

A note on autocentral automorphisms of groups

Francesco de Giovanni 1 \cdot Mohammad R. R. Moghaddam 2 \cdot Mohammad A. Rostamyari^3

Received: 5 January 2015 / Revised: 10 February 2015 / Published online: 21 July 2015 © Università degli Studi di Napoli "Federico II" 2015

Abstract The absolute centre L(G) of a group *G* is the subgroup of all elements fixed by every automorphism of *G*, and an automorphism of *G* is autocentral if it acts trivially on the factor group G/L(G). Autocentral automorphisms have been introduced by Moghaddam and Safa (Ricerche Mat 59:257–264, 2010). The aim of this paper is to obtain new informations on the behaviour of autocentral automorphisms of a group. We also consider the relations between the group of autocentral automorphisms and that of class preserving automorphisms of a group.

Keywords Absolute centre \cdot Autocentral automorphism \cdot Class preserving automorphism

Mathematics Subject Classification 20D45 · 20E36

Communicated by Salvatore Rionero.

Francesco de Giovanni degiovan@unina.it

Mohammad R. R. Moghaddam rezam@ferdowsi.um.ac.ir

Mohammad A. Rostamyari rostamyari@gmail.com

¹ Dipartimento di Matematica e Applicazioni, University of Napoli "Federico II", Napoli, Italy

- ² Department of Mathematics, Centre of Excellence in Analysis on Algebraic Structures, Ferdowsi University of Mashhad, Khayyam University, Mashhad, Iran
- ³ International Campus, Faculty of Mathematical Sciences, Ferdowsi University of Mashhad, Mashhad, Iran

🖉 Springer

1 Introduction

Let G be a group. If g is an element of G and α is an automorphism of G, the element

$$[g,\alpha] = g^{-1}g^{\alpha} = g^{-1}\alpha(g)$$

is the *autocommutator* of g and α . Of course, if α is the inner automorphism determined by an element a of G, then the autocommutator $[g, \alpha]$ coincides with the ordinary commutator [g, a]. The set L(G), consisting of all elements g of G fixed by every automorphism of G is a central characteristic subgroup of G, which is called the *absolute centre* (or the *autocentre*) of G. Then

$$L(G) = \{g \in G \mid [g, \alpha] = 1 \,\,\forall \alpha \in \operatorname{Aut}(G)\},\$$

where Aut(*G*) is the group of all automorphisms of *G*. Moreover, the subgroup K(G) generated by all autocommutators $[g, \alpha]$ (where $g \in G$ and $\alpha \in Aut(G)$) is the *autocommutator subgroup* of *G*. Observe that if in the above considerations the full automorphism group Aut(*G*) is replaced by the group Inn(*G*) of all inner automorphisms of *G*, then we obtain the usual definitions of centre and commutator subgroup.

The absolute centre and the autocommutator subgroup have been introduced by Hegarty [1], who proved in particular that if the absolute centre L(G) of a group G has finite index, then both the autocommutator subgroup K(G) and the automorphism group Aut(G) are finite, a result that must be compared with the celebrated theorem of Schur [4] on the finiteness of the commutator subgroup of a central-by-finite group.

Let *G* be a group, and let *N* be a characteristic subgroup of *G*. We shall denote by $Aut_N(G)$ the normal subgroup of Aut(G) consisting of all automorphisms of *G* inducing the identity on the factor group G/N, i.e.

$$\operatorname{Aut}_N(G) = \{ \alpha \in \operatorname{Aut}(G) \mid [g, \alpha] \in N \; \forall g \in G \}.$$

In particular, if we choose N = Z(G), then $\operatorname{Aut}_{Z(G)}(G)$ is precisely the group $\operatorname{Aut}_c(G)$ of all central automorphisms of G. If N = L(G), the group $\operatorname{Aut}_{L(G)}(G)$ will be denoted here by $\operatorname{Aut}_L(G)$; the elements of $\operatorname{Aut}_L(G)$ are called *autocentral automorphisms* of G (see also [2], where this concept has been introduced). Our main result on the group of autocentral automorphisms is the following.

Theorem Let G and \overline{G} be groups such that $L(G) \simeq L(\overline{G})$ and $G/L(G) \simeq \overline{G}/L(\overline{G})$. Then the groups of autocentral automorphisms $Aut_L(G)$ and $Aut_L(\overline{G})$ are isomorphic.

Recall also that an automorphism α of a group G is called *class preserving* if the image x^{α} belongs to the conjugacy class x^{G} , for all $x \in G$. The set Aut^c(G) of all class preserving automorphisms of G is a normal subgroup of Aut(G), which of course contains the inner automorphism group Inn(G). Class preserving automorphisms were introduced by Yadav [5], who investigated conditions under which two (finite) groups have isomorphic class preserving automorphism groups. The relations between the groups Aut_L(G) and Aut^c(G) are considered in the last part of the paper.

Most of our notation is standard and can be found in [3].

2 Statements and proofs

Let *G* be a group. If *x* is an element of *G* and α is an automorphism of *G*, the autocommutator $[x, \alpha]$ is of course an ordinary commutator in the holomorph group of *G*. Thus the following lemma is just an application of the usual commutator laws; it gives rules that can be used in the study of autocommutators.

Lemma 1 Let x and y be elements of a group G and $\alpha, \beta \in Aut(G)$. Then the following identities hold:

(a) $[xy, \alpha] = [x, \alpha]^{y}[y, \alpha];$ (b) $[x, \alpha^{-1}] = ([x, \alpha]^{-1})^{\alpha^{-1}};$ (c) $[x^{-1}, \alpha] = ([x, \alpha]^{-1})^{x^{-1}};$ (d) $[x, \alpha\beta] = [x, \beta][x, \alpha]^{\beta} = [x, \beta][x, \alpha][x, \alpha, \beta];$ (e) $[x, \alpha]^{\beta} = [x^{\beta}, \alpha^{\beta}];$ (f) $[x, \alpha^{-1}, \beta]^{\alpha}[\alpha, \beta^{-1}, x]^{\beta}[\beta, x^{-1}, \alpha]^{x} = 1.$

Our main theorem is a special case of the following result.

Theorem 1 Let G and H be groups, and let M and N be characteristic subgroups of G and H, respectively, such that $M \leq L(G)$ and $N \leq L(H)$. If $G/M \simeq H/N$ and $M \simeq N$, then the groups $Aut_M(G)$ and $Aut_N(H)$ are isomorphic.

Proof Let Let $\varphi : G/M \longrightarrow H/N$ and $\psi : M \longrightarrow N$ be isomorphisms. Let α be any element of the group Aut_M(G). Clearly, for each element h of H there exists an element g_h of G such that $\varphi(g_h M) = hN$ and $h \in N$ if and only if $g_h \in M$. If g is any other element of G such that $\varphi(gM) = hN$, the product g_hg^{-1} belongs to M and hence

$$g_h^{\alpha}(g^{-1})^{\alpha} = (g_h g^{-1})^{\alpha} = g_h g^{-1},$$

because $M \leq L(G)$. Then

$$[g, \alpha] = g^{-1}g^{\alpha} = g_h^{-1}g_h^{\alpha} = [g_h, \alpha].$$

As the autocommutator $[g_h, \alpha]$ belongs to M, the above equality allows us to define a new map

$$f_{\alpha}: H \longrightarrow H$$

by putting

$$f_{\alpha}(h) = h\psi([g_h, \alpha])$$

for each element *h* of *H*. Observe here that if *h* belongs to *N*, then g_h lies in *M*, so that $[g_h, \alpha] = 1$ and hence $f_{\alpha}(h) = h$, i.e. the restriction of f_{α} to *N* is the identity map.

Let h_1 and h_2 be arbitrary elements of *H*. Clearly,

$$\varphi(g_{h_1}g_{h_2}M) = \varphi(g_{h_1}M)\varphi(g_{h_2}M) = h_1h_2N,$$

and so $[g_{h_1}g_{h_2}, \alpha] = [g_{h_1h_2}, \alpha]$. Since *M* is contained in *Z*(*G*) and *N* lies in *Z*(*H*), it follows that

$$f_{\alpha}(h_1) f_{\alpha}(h_2) = h_1 \psi([g_{h_1}, \alpha]) h_2 \psi([g_{h_2}, \alpha]) = h_1 h_2 \psi([g_{h_1}, \alpha][g_{h_2}, \alpha])$$

= $h_1 h_2 \psi([g_{h_1} g_{h_2}, \alpha]) = h_1 h_2 \psi([g_{h_1 h_2}, \alpha]) = f_{\alpha}(h_1 h_2).$

Therefore f_{α} is a homomorphism.

Let *k* be an element of the kernel of f_{α} . Then

$$1 = f_{\alpha}(k) = h\psi([g_k, \alpha]),$$

so that $k = \psi([g_k, \alpha])^{-1}$ belongs to N, and hence $k = f_{\alpha}(k) = 1$. Therefore the homomorphism f_{α} is injective. Moreover, if h is any element of H, we have

$$f_{\alpha}(h\psi([g_{h},\alpha]^{-1}) = f_{\alpha}(h)\psi([g_{h},\alpha]^{-1}) = h\psi([g_{h},\alpha])\psi([g_{h},\alpha]^{-1}) = h.$$

It follows that f_{α} is also surjective, and hence it is an automorphism of H. Observe also that $[h, f_{\alpha}] = h^{-1} f_{\alpha}(h) = \psi([g_h, \alpha])$ belongs to N for each element h of H, and so the automorphism f_{α} belongs to the group $\operatorname{Aut}_N(H)$.

Let α and β be elements of Aut_{*M*}(*G*), and let *h* be any element of *H*. Then

$$(f_{\alpha} f_{\beta})(h) = f_{\beta} (f_{\alpha}(h)) = f_{\beta} (h \psi([g_{h}, \alpha]))$$

= $f_{\beta}(h) f_{\beta} (\psi([g_{h}, \alpha])) = h \psi([g_{h}, \beta]) \psi([g_{h}, \alpha])$
= $h \psi([g_{h}, \beta][g_{h}, \alpha]) = h \psi([g_{h}, \beta][g_{h}, \alpha]^{\beta})$
= $h \psi([g_{h}, \alpha\beta]) = f_{\alpha\beta}(h).$

Therefore $f_{\alpha} f_{\beta} = f_{\alpha\beta}$, and hence the map

$$\tau : \alpha \in \operatorname{Aut}_M(G) \longmapsto f_\alpha \in \operatorname{Aut}_N(H)$$

is a group homomorphism.

Consider now the inverse isomorphisms

$$\varphi^{-1}: H/N \longrightarrow G/M$$

and

$$\psi^{-1}: N \longrightarrow M.$$

Deringer

The above method applied to φ^{-1} and ψ^{-1} allows to construct, for each element γ of Aut_N(*H*), an automorphism f_{γ} of *G* which belongs to Aut_M(*G*), and the map

$$\omega: \gamma \in \operatorname{Aut}_N(H) \longmapsto f_{\gamma} \in \operatorname{Aut}_M(G)$$

is a homomorphism. It is easy to prove that $\omega \circ \tau$ is the identity map of $\operatorname{Aut}_M(G)$ and $\tau \circ \omega$ is the identity map of $\operatorname{Aut}_N(H)$. Therefore τ is an isomorphism and $\operatorname{Aut}_M(G) \simeq \operatorname{Aut}_N(H)$. \Box

It was remarked in the introduction that if *a* is any element of a group *G* and α is the inner automorphism of *G* determined by *a*, the autocommutator $[g, \alpha]$ coincides with the ordinary commutator [g, a] for each element *g* of *G*. It follows that if the inner automorphism α is autocentral, then the subgroup [G, a] is contained in L(G), i.e. the coset aL(G) belongs to the centre of G/L(G). In particular, if the group $Aut^c(G)$ of all class preserving automorphisms is contained in $Aut_L(G)$, we obtain that the commutator subgroup G' lies in the absolute centre L(G) of *G*.

Our second main result shows that if *G* is any finite group in which the commutator subgroup and the absolute centre coincide, then $\operatorname{Aut}^{c}(G) = \operatorname{Aut}_{L}(G)$.

Theorem 2 Let G be a finite group such that G' = L(G). Then $Aut^{c}(G) \simeq Hom(G/G', G')$ and $Aut^{c}(G) = Aut_{L}(G)$.

Proof Let α be any class preserving automorphism of *G*. Clearly, $[xu, \alpha] = [x, \alpha]$ for all elements *x* of *G* and *u* of G' = L(G), and so the map

$$f_{\alpha}: xG' \in G/G' \longmapsto [x, \alpha] \in G'$$

can be considered. As $G' = L(G) \leq Z(G)$, we have

$$f_{\alpha}(xyG') = [xy, \alpha] = [x, \alpha][y, \alpha] = f_{\alpha}(xG')f_{\alpha}(yG')$$

for all elements x and y of G, and hence f_{α} is a homomorphism. Observe also that, if α and β are two class preserving automorphisms of G, and x is any element of G, then

$$f_{\alpha\beta}(xG') = [x, \alpha\beta] = [x, \beta][x, \alpha]^{\beta} = [x, \alpha][x, \beta] = (f_{\alpha} + f_{\beta})(x).$$

Therefore the map

$$\psi : \alpha \in \operatorname{Aut}^{c}(G) \longmapsto f_{\alpha} \in \operatorname{Hom}(G/G', G')$$

is a homomorphism, which is promptly seen to be injective.

Conversely, if f is any homomorphism of G/G' into G', consider the map

$$\alpha_f: G \longrightarrow G,$$

defined by putting $\alpha_f(x) = xf(xG')$ for each element x of G. It is clear that f is a homomorphism. If x is an element of G such that $\alpha_f(x) = 1$, then $x = f(xG')^{-1}$ belongs to G', and so x = 1. Therefore α_f is injective, and hence it is an automorphism of the finite group G. Moreover, α_f acts trivially on G/G', and so it is an autocentral automorphism of G, because G' = L(G). Finally, we have

$$\psi(\alpha_f) = f_{\alpha_f} = f,$$

so that ψ is an isomorphism, and the groups $\operatorname{Aut}^{c}(G)$ and $\operatorname{Hom}(G/G', G')$ are isomorphic.

On the other hand, $\operatorname{Aut}_L(G)$ is naturally isomorphic to the homomorphism group $\operatorname{Hom}(G/L(G), L(G))$ (see also [2], Proposition 1), and hence in our case we obtain

$$\operatorname{Aut}^{c}(G) \simeq \operatorname{Aut}_{L}(G).$$

As $\operatorname{Aut}^{c}(G)$ acts trivially on G/G', and G' = L(G), it follows that all class preserving automorphisms are autocentral, so that $\operatorname{Aut}^{c}(G) = \operatorname{Aut}_{L}(G)$, and the proof is complete.

Observe finally that part of the statement of Theorem 2 can be generalized to certain types of infinite groups. Recall that a group *G* is *cohopfian* if it not isomorphic to any of its proper subgroups, i.e. if every injective endomorphism of *G* is an automorphism; for instance, every Černikov group is obviously cohopfian. The argument of the above proof can be used to show that if *G* is any cohopfian group such that G' = L(G), then the groups $\operatorname{Aut}^c(G)$ and $\operatorname{Aut}_L(G)$ are isomorphic.

References

- 1. Hegarty, P.V.: The absolute centre of a group. J. Algebra 169, 929–935 (1994)
- Moghaddam, M.R.R., Safa, H.: Some properties of autocentral automorphisms of a group. Ricerche Mat. 59, 257–264 (2010)
- 3. Robinson, D.J.S.: A course in the theory of groups, 2nd edn. Springer, Berlin (1996)
- Schur, I.: Neuer Beweis eines Satzes über endliche Gruppen. Sitzber. Akad. Wiss. Berlin, pp. 1013–1019 (1902)
- 5. Yadav, M.K.: On automorphisms of some finite *p*-groups. Proc. Ind. Acad. Sci. Math. Sci. **118**, 1–11 (2008)