimation of the receiver operating character-

istic curve. Technical Report 1026, School of Operations Research, Cornell University (1992)
8. Hsieh, F.S., Turnbull, B.W.: Nonparametric and semiparametric estimation of the receiver operating

characteristic curve. Ann. Stat. 24, 25–40 (1996)
9. Lloyd, C.J.: Using smoothed receiver operating characteristic curves to summarize and compare diag-

nostic systems. J. Am. Stat. Assoc. 93, 1356–1364 (1998)
10. Lusted, L.B.: Signal detectability and medical decision-making. Science 171, 1217–1219 (1971)
11. Marcum, J.I.: A Statistical Theory of Target Detection by Pulsed Radar, The Research Memorandum,

RAND report RM-754 (1947)
12. Pepe, M.S.: An interpretation for the ROC curve and inference using GLM procedures. Biometrics 56,

352–359 (2000)
13. Pepe, M.S.: The Statistical Evaluation of Medical Tests for Classification and Prediction. Oxford

University Press, Oxford (2003)
14. Shaked, M., Shanthikumar, J.G.: Stochastic Orders. Springer, New York (2007)
15. Shapiro, D.E.: The interpretation of diagnostic tests. Stat. Methods Med. Res. 8, 113–134 (1999)
16. Swets, J.A.: Measuring the accuracy of diagnostic systems. Science 240, 1285–1293 (1988)
17. Zou, K.H., Liu, A., Bandos, A.I., Ohno Machado, L., Rockette, H.E.: Statistical Evaluation of Diag-

nostic Performance: Topics in ROC Analysis, Chapman and Hall/CRC Biostatistics Series, London
(2012)

123


	Some mathematical properties of the ROC curve  and their applications
	Abstract
	1 Introduction and historical background
	2 The ROC curve
	3 Properties of the ROC curve
	4 Analogy with statistical hypotheses testing
	5 ROC curve estimation
	6 A medical application
	References




