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Abstract
Accurate and robust state of charge (SOC) estimation for lithium-ion batteries is crucial for battery management systems. In 
this study, we proposed an SOC estimation approach for lithium-ion batteries that integrates the gate recurrent unit (GRU) 
with the unscented Kalman filtering (UKF) algorithm. This integration aims to enhance the robustness of SOC estimation 
under complex working conditions and varying temperatures. The GRU neural network is employed to establish an offline 
training model, while the fusion of the UKF online estimation is utilized to obtain smooth SOC estimation results for lithium-
ion batteries. This approach realized a closed-loop SOC estimation strategy. The 18,650 and 26,650  LiFePO4 batteries were 
selected for experiments conducted under different charging and discharging conditions at operating temperatures of 10℃, 
25℃, and 40 °C. The experiment verified the high accuracy and robustness of the proposed GRU and UKF fusion approach, 
with both the root mean square error (RMSE) and the mean absolute error (MAE) maintained within 1%.
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Introduction

Under the background of “double carbon,” the advance-
ment of the new energy vehicle sector has been remarkable. 
Lithium-ion batteries (LIBs) have emerged as the preemi-
nent choice for electrochemical energy storage in electric 
vehicles (EVs), attributed to their superior energy density, 
extended service lifespan, and minimal self-discharge rates 
[1]. The state of charge (SOC) is the most important indi-
cator of its residual capacity, and it is also one of the core 
parameters within the battery management system (i.e., 
EVs) [2]. Precise SOC of LIBs estimation is essential for 
improving battery efficiency and ensuring the safety of 
electric applications. However, under complex conditions, 
LIBs are easily influenced by variables (i.e., temperature, 
self-discharge, and charge–discharge rates) [3]. Therefore, 

obtaining a high accuracy and strong SOC estimation is 
extremely significant.

The SOC estimation techniques for LIBs can be catego-
rized into four main approaches: the ampere-hour integra-
tion (AHI) method, the open-circuit voltage (OCV) method, 
data-driven methods, and model-based methods [4, 5]. The 
AHI method is a basic approach to battery energy measure-
ment, which uses the cumulative method of ampere-hours 
to assess in real time the SOC of LIBs [6]. The AHI method 
is relatively less restricted by the battery’s own conditions 
and is simple and reliable in calculation. However, its accu-
racy can be influenced by disturbance parameters (i.e., ini-
tial SOC, temperature drift and noise in current sensors), 
which can cause cumulative errors during the integration 
process [7]. The OCV approach is simple and convenient, 
accuracy SOC estimation needs long time, which limits its 
online application [8].

Model-based methods for estimating SOC have been 
devised and extensively utilized, typically including 
the electrochemical model and equivalent circuit model 
(ECM) methods [9]. The electrochemical model is the 
basic model of LIBs, which can comprehensively describe 
the working characteristics of LIBs during the charging/
discharging phases to enhance their safety, reliability, and 
efficiency. However, the electrochemical model typically 
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comprises numerous partial differential equations, which 
will inevitably escalate the computational intricacy in the 
practical application of batteries [10, 11]. The ECM is 
used to simulate the dynamic behavior of batteries and 
to observe phenomena that occur during the charging/
discharging processes. The ECM is able to better bal-
ance model accuracy and complexity due to its multiple 
advantages such as simplicity, fast computation speed, 
and good dynamic response. Zhang et al. [12] suggested 
a SOC estimation algorithm that leverages the square root 
cubature Kalman filtering (SRCKF) with multiple inno-
vation least squares (MILS). They first constructed a sec-
ond-order ECM to mimic the battery’s dynamic response. 
Then, they employed both MILS and the SRCKF for the 
reciprocal estimation of model parameters and SOC. The 
efficacy of their algorithm was confirmed through simu-
lation tests. Wang et al. [13] studied a hierarchical adap-
tive extended Kalman filtering (HAEKF) technique for 
SOC estimation of LIBs, grounded on the second-order 
ECM. This method shows high accuracy in SOC estima-
tion, requires low computational resources, and demon-
strates strong resilience under left bias measurement noise 
variance. Nevertheless, it is difficult to establish an exact 
physical model for intricate and variable battery systems. 
Zhang et al. [14] proposed a holistic method for the real-
time SOC estimation of LIBs based on modeling. Initially, 
they made use of an autoregressive model to emulate the 
battery’s terminal behavior. Subsequently, utilizing the 
trained model, two SOC estimation methods grounded in 
real-time modeling are introduced. Finally, data collected 
from  LiFePO4 battery cells are used to present and ana-
lyze both the modeling outcomes and the SOC estima-
tion results. The findings affirm the efficacy of the sug-
gested methods, with a special emphasis on the combined 
extended Kalman filtering (EKF) approach. In addition, 
physics-based models have been used to a large extent for 
state estimation. Physics-based models are based on the 
laws of physics, which ensures that the models are theo-
retically accurate and have the advantages of high predic-
tive power, high accuracy and wide range of applications. 
Huang et al. [15] proposed a new architecture for generat-
ing model-integrated neural networks (MINN) to allow 
integration at the level of learning physics-based system 
dynamics. The model has comparable accuracy to first-
principles-based models in predicting the system output 
and the electrochemical behavior of any local distribution. 
Nath et al. [16] proposed a physics-based single-particle 
model (SPM) for SOC estimation of LIBs in applications 
involving high amplitude fluctuating current distribu-
tions. The SPM is computationally efficient and is used to 
design a robust observer–based SOC estimator within the 
framework of linear matrix inequalities, and experimen-
tal results indicate that the average SOC estimation error 

and the integral squared error of the estimated SOC for 
the proposed observer are at least one order of magnitude 
smaller than that of the UKF.

Data-driven methods have received a lot of attention so 
far [17]. Data-driven methods are adaptable and can con-
tinuously adapt to the dynamic performance of the battery 
under different operating conditions, thus maintaining the 
accuracy of the estimation [18]. This is particularly impor-
tant for variable real-world application environments. Data-
driven methods can directly utilize a large amount of data 
collected from the battery system, such as current, voltage, 
and temperature parameters, and learn the complex relation-
ship between these parameters and SOC through algorith-
mic models [19]. Neural network models, in particular, have 
been widely used in data-driven SOC estimation, which can 
effectively integrate and analyze different battery informa-
tion for high-precision prediction [20, 21]. Mao et al. [22] 
proposed a particle swarm optimization (PSO) approach that 
employs the Levy flight strategy to optimize the weights and 
thresholds of the back propagation neural network (BPNN), 
thereby enhancing the prediction accuracy of SOC. This 
technique demonstrates excellent generalization capabili-
ties and high precision in predictions, which is of practical 
significance for SOC estimation. Liu et al. [23] suggested 
a detection technique for the charging state of LIBs based 
on ultrasonic waves and artificial neural networks (ANNs). 
With guided wave parameters as characteristic variables, the 
SOC was precisely estimated using a BPNN model. This 
system can be utilized for the detection and surveillance 
of the SOC of LIBs. In addition, machine learning models 
are also used for battery SOC estimation due to their bet-
ter performance in dealing with linear problems. The train-
ing of machine learning models is mainly categorized into 
offline and online training, and it is important to evaluate 
and implement online adaptive strategies to ensure model 
persistence and reliability. Zhu et al. [24] proposed a new 
machine learning–based prediction framework. It integrates 
physically informative features and combines offline global 
modeling with vehicle-specific online adaptation to improve 
prediction accuracy and assess uncertainty. The effective-
ness and efficiency of utilizing physically based features and 
vehicle-based online adaptation to predict the energy con-
sumption of electric vehicles is demonstrated. Wei et al. [25] 
introduced a charge estimation state framework for LIBs 
that integrates physical computing, adaptive Kalman filters 
(AKF), and machine learning. The precision and robustness 
of this method were substantiated under four distinct operat-
ing conditions. Fan et al. [26] put forth a novel long short-
term memory (LSTM) network and amalgamated it with 
the adaptive unscented Kalman filter (AUKF) technique 
to concurrently estimate state of energy (SOE) and SOC. 
The proposed method underwent verification across vary-
ing temperatures and initial errors. Cui et al. [27] proposed 
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a hybrid approach for stable and real-time SOC estima-
tion across diverse temperatures. This method merges an 
enhanced bi-directional-gated recurrent unit (BiGRU) net-
work with the UKF algorithm. The proposed method under-
went experimental validation using data from two different 
working conditions. The validation outcomes indicate this 
the method can accommodate various operating conditions, 
achieving commendable estimation precision and robust-
ness. Zhang et al. [28] developed a kernel-based extreme 
learning machine (ELM) for SOC estimation that eliminates 
the need for updating network parameters. Subsequently, this 
kernel method was amalgamated with the ELM to sidestep 
overfitting during parameter estimation. Simulation results 
demonstrated the effectiveness of the proposed method.

In addition, the accurate estimation of SOC is highly 
dependent on battery parameters and other states, including 
state of health (SOH). SOH reflects the degree of healthy 
decay of a battery from a brand-new state to its current 
state. As the battery ages, its capacity gradually decreases 
and internal resistance increases, which directly affects the 
accuracy of SOC estimation. Therefore, in order to achieve 
highly accurate SOC estimation, the change of SOH must 
be considered at the same time. Zhang et al. [29] developed 
a data-driven multi-model fusion approach for estimating 
SOH under arbitrary usage scenarios. Appropriate feature 
sets are extracted to indicate SOH for six operating condi-
tions. Based on the obtained features, four machine learn-
ing algorithms are applied to train SOH estimation models 
using time-series data, respectively. Then, a Kalman filter 
is applied to systematically fuse the results of all estimation 
and prediction models. Experiments validate the effective-
ness and practicality of the developed methodology, as well 
as its superiority over individual models. Zhang et al. [30] 
proposed a prediction framework based on a combination of 
global models offline developed by different machine learn-
ing methods and cell individualised models that are online 
adapted. For any format of raw data collected under diverse 
operating conditions, statistic properties of histograms can 
be still extracted and used as features to learn battery ageing. 
Lin et al. [31] proposed an online synthesis method based on 
the response characteristics of load surges and an improved 
fuzzy cerebellar model neural network (IFCMNN) to co-
estimate SOH and SOC. Experimental results on ten bat-
teries with different aging levels show that the method can 
quickly estimate SOH and SOC with a resolution accuracy 
of 1.64% and 2%, respectively, regardless of temperature and 
inrush current variations. In addition, he proposed model has 
higher estimation accuracy and better generalization ability 
compared to other conventional methods.

To address the issue of weak robustness for SOC esti-
mation of LIBs under complex and variable temperature 
conditions, this study presents an SOC estimation method 
based on the fusion of GRU and UKF. Firstly, the GRU is 

employed to pre-estimate the battery SOC, then the UKF 
online estimation is integrated to obtain a smooth lithium-
ion battery SOC estimation. Finally, 18,650 and 26,650 
 LiFePO4 batteries were chosen for testing under diverse 
charging and discharging conditions at 10℃, 25℃, and 
40 °C, respectively, verifying the superior accuracy of the 
GRU-UKF algorithm.

The subsequent sections of the paper are structured as 
follows: “Fusion of gated recurrent units and traceless 
Kalman filtering algorithms” elucidates the integration 
of GRU neural network and UKF algorithm. “Experi-
ments” shows the discharge experiments of 26,650 and 
18,650  LiFePO4 batteries under three working conditions. 
“Results and discussion” provides an in-depth depiction of 
the calculation results and discussion of SOC estimation. 
“Conclusion” describes conclusion.

Fusion of gated recurrent units and traceless 
Kalman filtering algorithms

GRU neural network

Recurrent neural networks (RNNs) possess the capability 
to employ their internal state as memory, enabling them to 
address time series problems by storing, remembering, and 
processing complex signals over a period of time. How-
ever, their predictive performance on longer time series is 
not satisfactory [32, 33]. Both GRU and LSTM are variant 
forms of RNN that perform well in processing time-series 
data. Compared to LSTM, GRU combines the input and 
forgetting gates into a single update gate. This makes GRU 
simpler than LSTM with fewer parameters, which reduces 
the complexity of the model and improves the training 
efficiency [34]. With an effective gating mechanism, the 
GRU is able to capture subtle changes in the battery state, 
thus improving the accuracy of SOC estimation. Espe-
cially under variable current and temperature conditions, 
GRU is able to adapt to complex nonlinear relationships 
[35]. A GRU neural network includes two key structures: 
the reset gate and the update gate. This type of network is 
designed to handle data sequence problems with large time 
spans. Figure 1 shows the internal architecture of a typical 
GRU neural network.

(1) Reset gate rt.

(2) Update gate zt.

(3) Candidate set h̃t and the next hidden state value ht.

(1)rt = �
(
Wrxt + Urht−1 + bt

)

(2)zt = �
(
Wzxt + Uzht−1 + bz

)
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where rt and zt represent the activation output values of the 
reset gate and update gate at a specific time step t; Wr , Wz , 
and Wc correspond to different weight matrices respectively; 
b is the bias vector. � is the activation function in the form of 
sigmoid, and tanh represents the hyperbolic tangent activa-
tion function; xt represents the data input to the GRU unit at 
time t , ht denotes the output of the corresponding unit of xt 
at time t; h̃t represents the candidate set.

Both gate functions are executed through the sigmoid 
activation function, which can control the input value 
between [0,1], determining the weight of information reten-
tion. The tanh activation function aids in modulating the 
values coursing through the network, with the tanh function 
confining these values within the range of [− 1, 1].

In addition, the gradient descent optimization algo-
rithm of the GRU network in this paper adopts the adap-
tive moment (Adam) estimation optimizer, this optimizer 
amalgamates the concepts from RMSProp and momentum 
optimization algorithms, normalizing the parameter updates 
to ensure each update possesses a consistent magnitude, 
thereby enhancing training efficacy [36].

The inputs to the GRU are current voltage and tempera-
ture data, and the outputs are set to SOC values. Therefore, 
when constructing the GRU network, three hyperparameters 
need to be determined: the input window, the number of 
hidden layers, and the number of nodes. The first hyperpa-
rameter is the input window. The larger the input window, 
the more accurate the GRU’s estimation of SOC will be. To 
satisfy real-time prediction, the input window is set to 10. 

(3)�ht = tanh
(
Wcxt + U

(
rt ⊙ ht−1

))

(4)ht = zt ⊙ ht−1 +
(
1 − zt

)
⊙ �ht

The second hyperparameter is the number of hidden layers. 
A large number of hidden layers increases the complexity of 
the model, leading to long training time and risk of overfit-
ting. In this study, the number of hidden layers is set to 1. 
The third hyperparameter is the number of nodes. A larger 
number of nodes provides greater model representation, but 
also increases the computational cost. In this study, the num-
ber of nodes was set to 64.

Unscented Kalman filtering algorithm

This section proposes the UKF algorithm to improve the 
estimation results of GRU neural networks. The applica-
tion scope of traditional Kalman filtering is linear Gauss-
ian white noise systems. Extended Kalman filtering (EKF) 
represents an enhanced filtering method grounded on the 
traditional Kalman algorithm, which uses Taylor expansion 
to linearize the model and then uses Gaussian assumptions 
to address complications in probability computations [37]. 
Nevertheless, the introduction of linear errors diminishes 
model precision, which will lead to an increase in EKF esti-
mation errors, or even divergence. To address this issue, 
unscented Kalman filtering (UKF) was introduced. This 
method enhances the precision and accuracy of estimates 
by using the unscented transform to handle nonlinear sys-
tems [38]. UKF can avoid the challenges of solving the Jaco-
bian matrix with UT. While reducing computational bur-
den, it improves estimation accuracy. Compared to general 
Kalman filtering, the UKF algorithm includes two additional 
unscented transformations, formulated as follows:

(5)
X(k) = [x(k), x(k) +

√
(n + �)P(k), x(k) −

√
(n + �)P(k)]

Fig. 1  GRU neural network 
structure
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where � denotes the process intermediate quantity, obtained 
via � = �2(n + K) − n ; k denotes the coefficient of freedom 
associated with the Sigma point.

The weights and variances were calculated as follows:

where �m represents the mean weight, �c denotes the covari-
ance weight, and � is the pre-test distribution factor.

The specific estimation process of the UKF algorithm 
is as follows:

(1) Initialize the mean x0 and covariance matrix P0 of 
the state variables:

(2) Calculate the system state values and the covariance 
matrix:

(3) Obtain predicted values of observed quantities:

(4) Residual covariance array and reciprocal covariance 
array calculations:

(5) Calculate the Kalman gain matrix K(k + 1) at 
moment k + 1:

(6)�0

m
=

�

n + �

(7)�0

c
= (1 − �2 + �) +

�

n + �

(8)�i
m
= �i

c
=

�

2(n + �)
, i = 1,2,⋯ , 2n

(9)x̂0 = E[x0]

(10)P0 = E[(x0 − x̂0)(x0 − x̂0)
T
]

(11)x̂�(k + 1) =

2n∑

i=1

wm
i
Xi�(k + 1)

(12)

P�(k + 1) =

2n∑

i=0

wc
i
[ẋ�(k + 1) − Xi�(k + 1)][ẋ�(k + 1) − Xi�(k + 1)]

T

(13)ẑ�(k + 1) =

2n∑

i=0

wm
i
Zi�(k + 1)

(14)

PZkZk
=

2n∑

i=0

wc
i
[Zi�(k + 1) − z�(k + 1)][Zi�(k + 1) − ẑ�(k + 1)]

T

(15)

PxkZk
=

2n∑

i=0

wc
i
[Xi�(k + 1) − x�(k + 1)][Zi�(k + 1) − ẑ�(k + 1)]

T

(6) Update the state variables and covariance matrix:

The hyperparameters of the UKF mainly include the pro-
cess noise covariance and the observation noise covariance. 
The process noise covariance reflects the uncertainty in the 
system dynamics. The smaller the process noise covari-
ance, the smaller the uncertainty in the response process. 
The observation noise covariance reflects the accuracy of 
the measurement equipment and the noise level during the 
measurement process. A larger observation noise covariance 
can be set if there is a large noise disturbance. Therefore, 
when using the UKF to estimate the SOC, the noise char-
acteristic is set as Gaussian white noise, the process noise 
covariance is set as 0.001, and the observation noise covari-
ance is set as 0.1.

GRU‑UKF algorithm

This section proposes the UKF algorithm to improve the 
estimation results of GRU neural networks. To achieve a 
closed-loop SOC estimation strategy, a GRU neural network 
is first used to establish an offline training model, which is 
then integrated with the UKF algorithm for online estimation, 
ultimately obtaining a smooth battery SOC estimation result. 
Therefore, this paper establishes a state space model to esti-
mate the battery SOC. The state equation and measurement 
equation are represented by eqs. (19) and (20), respectively.

State equation:

Measurement equation:

where SOCk−1 is the SOC value predicted by the GRU at the 
k-1 moment, Ik−1 corresponds to the current value at the k-1 
time node, Δt represents the sampling period of the current, 
Qn represents the rated capacity. � and v represent noise.

Relying on the state-space model of eqs. (19) and (20), the 
final SOC estimation can be obtained using the UKF, thereby 
achieving the integration of the GRU network with the UKF, 
as shown in Fig. 2. In this framework, the GRU network can 
directly establish the nonlinear relationship between measur-
able variables (i.e., current, voltage, and temperature) and 
SOC, simplifying the time-consuming process of identifying 
internal parameters of the model. The output of the GRU is 

(16)K(k + 1) = PxkZk
PZkZk

−1

(17)x̂(k + 1) = x̂�(k + 1) + K(k + 1)[ẑ(k + 1) − ẑ�(k + 1)]

(18)P(k + 1) = P�(k + 1) − K(k + 1)(K + 1)

(19)SOCk = SOCk−1 −
Ik−1 × Δt

Qn

+ �

(20)Yk = SOCk� + v
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considered as the “measured” SOC, which obtained through 
the AHI. The UKF is established for obtaining accuracy SOC 
estimation based on state and measurement equations. The 
GRU-UKF algorithm can bolster the precision and robustness 
of the model.

To gauge the disparity between the estimated values and 
the actual values, this study calculated the root mean square 
error (RMSE) and mean absolute error (MAE) of the SOC 
estimate as follows:

(21)RMSE =

√√√
√1

n

n∑

k=1

(
SOCk − SOC

∗

k

)2

where N represents the sequence’s length in the input stra-
tum; SOCk and SOC∗

k
 are the actual and estimated values of 

SOC at time k, respectively.

(22)MAE =
1

n

n∑

k=1

|
|SOCk − SOC

∗

k
|
|

Fig. 2  Flowchart of GRU-UKF-based estimation
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Experiments

Experimental instruments

In view of the working characteristics of  LiFePO4 batter-
ies, 18,650 and 26,650  LiFePO4 batteries were selected as 
the research objects. The batteries were tested under com-
plex conditions, and their specific parameters presented in 
Table 1. The battery testing experimental platform is made 
up of a chamber, battery testing system, and computer. The 
chamber ensures the constant temperature environment 
required for the experiment, and the battery test system is 
displayed in Fig. 3.

Experimental methods

The temperature of the chamber was set to 10℃, 25℃, and 
40℃ for battery testing. The  LiFePO4 batteries, 18,650 and 
26,650, were selected to undergo discharge experiments 
under the standard dynamic stress test (DST), Beijing 
dynamic stress test (BJDST), and urban dynamometer driv-
ing schedule (UDDS).

We selected a total of 18 batteries, numbered 
NO.1 ~ NO.18, for the SOC test of  LiFePO4 batteries. The 
test batteries were divided into three groups, and the battery 
tests were carried out under three different working condi-
tions (DST, BJDST, and UDDS) at 10 °C, 25 °C, and 40 °C, 
respectively. The test battery groupings are shown in the 
Table 2.

The detailed experimental procedure was as follows: the 
battery was gradually charged using a constant current con-
stant voltage (CCCV) mode until it was fully charged. Sub-
sequently, it was charged with a constant current of 1 C until 
the voltage reached the specified maximum value, followed 
by charging in constant voltage mode until the battery's 
current decreased to 0.02 C. Once charging was complete, 
the battery was left to rest for a certain period. Under DST, 
BJDST, and UDDS conditions, the batteries were discharged 
to the cut-off voltage, respectively. The changes in current 
and voltage of the 18,650 and 26,650  LiFePO4 batteries at 
25℃ are shown in Fig. 4.

Results and discussion

SOC estimation results of GRU under different 
operating conditions

In this section,  LiFePO4 batteries of models 18,650 and 
26,650 were used, and three working conditions (BJDST, 
DST, and UDDS) were selected as experimental conditions 
to obtain data and verify the effectiveness of the GRU. The 
data obtained at 40℃ was used for model training, while 
the current and voltage data recorded at 25℃ were used to 

Table 1  Parameters of 18,650 and 26,650  LiFePO4 batteries

Performance parameters 18,650 26,650
Capacity 1.5 Ah 2.5 Ah
Charging cut-off voltage 3.65 V 3.6 V
Discharge cut-off voltage 2.3 V 2.0 V
Working temperature  − 25–60℃  − 25–60℃

Fig. 3  Battery testing system
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construct the test set, thereby predicting and evaluating the 
battery SOC. The results of SOC estimation based on GRU 
are shown in Fig. 5. Figure 5a indicates that under three dif-
ferent driving conditions, the SOC values estimated by the 
GRU network are generally similar to the actual values, cap-
turing the downward trend of the SOC curve well. Figure 5b 
demonstrates the application capability of the GRU in esti-
mating SOC. However, in certain specific areas, the evalua-
tion process exhibits relatively large prediction errors, with 
the estimated results fluctuating more significantly within 
the SOC range of 30–70%. This is due to the presence of a 
voltage plateau in the OCV-SOC curve of the  LiFePO4 bat-
teries within this range, making the nonlinear mapping of 
the battery difficult to identify.

Considering that  LiFePO4 batteries are closely related to 
the external environment and exhibit temperature sensitiv-
ity, the SOC estimation effect of the GRU was verified at 
40 °C, using current data and voltage data collected at 25 °C 
as training data to train the GRU, and experimental data col-
lected at 40 °C as test data to implement SOC estimation. 
Figure 6 shows the SOC estimation results of the GRU under 
three operating conditions at 40 °C. From Fig. 6, it can be 
seen that at 40 °C, the GRU has a good estimation effect and 
can learn the relationship between measurable values such as 
voltage and current and SOC, indicating that the GRU neural 
network has good generalization. However, there are also 
cases in the figure where fluctuations are larger, suggesting 
that the GRU network prediction is not stable enough.

In order to verify the generalizability of the GRU at low 
temperatures, the data obtained at 25 °C were used for model 
training, while the current and voltage data recorded at 10 °C 
were used to construct a test set to predict and evaluate the 
battery SOC. Figure 7 shows the SOC estimation results of 
the GRU under three operating conditions at 10 °C. From 
Fig. 7, it can be seen that the GRU can effectively follow the 
real value of SOC under the condition of low temperature 
10 °C, with good estimation results, and satisfy the require-
ment of SOC estimation accuracy.

Table 3 displays the estimation results of the GRU neural 
network under diverse temperatures and three operating con-
ditions. As observed from Table 3, the GRU can effectively 

estimate the SOC of  LiFePO4 batteries, with both RMSE 
and MAE not exceeding 4% at different temperatures. This 
indicates that the GRU can meet the expected accuracy 
requirements across diverse temperatures, demonstrating 
good generalization and robustness. However, the estimation 
results in the table show that the maximum error (MAXE) 
is relatively large and can reach about 6% under different 
operating conditions. Adjusting the hyperparameters of the 
GRU can lead to a slight improvement in the predictions, 
but with a corresponding increase in the cost of computa-
tional time. Therefore, in this study, the output of the GRU 
is treated as the “measured” SOC, and the UKF is employed 
to further minimize the errors in the SOC estimation results, 
thereby enhancing the robustness and stability of the SOC 
estimation.

SOC estimation results under different working 
conditions based on GRU‑UKF

To enhance the robust and accuracy of SOC estimation for 
 LiFePO4 batteries, the GRU-UKF method is put forward. 
The SOC estimation strategy is bifurcated into two phases. 
In the offline training phase, a GRU dynamic neural network 
is used, where the output value from the GRU is defined as 
the observed SOC value, replacing the measurement equa-
tion of the battery system. Meanwhile, the result obtained 
from the AHI method is characterized as the state value of 
the SOC. By combining these two SOC values, the UKF 
algorithm is then applied to integrate them, producing the 
final SOC estimate.

The 18,650  LiFePO4 batteries were selected, and experi-
mental data were obtained at 10℃, 25 °C, and 40 °C under 
three different working conditions (DST, BJDST, UDDS). 
Figure 8 shows the SOC estimation outcomes for the 18,650 
 LiFePO4 battery at 25 °C. It is evident that the GRU-UKF 
curve shows a stable trend and is closest to the true value, 
followed by UKF, with GRU having the weakest estima-
tion accuracy. The GRU-UKF achieves high-precision SOC 
estimation results under three operating conditions. Figure 9 
shows the SOC estimation outcomes for the 18,650  LiFePO4 
battery at 40 °C. It is apparent that the GRU-UKF can better 

Table 2  Battery test grouping 
table for different temperatures 
and operating conditions

Group name Serial number Test  LiFePO4 battery Working condition Temperature

Group 1 NO.1 18,650 DST 25℃
NO.2 18,650 BJDST 25℃
NO.3 18,650 UDDS 25℃
NO.4 26,650 DST 25℃
NO.5 26,650 BJDST 25℃
NO.6 26,650 UDDS 25℃

Group 2 NO.7- NO.12 18,650/26,650 DST/BJDST/UDDS 10℃
Group 3 NO.13- NO.18 18,650/26,650 DST/BJDST/UDDS 40℃
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Fig. 4  Battery data under DST, BJDST, and UDDS conditions at 
25  °C. a The DST data of the 18,650  LiFePO4 battery. b The DST 
data of the 26,650  LiFePO4 battery. c The BJDST data of the 18,650 

 LiFePO4 battery. d The BJDST data of the 26,650  LiFePO4 battery. e 
The UDDS data of the 18,650  LiFePO4 battery. f The UDDS data of 
the 26,650  LiFePO4 battery
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capture the downward trend of the SOC, and achieve high 
stability under three working conditions. Figure 10 shows 
the SOC estimation results of the 18,650  LiFePO4 cell at a 
low temperature of 10 °C. It can be seen that the GRU-UKF 
is still closest to the real SOC at low temperature, and the 
curve trend is relatively smooth, obtaining good estimation 
results.

The 26,650  LiFePO4 batteries were selected, and experi-
mental data were obtained at 10℃, 25 °C, and 40 °C under 
three different working conditions (DST, BJDST, UDDS). 
Figures 11, 12, and 13 show the SOC estimation results for 
the 26,650  LiFePO4 battery at 10 °C, 25 °C, and 40 °C, 
respectively. From Figs. 11, 12, and 13, it is noted that 
although the GRU can estimate the SOC, the estimation 

has a slightly larger deviation and exhibits fluctuations. In 
comparison to the GRU, the UKF is closer to the true value, 
while the GRU-UKF curve nearly coincides with the true 
value. This indicates that among the comparison of GRU, 
UKF, and the combined GRU-UKF algorithm, the latter 
demonstrates a significant advantage in SOC estimation. 
This indicates that GRU-UKF can achieve high-precision 
and robust SOC estimation results.

In addition, during the model training process, we find 
that the training of the GRU model alone takes 363 s, while 
the GRU model combined with UKF takes 375 s. Compared 
with the GRU model, the GRU-UKF model takes slightly 
longer and the computational cost increases accordingly, 
which mainly stems from the complexity of the GRU-UKF 

Fig. 5  SOC estimation results at 25℃ based on GRU neural network. a 18,650 battery; b 26,650 battery

Fig. 6  SOC estimation results at 40℃ based on the GRU. a 18,650 battery; b 26,650 battery
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Fig. 7  SOC estimation results at 10℃ based on the GRU. a 18,650 battery; b 26,650 battery

Table 3  The SOC estimation 
error results based on GRU 

Temperature Condition RMSE (%) MAE (%) MAXE (%)

18,650 26,650 18,650 26,650 18,650 26,650

25℃ BJDST 2.1904 2.3366 1.6559 1.7532 6.0893 4.8418
DST 2.3540 3.2483 1.7882 2.5403 4.7145 5.2070
UDDS 2.2969 2.5444 1.8409 2.0674 4.1651 4.1802

40℃ BJDST 1.6778 3.8678 1.1951 3.0038 5.0927 5.9353
DST 2.3884 3.1175 1.7043 2.2946 4.5968 5.6945
UDDS 2.8514 3.6096 2.2238 2.7647 4.3925 6.3237

10℃ BJDST 1.6616 1.7669 1.0624 1.3185 5.1962 4.2905
DST 2.0845 3.3399 1.5098 2.4287 5.2158 6.1745
UDDS 1.8636 3.7709 1.2340 2.8157 4.3866 6.1550

Fig. 8  SOC estimation results of 18,650  LiFePO4 battery based on GRU-UKF (25 °C). a DST working condition; b BJDST working condition; c 
UDDS working condition

algorithm. However, in terms of SOC estimation accuracy, 
the GRU-UKF model has a significant improvement. There-
fore, GRU-UKF achieves a high SOC estimation accuracy 
while maintaining a reasonable computational cost.

To provide a more precise assessment of the performance 
of the GRU-UKF algorithm, the RMSE, MAE, and MAXE 
comprehensive indicators were used for quantification. 

Figure 14 shows a comparison of SOC error results at 25 °C. 
Figure 14a represents the SOC error results for the 18,650 
 LiFePO4 battery at 25 °C. It can be seen that under the cur-
rent and voltage dataset of the 18,650  LiFePO4 battery, the 
RMSE value of GRU exceeds 2%, the RMSE value of the 
UKF averages around 1.5%, while the proposed GRU-UKF 
has both RMSE and MAE values within 1%. Furthermore, 



 Ionics

under the BJDST condition, the MAXE accuracy of GRU-
UKF is improved by 5.14%; under the DST condition, the 
RMSE of the GRU-UKF improved by 1.72%; under the UDDS 
condition, the MAE of the GRU-UKF algorithm improved by 
1.34%.

Figure 14b represents the SOC error results of 26,650 
 LiFePO4 battery at 25 °C. We found that the RMSE accuracy 
of GRU-UKF is improved by up to 2.38%, the MAE accuracy 

by up to 1.85%, and the MAXE accuracy by up to 4.1% com-
pared with the GRU method.

To validate the estimation performance of GRU-UKF at 
high temperatures, Fig. 15 shows the SOC error results for 
 LiFePO4 batteries at 40°C. Figure 15a represents the SOC 
error results for the 18,650 battery at 40°C. It can be seen 
that under the BJDST condition, the MAE of GRU-UKF is 
only 0.32%, while the MAE of UKF is 0.73%. The MAXE 

Fig. 9  SOC estimation results of 18,650  LiFePO4 battery based on GRU-UKF (40 °C). a DST working condition; b BJDST working condition; c 
UDDS working condition

Fig. 10  SOC estimation results of 18,650  LiFePO4 battery based on GRU-UKF (10 °C). a DST working condition; b BJDST working condition; 
c UDDS working condition

Fig. 11  SOC estimation results of 26,650  LiFePO4 battery based on GRU-UKF (25 °C). a DST working condition; b BJDST working condition; 
c UDDS working condition
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Fig. 12  SOC estimation results of 26,650  LiFePO4 battery based on GRU-UKF (40 °C). a DST working condition; b BJDST working condition; 
c UDDS working condition

Fig. 13  SOC estimation results of 26,650  LiFePO4 battery based on GRU-UKF (10 °C). a DST working condition; b BJDST working condition; 
c UDDS working condition

Fig. 14  Comparison of SOC result error between GRU algorithm and GRU-UKF algorithm (25  °C). a 18,650  LiFePO4 battery; b 26,650 
 LiFePO4 battery

accuracy of GRU-UKF is improved by 4.11%, 3.65%, and 
3.12% over GRU for the three operating conditions, respec-
tively. Figure 15b represents the SOC error results for the 
26,650 battery at 40°C. It can be observed that compared to 

the GRU network, the GRU-UKF algorithm significantly 
improves the accuracy of SOC estimation across the board. 
This demonstrates that the GRU-UKF algorithm greatly 
enhances the precision and accuracy of SOC estimation, and 
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it also highlights the temperature adaptability and robustness 
of GRU-UKF.

The SOC estimation performance of GRU-UKF at low 
temperature 10 °C is shown in Fig. 16. Figure 16a repre-
sents the SOC error results of 18,650 battery at 10 °C. It 
can be seen that the GRU-UKF estimation error is small, 
and the MAE is only 0.29% for the BJDST case. For the 
single network GRU, the SOC estimation is the worst. The 
SOC estimation accuracy of UKF is better than that of GRU, 
with MAXE and MAE less than 2% for all three working 
conditions, while the estimation accuracy of GRU-UKF is 
within 1%. Figure 16b represents the SOC error results for 
26,650 cells at 10 °C. The SOC estimation accuracy of the 
GRU-UKF is significantly better than that of the GRU and 

UKF alone. The RMSE of the GRU-UKF is only 0.47%, 
the MAE is 0.36%, and the MAXE is 1.06% for the BJDST 
operating condition.

In order to evaluate the effectiveness of the GRU-
UKF algorithm in various driving scenarios, 26,650 
 LiFePO4 battery was used in this study, and battery 
testing experiments were conducted under three different 
temperature conditions, namely, 10 °C, 25 °C, and 40 °C, 
for both federal urban driving schedule (FUDS) and United 
States advanced battery consortium US06 drive schedule 
(US06) conditions. The estimation results of SOC by the 
GRU-UKF algorithm are shown in Fig. 17. Figure 17a, b, 
and c shows the SOC estimation results at 10 °C, 25 °C, 
and 40 °C, respectively. It can be seen that the trends of 

Fig. 15  Comparison of SOC result error between GRU algorithm and GRU-UKF algorithm (40  °C). a 18,650  LiFePO4 battery; b 26,650 
 LiFePO4 battery

Fig. 16  Comparison of SOC result error between GRU algorithm and GRU-UKF algorithm (10  °C). a 18,650  LiFePO4 battery; b 26,650 
 LiFePO4 battery
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GRU-UKF curves for FUDS case and US06 case are 
relatively smooth under different temperature conditions, 
and both of them can effectively follow the true value of 
SOC with obvious tracking. It can be further shown that the 
GRU-UKF algorithm has high accuracy and effectiveness in 
various driving situations.

In order to evaluate the validity of GRU-UKF in depth, 
Table 4 shows the comparison of the errors at different 
temperatures, FUDS and US06 operating conditions. The 
comparison results show that the estimation accuracy of 
GRU-UBF is very high, with the RMSE and MAE less than 
1% for all three temperatures and two operating conditions, 
and the MAXE not exceeding 1.35% at maximum. This 
demonstrates the effectiveness of the GRU-UBF algorithm 
in various driving scenarios.

In summary, we can find that compared to the GRU neural 
network, the GRU-UKF-combined algorithm has very high 
accuracy in SOC estimation under different temperatures 
and working conditions, with RMSE and MAE within 1%. 
This combined algorithm effectively suppresses errors 
under different temperatures, exhibiting high precision and 
robustness.

Conclusion

In this study, to improve the accuracy and robustness 
for the SOC estimation of LIBs, a closed-loop method 
based on machine learning and Kalman filtering is pro-
posed. Firstly, the gate recurrent unit network is utilized to 
establish the offline training model. Then, the unscented 
Kalman filtering is introduced to obtain the online estima-
tion. Finally, the effectiveness and accuracy of the com-
bined GRU and UKF methods are verified at two tem-
peratures and different operating conditions. The main 
contributions are summarized as follows:

(1) Experiments were conducted on 18,650 and 26,650 
 LiFePO4 batteries at 10℃, 25℃, and 40 °C, using dif-
ferent working conditions (BJDST, DST, and UDDS).

(2) A closed-loop method based on machine learning and 
Kalman filtering is proposed. The GRU is utilized to 
capture complex nonlinear patterns for preliminary 
estimation of SOC, and then UKF is introduced to pro-
vide stable online adjustment thereby achieving accu-
rate and stable SOC estimation.

(3) By comparing with a single GRU neural network under 
different working conditions and temperatures, confirm-
ing that the SOC estimation results achieved by the pro-
posed method have high accuracy and strong robustness, 
with both RMSE and MAE values within 1%.
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Fig. 17  SOC estimation results. a FUDS and US06(10℃); b FUDS and US06 (25℃); c FUDS and US06 (40℃)

Table 4  Comparison of errors

Temperature Condition RMSE (%) MAE (%) MAXE (%)

10℃ FUDS 0.726 0.592 0.89%
US06 0.911 0.704 1.01%

25℃ FUDS 0.655 0.538 0.97%
US06 0.742 0.693 1.35%

40℃ FUDS 0.787 0.628 1.07%
US06 0.852 0.620 0.95%
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