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Abstract
Carbon materials have long been the primary electrode materials for a series of electrochemical devices, but their applica-
tions for sodium-ion batteries (SIBs) are still restricted by limited embedding pathways between narrow graphene layers 
owing to relatively large size of Na+. Here, the narrow interlayer issue is circumvented by enlarging the surface active sites 
of carbon materials, and the SIB performance is significantly promoted owing to enhanced surface energy storage. To pro-
vide more active areas and reduced ion diffusion distance, carbon nanosheets (CNSs) with ultrathin overall structure and 
highly porous microstructure were prepared by direct pyrolysis of potassium citrate. Potassium species serve as templates 
and activation agent for organic species carbonization and activation. The CNS exhibits an ultrahigh-specific surface area 
of 2062.7 m2 g−1 due to its rich porous structure and two-dimensional nanosheet structure. These characteristics make our 
CNSs have numerous defects and active sites, as well as the reduced diffusion path for sodium-ion diffusion. CNS-700 also 
shows excellent energy storage performance as electrode material of SIBs. When used as an anode material, the CNS-700 
exhibits a reversible capacity of 230 mA h g−1 when cycled at 0.3 A g−1 for 550 cycles. Furthermore, the CNS-700 displays 
a capacity of 175 mA h g‒1 when the current increases to 2 A g‒1.
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Introduction

With the ever-increasing utilization of renewable energy, 
there is a growing demand for high-performance and low-
cost electrochemical batteries for large-scale power storage 
[1–5]. Due to the sufficient production of sodium and the 
low cost of mining, sodium-ion batteries (SIBs) are con-
sidered an ideal choice after lithium-ion batteries (LIBs) 
[6–9]. However, the relatively larger ion radius of Na+ 
(0.102 nm) results in limited reaction kinetics and restricts 

the exploration of advanced sodium insertion materials [10, 
11]. Carbon materials have long been the primary electrode 
materials for energy storage owing to their resource abun-
dance, low cost, high electrical conductivity, and being envi-
ronmentally friendly, which are also considered as promising 
candidates for SIB anode materials. However, a common 
anode material, commercial graphite carbon (theoretical 
LiC6 capacity of 372 mA h g−1 as the LIB anode), provides 
only 31 mA h g−1 of practical capacity in SIBs owing to the 
fact that large atomic size of Na+ limits the embedding path-
ways between narrow graphene layers [12–14]. Both theo-
retical calculations and experimental results show a greatly 
reduced Na+ insertion energy barrier when the carbon inter-
layer distance is enlarged to 0.37 nm [15–17]. Therefore, 
enormous efforts have been made to enlarge the carbon 
interlayers for improved SIB performance. Saroja et al. [16] 
found that expanded interlayers of carbon nanotubes provide 
sufficient active sites for Na+ adsorption and intercalation, 
and reaching 510 mA h g−1 at 20 mA g−1. Xu et al. [18] 
reported nitrogen-doped porous carbon nanosheets while 
pyrrolic nitrogen increased the interlayer distance of carbon 
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expanding from 0.429 to 0.487 nm; as a result, a superb 
capacity of 294.1 mA h g−1 could be achieved at 0.1 A g−1.

In addition to the internal crystal plane expansion of car-
bon, increasing the surface area can enhance surface-related 
energy storage and circumvent the narrow interlayer issue 
owing to more surface active sites and reduced ion diffu-
sion distance. Therefore, proper structure construction for a 
large surface area provides a shortcut for performance opti-
mization of carbon-based SIB anode materials. However, 
traditional porous carbons are fabricated as large granular 
particles with tortuous and narrow pores, which is unfavora-
ble for fast Na+ storage owing to unsatisfactory ion diffu-
sion kinetics and limited available surface. 2D porous carbon 
nanosheets (CNSs) have the merits of a higher surface-to-
volume ratio and more penetrated pores than traditional 
porous carbons [19–23], which have very potential to over-
come the shortcomings of traditional porous carbon as SIB 
anode materials. However, the preparation of well-defined 
porous CNSs for SIB applications is still very challenging. 
Despite many specially designed strategies have been devel-
oped for preparing CNSs, such as biomass activation method 
[24, 25], organic molecular/salt blend pyrolysis [26], hard 
template method [27], pyrolysis of two-dimensional precur-
sors [28], and self-assembly [29]; these methods need mul-
tiple steps with lengthy and complex process and expensive 
raw materials, and visible CNSs are aggregated together 
owing to non-uniform templating effect. Furthermore, addi-
tionally, added activation agents cannot activate the CNSs 
uniformly owing to their heterogeneous distribution, result-
ing in a limited specific area. Therefore, it is essential to 
develop efficient and high-quality CNS synthesis strategies 
to achieve better SIB performance.

Here, well-defined porous CNSs with large aspect ratios 
and uniformly activated pores were prepared by one-step 
pyrolysis of potassium citrate, and they were used as anode 
materials for SIBs. The organic part of potassium citrate 
could be used as a carbon source, and coordinated potassium 
could serve as both templating and activation agents. Using 
potassium citrate as a precursor ensured the uniform mixing 

of potassium with the carbon source at the molecule level, 
and this specific merit could result in a uniform templating 
effect for carbon assembly and then the uniform activation 
of assembled CNS, so our synthesis method had more merits 
compared to traditional synthesis methods. As a result, our 
CNS samples exhibited a homogenous nanosheet structure 
with a large aspect ratio and thin thickness, uniformly acti-
vated pores, and an ultrahigh-specific area of 2062.7 m2 g−1. 
Such a structure could provide more active sites and shorten 
ion diffusion distance for Na+, resulting in increased capac-
ity and rate performance.

Results and discussion

Figure 1 illustrates the formation mechanism for the CNSs 
synthesized at different temperatures. Potassium citrate 
was pyrolyzed in an argon atmosphere for the formation 
of CNSs. The inclusion of potassium species was very sig-
nificant for generating 2D porous nanosheets. First, K2CO3 
particles were formed as templates for organic species 
assembly at a low temperature (< 650 ℃), and 2D CNSs 
could be formed when pyrolysis and carbonization of the 
organic species at an elevated temperature. Meanwhile, 
CO2 and K2O species produced by thermal decomposition 
of K2CO3 (K2CO3 → K2O + CO2) both react with preformed 
CNSs (CO2 + C → 2CO, K2O + C → 2 K + CO), constructing 
a porous structure. Compared to the conventional synthesis 
method for activated carbon, our synthesis method had the 
following merits: first, the CNS was prepared by one anneal-
ing step without an extra addition of templating and activa-
tion agents that are commonly used, which could reduce 
the synthesis cost; second, templating effect of potassium 
species in the carbonization process was determinative for 
the 2D nanosheet formation; however, conventional method 
added the potassium species after carbonization and could 
not form a 2D nanosheets structure like our CNSs; third, 
potassium citrate was a typical organic-inorganic hybrid 
material, which ensured a uniform distribution of potassium 

Fig. 1   Schematic of fabrication 
process and formation mecha-
nism for the porous CNSs
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species in carbon sources and resulted in uniform activa-
tion of the CNSs. Note that the activation process could be 
affected by pyrolysis temperature, forming different porous 
architectures. To this end, the annealing temperature was 
tuned for the optimized performance of CNSs.

Figure 2a shows the XRD patterns of these CNSs. There 
were two broad diffraction peaks located around 23° and 
44°, which was a typical feature of amorphous porous car-
bon [30]. Raman spectra shown in Fig. 2b of these CNS 
samples all displayed two peaks at 1340 and 1585 cm−1, 
which could be ascribed to D and G bands of carbonaceous 
materials. The D band was derived from the band edge A1g 
mode, indicating that sp2 carbon has a disordered structure 
or defects, and the G-band is related to the strain effect of E2g 
mode. The calculated value of ID/IG was used to estimate the 

disorder degree or the number of defects in carbon materi-
als. The ID/IG values gradually increased when the reaction 
temperature ascended from 600 to 900 ℃, indicating more 
defects formed with the increasing pyrolysis temperature 
[31]. Figure 3a shows the FESEM image of the CNS-700. It 
was obvious that the sample consisted of a large number of 
carbon nanosheets, and they interconnected to form a foam 
structure. This specific carbon foam structure could verify 
the templating effect of potassium species. High-resolution 
FESEM in Fig. 3b demonstrated uniform thickness of CNS 
around 30 nm, and the TEM image could verify the uniform 
thickness of the whole nanosheet (Fig. S1). In addition, the 
TEM image shown in Fig. 3c verified the uniform activa-
tion of the CNS-700, and many microspores could be found 
uniformly distributed in the CNS-700.

Fig. 2   a XRD patterns and b 
Raman spectra of the CNSs 
synthesized at different tem-
peratures

Fig. 3   a, b FESEM and c TEM images of the CNS-700. d N2 adsorption/desorption isotherms and e pore size distribution curves of the CNS 
samples synthesized at different temperatures. f High-resolution XPS spectra for carbon element of the CNS-700
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The porous structure of these CNS samples was also 
investigated using the nitrogen physical adsorption method 
to understand their porous structures. Huge nitrogen adsorp-
tion/desorption at the P/P0 lower than 0.3 is a typical feature 
of a type I isotherm, indicating the existence of micropores. 
In addition, the hysteresis loop in the high P/P0 region could 
be ascribed to a type IV isotherm owing to the existence of 
mesopores. As shown in Fig. 3d, the CNS-700 displayed 
larger N2 adsorption than the other CNS samples, indicat-
ing the largest specific area. Especially, the CNS-700 shows 
huge N2 uptake at relative pressure lower than 0.02 owing 
to a great deal of micropores, and its isotherm maintains a 
hysteresis loop in the P/P0 region greater than 0.45 from the 
mesopores. The pore size distribution curve in Fig. 3e could 
verify the microporous structure of these CNS samples. The 
CNS-700 exhibited a high Brunauer-Emmett-Teller (BET) 
area of 2062.7 m2 g−1, which is larger than the CNS-600 
(531.6 m2 g−1), CNS-800 (1690.5 m2 g−1), and CNS-900 
(1603.7 m2 g−1) samples, and those reported porous carbons 

[32–43]. Greatly increased surface area of CNS-700 com-
pared to CNS-600 is indicative of the activation of carbon 
which happened at a temperature of 700 ℃. Meanwhile, the 
CNS samples exhibited total pore volumes of 0.77, 1.00, 
0.96, and 0.93cm3 g−1 for CNS-600, CNS-700, CNS-800, 
and CNS-900, respectively. The largest BET area and total 
pore volumes of our CNS-700 could verify a highly porous 
structure of CNS-700. The CNS-700 was also characterized 
by XPS to show its elemental composition and chemical 
state of each element. The CNS-700 had a high purity and 
it exhibited the elemental signals of C and O in the wide-
scan spectrum (Fig. S2). Peaks at 284.8 eV and 532.0 eV 
could be attributed to the XPS signals from C 1 s and O 
1 s photoelectrons, respectively. Therefore, the CNS sam-
ples also maintained many residual oxygenated functional 
groups. The chemical states of elements in CNS-700 were 
further investigated by collecting high-resolution XPS spec-
tra. The C-O and C = O signals were clearly visible in the 

Fig. 4   a CV curves at various scan rates from 1 to 10  mV  s−1 of 
CNS-700. b Separation of the surface-controlled and diffusion-con-
trolled currents in the CV curve tested at a scan rate of 10 mV s−1. 
c Cycling performance tested at 0.3 A g−1 for the CNS samples syn-

thesized at different temperatures. d GCD curves at different cycles 
when cycled at 0.3 A g−1, and long-term cycling performance and 
Coulombic efficiency of the CNS-700 when tested at specific currents 
of e 0.3 and (f) 1.0 A g−1
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high-resolution C 1 s spectrum, except for photoelectrons 
which come from C-C valence electrons, as shown in Fig. 3f.

Half batteries of SIBs were assembled using these CNS 
electrodes and their energy storage properties were first ana-
lyzed by a CV test. Figure 4a shows the CV curves of a CNS-
700 electrode tested within the potentials of 0.01–3.0 V 
vs. Na/Na+. It was found that the CV curves displayed the 
shape without obvious redox peaks, indicating surface-
controlled energy storage owing to the high specific area of 
CNS-700. The surface-controlled contribution for energy 
storage was quantitatively analyzed using the relationship 
of I = k1v + k2v0.5, [44, 45] and it found the energy storage 
of CNS-700 is mainly from the surface-controlled process 
(Fig. S3). As shown in Fig. 4b, 88.5% of the capacity is 
dominated by a surface-controlled process. The cycling sta-
bility of the CNS samples was evaluated by repeated charge/
discharge test at 0.3 A g−1. The CNS samples all exhibited 
relatively stable cycling stability after initial cycles (Fig. 4c). 
By comparing their capacities, it could be found that the 
CNS-700 electrode had the highest capacity than these CNS 
samples synthesized at other temperatures. The CNS-700 
electrode had an initial discharge capacity of 720 mA h g−1 
and a charging capacity of 270 mA h g−1. After slight capac-
ity reduction during the initial several cycles, the CNS-700 

electrode remained stable charge/discharge capacity around 
241.7/244.7 mA h g−1. The capacity attenuation of the bat-
tery during the initial cycle could be attributed to the forma-
tion of SEI film and irreversible side reactions [46–48]. The 
GCD curves of the CNS-700 electrode at different cycles are 
plotted in Fig. 4d. After the initial cycle, the GCD curves 
of the CNS-700 electrode tended to be stable, indicating a 
stable performance. As shown in Fig. 4e and f, after cycling 
for more than 500 cycles at 0.3 A g−1 and 1000 cycles at 1.0 
A g−1, the CNS-700 electrode still remained at a capacity 
of 230 and 180 mA h g−1, respectively. In addition, the CE 
are all higher than 99% after initial cycles. The C 1 s XPS 
spectra showed the appearance of carbide when the CNS-
700 electrode experienced the charge/discharge cycle, but 
the XPS did not change when being cycled for 1000 cycles 
(Fig. S4). These results confirmed the excellent cycling sta-
bility of the CNS-700 electrode.

The rate performance of CNS electrodes is compared in 
Fig. 5a. After testing at stepped currents of 0.1, 0.3, 0.5, 0.7, 
1.0, and 2.0 A g−1, the CNS-700 electrode showed a charge/
discharge capacity of 280/300 mA h g−1 at a specific current 
of 0.1 A g−1, indicating high reversibility at different tested 
currents. The CNS-700 electrode could maintain a favorable 
discharge capacity of around 175/177 mA h g−1 at a high 

Fig. 5   a Rate performance of CNS samples synthesized at different 
temperatures, b GCD curves at different tested currents of CNS-700, 
and c EIS spectra of different CNS electrodes tested during different 

CV testing cycles with a scan rate of 0.3 mV s−1: (1) fresh electrode, 
(2) after 3 cycles, and (3) after 8 cycles
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specific current of 2.0 A g−1, indicating excellent rate perfor-
mance. The CNS-700 electrode delivered a specific capac-
ity obviously higher than a series of previously reported 
carbon-based electrode derived from different carbon pre-
cursors, such as Palmyra palm fruit calyx (245 mA h g−1 
at 0.05 A g−1) [49], sorghum stalk (212 mA h g−1 at 0.1 
A g−1) [50], lotus petioles (242 mA h  g−1 at 0.1 A g−1) 
[51], pistachio shell (225 mA h g−1 at 0.01 A g−1) [52], 
sodium alginate (216 mA h g−1 at 0.1 A g−1) [53], Spar-
tina alterniflora (139 mA h g−1 at 0.1 A g−1) [54], and corn 
stalks (249 mA h g−1 at 0.1 A g−1) [55]. Figure 5b com-
pares the typical GCD curves of CNS-700 electrode. These 
GCD curves exhibited similar shapes at different specific 
currents, further confirming a good rate performance. In 
addition, electrochemical impedance spectroscopy (EIS) 
was also used for evaluating the stability of different CNS 
electrodes. As shown in Fig. 5c, the EIS spectra of the CNS 
electrodes all displayed greatly reduced diameters of the 
semicircles in high frequency region after three CV cycles, 
indicating greatly reduced charge transfer resistance. How-
ever, only CNS-600 and CNS-700 electrodes show constant 
EIS spectra in subsequent CV cycles, so better stability for 
energy storage could be achieved at relatively low annealing 
temperature.

Conclusions

To circumvent the narrow interlayer issue for SIB application 
of carbon materials, 2D porous carbon nanosheets (CNSs) 
with large aspect ratio and very thin thickness were synthe-
sized to boost the surface energy storage. The CNSs were 
prepared by direct pyrolysis of potassium citrate, where potas-
sium species served as templates and activation agents for 
organic species carbonization and activation. The CNS exhib-
ited an ultrahigh-specific surface area of 2062.7 m2 g−1 due to 
its rich porous structure and two-dimensional nanosheet struc-
ture. These characteristics not only provided abundant defect 
sites and active sites, but also shortened the diffusion path of 
sodium ions. When used as an anode material, the CNS-bade 
SIB exhibited high reversible capacity and long-term cycling 
stability. Our work provided a solution for the limited capac-
ity of carbon materials for SIB applications, which is very 
promising to promote the application of SIBs.
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