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Abstract
In the electrolytic water hydrogen production, the slow electrocatalytic kinetics of the hydrogen evolution reaction (HER) and 
oxygen evolution reaction (OER) limit the energy conversion efficiency. Multi-metal high-entropy alloys (HEAs) are consid-
ered potential catalysts to replace traditional metal oxides and precious metals in energy conversion and water electrolysis. 
In this study, a solution of Fe, Co, Ni, Mo, and Ce halide salts was formed through hydrogen bonding with a chelating agent, 
citric acid (CA). After thermolysis, a highly efficient and stable rare earth (RE) Ce-coordinated single-phase non-precious 
metal high-entropy alloy (HEA) was obtained. Under alkaline conditions for the oxygen evolution reaction (OER), the over-
potential of FeCoNiMoCe HEA/C was only 260 mV at a current density of 10 mA  cm−2, which is 40 mV lower than that 
of commercial  RuO2. Under alkaline conditions for the hydrogen evolution reaction (HER), FeCoNiMoCe HEA/C had an 
overpotential of only 130 mV at a current density of 10 mA  cm−2, which is only 60 mV higher than that of commercial Pt/C 
catalyst. The FeCoNiMoCe HEA/C displayed excellent catalytic activity in the overall water splitting system. This is due to 
the atomic disorder of high-entropy alloy catalysts, which provides more reaction sites, thereby increasing reaction activity 
and selectivity. Our work presents a straightforward and feasible synthetic strategy for preparing high-entropy compounds, 
which holds great potential in energy and electrocatalysis applications through entropy engineering.
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Introduction

The use of fossil fuels has led to energy crises and green-
house effects. Developing a clean, sustainable energy source 
to replace traditional fossil fuels is crucial in mitigating 
severe environmental issues and the global energy crisis 
[1–4]. Hydrogen energy is a green renewable energy that 
can replace fossil fuels and has broad research prospects. 
Hydrogen energy has a significantly higher energy density 

and combustion heat value compared to other fuels [5, 6]. 
Electrolysis of water to produce hydrogen is widely regarded 
as one of the most promising technologies for achieving 
carbon neutrality through hydrogen fuel production [7–10]. 
However, the efficiency of water electrolysis is significantly 
affected by the limitations of high-performance catalysts 
for the oxygen-evolution reaction (OER) and hydrogen-
evolution reaction (HER). This hinders the industrial-scale 
electrolysis of water [11–19]. The efficiency of water elec-
trolysis depends heavily on the catalyst used. Only by using 
excellent electrocatalysts can efficient hydrogen production 
be achieved. Precious metal catalysts such as Pt/C and  RuO2 
have traditionally been recognized as benchmark HER and 
OER catalysts and have been commercially applied in water 
splitting [20]. However, the practical applications of these 
resources are hindered by their high cost and natural scar-
city [21–23]. Thus, there is an urgent need to develop non-
precious metal materials to enhance the overall efficiency 
of water electrolysis.

The catalytic activity of single metal or bimetallic cata-
lysts depends largely on the adsorption of reactants on the 

 * Guo Ruihua 
 grh7810@163.com

1 School of Material and Metallurgy, Inner Mongolia 
University of Science & Technology, Baotou 014010, China

2 Inner Mongolia Key Laboratory of Advanced Ceramic 
Materials and Devices, Inner Mongolia University of Science 
& Technology, Baotou 014010, China

3 Key Laboratory of Green Extraction & Efficient Utilization 
of Light Rare-Earth Resources, Ministry of Education, 
Inner Mongolia University of Science & Technology, 
Baotou 014010, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s11581-024-05532-2&domain=pdf


3404 Ionics (2024) 30:3403–3416

active sites of their surfaces [24–26]. However, achieving 
optimal binding energy for all intermediates on the limited 
number of active sites available simultaneously is not pos-
sible [27, 28]. To overcome this limitation, scientists have 
devoted themselves to developing novel multimetal catalysts. 
Multimetal catalysts have a greater number of active sites, 
enabling the simultaneous adsorption and catalysis of mul-
tiple intermediates. This leads to an improvement in the effi-
ciency and selectivity of the reaction. By rationally design-
ing the composition and structure of the catalyst, synergistic 
effects between intermediates at different active sites can 
be achieved, further enhancing the catalytic performance. 
High-entropy alloys (HEAs) are alloys that contain at least 
five specific elements, with each element having an atomic 
concentration ratio between 5 and 35% [29–31]. HEAs have 
a strong lattice due to the combination of various catalyti-
cally active elements with different atomic sizes. This leads 
to lower energy barriers for catalytic reactions, unlike tran-
sition metal-based electrocatalysts [32], Electrocatalysts 
known as HEAs have garnered significant attention due to 
their unique chemical and physical properties. These prop-
erties include diverse element selection, high chemical and 
thermal stability, multiple active sites, and high configura-
tional entropy [33–35].

Transition metals are typical representatives of high-
activity, low-cost electrocatalysts with rich d-electrons, 
which are crucial for electron transfer and participation 
in chemical reactions [36]. The d-electrons participate in 
charge transfer and electron transfer processes, thereby pro-
moting electrocatalytic reactions. Additionally, the diverse 
distribution of d-electron energy levels in transition metals 
allows for the adjustment of catalytic activity and selectivity 
by controlling the electron energy levels. Transition met-
als provide suitable energy levels and vacancies, facilitate 
electron transfer and participation in catalytic reactions, 
thereby accelerating reaction rates and reducing overpoten-
tial and energy losses in electrocatalysis [37, 38]. Further-
more, the unique filling states and strong electron supply 
capability of Mo 4d orbitals can regulate the electron struc-
ture of catalysts, changing their band structure and electron 
distribution, thereby affecting the catalytic activity of the 
catalyst. The introduction of Mo can introduce additional 
d-electrons, increasing the electron density of the catalyst 
and enhancing the interaction between the catalyst and the 
reactants, facilitating the adsorption of the reactants and the 
reaction processes [39]. The integration or doping of transi-
tion metal-based electrocatalysts with rare earth elements 
began in the 1970s with  LaNi5 and has developed rapidly in 
the twenty-first century, with non-noble metals such as Co, 
Ni, and Fe being combined with rare earth (RE) elements 
for use in electrocatalytic reactions. In particular, Ce and its 
oxides have attracted particular interest in electrocatalytic 
reactions due to their rapid transfer between the  Ce3+/Ce4+ 

redox couple. According to the Brewer-Engel theory, alloy-
ing metals from the left half of the transition metal sequence 
in the periodic table (i.e., metals with empty or less filled 
d orbitals) with metals from the right half of the sequence 
(i.e., metals with more filled d bands) leads to the maximum 
bonding strength and stability of the metal alloy, resulting 
in significant synergistic effects [40]. Currently, research on 
high-entropy alloys primarily focuses on the selection of 
precious and common transition metals. Rare earth elements 
are effectively added to the catalyst system to optimize the 
charge distribution at the interface due to the difference in 
electronegativity between rare earth and common transition 
metals. This optimization results in unique electronic and 
catalytic properties in rare earth-containing alloy catalysts 
[41]. This is due to the effective shielding of electrons in 
the 4f subshell by electrons in the outer 5 s and 5p subshells 
[42]. Rare earth elements can be used to control the elec-
tronic structure of active sites in alloys, allowing for the 
design of new catalyst materials [43, 44].

Currently, compared with electrocatalysts below ternary, 
high-entropy alloys have a rich component modulation range 
and a complex surface interface structure, providing the 
possibility of achieving a nearly continuous distribution of 
adsorption energy curves [45, 46]. However, the synthesis 
strategy of high-entropy alloys (HEAs) still faces challenges 
due to the difficulty of mixing different elements and avoid-
ing aggregation and migration phenomena. In recent years, 
high-energy ball milling and solid-state alloying have been 
simple methods for large-scale production of HEAs, but they 
cannot control the size and morphology of HEAs [47–49]. 
Methods such as carbothermal shock, laser melting, and arc 
melting can rapidly produce the desired HEA, but the HEA 
produced at extremely high temperatures limits its large-
scale production [50, 51]. Recently, the wet impregnation 
method has been considered the most popular method for 
the preparation of HEA because it has the advantages of 
low operational difficulty and high controllability, making 
it suitable for large-scale production [52, 53]. However, the 
use of multi-ligand materials such as 1,10-phenanthroline 
and poly(N-vinyl-2-pyrrolidone) for the aggregation of 
metal precursors is environmentally toxic and harmful [54, 
55]. Here, we have developed a novel and convenient criti-
cal acid polymerization strategy using citric acid (CA) as a 
natural material and combining it with halide salts to form 
hydrogen bonding networks [33, 56]. Following a pyroly-
sis process, we directly synthesize high-entropy alloys of 
Fe, Co, Ni, Mo, and rare earth Ce (FeCoNiMoCe HEA/C) 
using this method. Both three-metal FeCoNi/C and four-
metal FeCoNiMo/C can be synthesized with the same phase 
structure, demonstrating the universality of this preparation 
strategy. As expected, the obtained alloys show continu-
ously improved performance in terms of OER, HER, and 
overall water splitting with an increasing number of metal 
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types. In particular, FeCoNiMoCe HEA/C as bifunctional 
electrocatalysts show the best activity in a 1 mol KOH solu-
tion at 10 mA  cm−2 with overpotentials of 260 and 130 mV. 
Using FeCoNiMoCe HEA/C as both electrode materials, 
an integrated electrolyzer requires a voltage of only 1.6 V 
to achieve a current density of 10 mA  cm−2. The positive 
correlation between the number of metal types and electro-
catalytic performance highlights the importance of synthe-
sizing of new HEAs and their immense potential for catalytic 
applications.

Experiment section

Ferric chloride  (FeCl3-6H2O), nickel chloride  (NiCl2-6H2O), 
cobalt chloride  (CoCl2-6H2O), molybdenum chloride 
 (MoCl5), cerium chloride  (CeCl3), citric acid  (C6H8O7-H2O), 
and potassium hydroxide (KOH) were purchased from 
Shanghai Maclyn Biochemical Technology Co., Ltd.  RuO2 
was purchased from Suzhou Senno Technology Co., Ltd. 
Pt/C was purchased from Shanghai Kesen Electric Co., 
Ltd. Ar gas was obtained from Inner Mongolia Zhongke-
biaowu Technology Co., Ltd. Deionized water was used in 
the experiment. All reagents were used as received without 
any further purification.

In a typical synthesis, equimolar amounts of metal pre-
cursors  (FeCl3-6H2O,  CoCl2-6H2O,  NiCl2-6H2O,  MoCl5, 
 CeCl3) were dissolved in a 30 mL ethanol–water solution 
saturated with argon. The mixture was then stirred for 60 
min. Next, 8 mmol of citric acid  (C6H8O7-H2O) was added 
to the solution, and after 30 min of stirring, the resulting 
solution is refluxed at 90℃ for 2 h to form a sol. The gel ash 
resulting from the evaporation of the mixture at 120℃ for 10 
h is collected and ground. The ground gel ash is then heated 
under argon conditions at a rate of 5℃  min−1 to 200℃ and 
held for 2 h, followed by heating at a rate of 10℃  min−1 to 
800℃ for 3 h, resulting in black powder.

The synthesis procedure for FeCoNiMo/C and FeCoNi/C 
is the same as that for FeCoNiMoCe HEA/C, with the 

addition of respective metal sources. The amount of citric 
acid used is 6 mmol and 4.5 mmol, respectively.

Results and discussions

Scheme 1 illustrates the preparation process and reaction 
principle of FeCoNiMoCe HEA/C. In this study, citric acid 
 (C6H8O7, CA) is chosen as a complexing agent, which con-
tains numerous -COOH and -OH groups capable of chelating 
halide salts to form a homogeneous multi-metal sol network. 
After refluxing and evaporating, CA polymerizes with metal 
chlorides and forms a uniform network through hydrogen 
bonding [57, 58], effectively preventing the aggregation of 
metal chlorides. The synthesis mechanism is driven by the 
decomposition of metal salts and the release of CO gas [51]:

O* refers to residual oxygen that is surface-bound. Dur-
ing the pyrolysis process, carbon metabolism reactions can 
occur, involving carbon (fuel), metals (catalysts), and O* 
(oxidants). Mechanistically, metals with catalytic sites can 
accelerate intense carbon metabolism reactions, leading to 
higher frequency of metal movement [51]. This process can 
result in the formation of uniformly dispersed high-entropy 
alloys.

To investigate the hybrid graphite structure and struc-
tural defects of FeCoNiMoCe HEA/C, FeCoNiMo/C, and 
FeCoNi/C catalysts, Raman spectroscopy was employed 
to analyze the obtained catalysts. As shown in Fig. S2, the 
Raman spectrum of the samples shows two prominent peaks 
at 1340  cm−1 (D band, associated with structural defects 
or disordered carbon atoms) and 1579  cm−1 (G band, cor-
responding to graphitic carbon atoms). The degree of gra-
phitization and structural defects in the materials is typically 
indicated by the intensity ratio of the D band to the G band 

(1)MClxHy → M + gases ↑

(2)C + O∗ → CO ↑

Scheme 1  Schematic diagram 
of the reaction of FeCoNiMoCe 
HEA/C
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 (ID/IG), with a standard value of 1.0. The calculated  ID/IG 
values were about 1.03, 0.87, and 0.83, respectively. Among 
them, the FeCoNiMoCe/C catalyst has the highest intensity 
ratio, indicating the presence of the most carbon structural 
defects, which are beneficial for providing excellent reaction 
sites for the reaction.

As shown in Fig. 1a, the X-ray diffraction (XRD) patterns 
of FeCoNi/C, FeCoNiMo/C, and FeCoNiMoCe HEA/C 
samples exhibit a single-phase face-centered cubic (fcc) 
structure. The peaks located at 42.9°, 50.2°, and 74.6° cor-
respond to the (111), (200), and (220) crystal planes, respec-
tively. In addition, for FeCoNiMo/C, we have also observed 
additional peaks corresponding to  Fe2Mo3O8#74–1429, as 
shown in Figure S2a. This can be attributed to partial oxida-
tion that may have occurred during the storage and testing 
of FeCoNiMo/C. Similarly, we have observed this phenom-
enon in FeCoNiMoCe HEA/C as well (Figure S2b). How-
ever, compared to FeCoNiMo/C, the intensity of the peaks 
corresponding to other phases in FeCoNiMoCe HEA/C 
is significantly lower, indicating the high-entropy effect of 
high-entropy alloys (increased configurational entropy with an 
increasing number of elements, leading to a reduction of the 
correlated free energy at high temperatures and the formation 
of a single-phase structure) [49]. In particular, the diffraction 
peak positions of FeCoNiMoCe HEA/C samples are signifi-
cantly shifted to the left compared to the diffraction peaks of 
FeCoNi/C. This indicates that, according to the Bragg equa-
tion, the addition of large Ce atoms increases the lattice spac-
ing, resulting in a decrease in the diffraction angle θ (as shown 
in Fig. S3). This suggests that these elements have been suc-
cessfully incorporated into the nanocatalyst to form the HEA 
structure. Additionally, the chemical composition analysis of 
the HEA was performed using inductively coupled plasma 
optical emission spectroscopy (ICP-OES), and the results are 
shown in Table S1, Ni:Fe:Co:Mo:Ce = 1:0.99:0.96:0.89:0.85, 
with each metal content ranging from 5–35 at.%, consistent 
with the definition of high entropy alloys [35].

As shown in Fig. S4(a)(b), FeCoNiMoCe HEA/C has 
a powdery shape with rough surface. The TEM image in 
Fig. S5 shows that FeCoNiMoCe HEA/C has a uniform 
nanocrystalline particle morphology with an average size 
of approximately 17 ± 0.5 nm. Figure 1(c)(d) presents the 
particle morphology of FeCoNiMoCe HEA/C from dif-
ferent angles, with the red region and its magnified image 
(Fig. 1(e)) labeled. The inset SAED pattern confirms the 

single crystallinity of the obtained FeCoNiMoCe HEA/C 
nanoparticles. The lattice spacing of 0.265 nm for the (111) 
planes is shown in the inset of Fig. 1(e). The Fast Fourier 
transform (FFT) patterns in Fig. 1(f) display distinct reflec-
tions of the HEA microcrystals on the (111) planes, con-
sistent with the FFT patterns of pure crystals. Figure 1(g) 
reveals numerous dislocations and stacking faults. Addition-
ally, the HAADF-STEM-EDS elemental mapping of the 
HEA in Fig. 1h and Fig. S7 shows a uniform distribution of 
Fe, Ni, Co, Mo, and Ce elements in the HEA nanostructure. 
The results demonstrate that high-entropy FeCoNiMoCe 
HEA/C nanoparticles were successfully prepared using a 
simple acid-catalyzed polymerization method. Addition-
ally, we examined the detailed structures of FeCoNi/C and 
FeCoNiMo/C samples by TEM (Fig. S6(a)(b)).

Further X-ray photoelectron spectroscopy (XPS) analyses 
were conducted on FeCoNiMoCe HEA/C, FeCoNiMo/C, 
and FeCoNi/C to investigate their valence and surface chem-
istry. The XPS spectra confirmed the presence of Fe, Co, Ni, 
Mo, and Ce elements (Fig. 2a). These results are consistent 
with those obtained from energy-dispersive X-ray spectros-
copy (EDS) and inductively coupled plasma (ICP) analysis. 
The high-resolution Fe 2p spectrum in Fig. 2b demonstrated 
a zero-valence state of Fe for FeCoNi/C (711.8 eV for  Fe0 
 2p3/2 and 724.6 eV for  Fe0  2p1/2). The Fe 2p spectrum of 
FeCoNiMo/C also displayed the existence of  Fe0 (711.2 eV 
for  2p3/2 and 724.4 eV for  2p1/2). The peaks at 708.4 and 
722.2 eV for FeCoNiMoCe HEA/C belong to the metallic 
 Fe0  2p3/2 and  Fe0  2p1/2 peaks, respectively. [59]. The peaks at 
781.1 and 796.8 eV for FeCoNi/C belong to the metallic  Co0 
 2p3/2 and  Co0  2p1/2 peaks, respectively. For FeCoNiMo/C, 
Co 2p spectrum (780.8 eV for  Co0  2p3/2 and 796.6 eV for 
 Co0  2p1/2). The Co 2p spectrum of FeCoNiMoCe HEA/C 
displayed the existence of  Co0 (779.9 eV for  2p3/2 and 795.1 
eV for  2p1/2) (Fig. 2c) [60]. The Ni 2p spectrum in Fig. 2d 
displayed peaks at 855.5 eV for  Ni0  2p3/2 and 873.3 eV for 
 Ni0  2p1/2 (FeCoNi/C), the peaks at 855.3 eV for  Ni0  2p3/2 and 
872.1 eV for  Ni0  2p1/2 (FeCoNiMo/C) and the peaks at 855.2 
eV for  Ni0  2p3/2 and 872.1 eV for  Ni0  2p1/2 (FeCoNiMoCe 
HEA/C) [61]. In Fig. 2e, the presence of spin doublet peaks 
at 232.4 eV (Mo  3d5/2) and 235.3 eV (Mo  3d3/2) indicated 
the existence of metallic Mo in FeCoNiMo/C and FeCoNi-
MoCe HEA/C [62]. The high-resolution XPS spectrum of 
Ce 3d showed two peaks between 900–910 eV and 915–930 
eV, which were identified as Ce  3d3/2, and a peak at 880–890 
eV was assigned to Ce  3d5/2. These results indicated the 
coexistence of  Ce3+ and  Ce4+ in the FeCoNiMoCe HEA/C 
structure (as depicted in Fig. 4f) [63]. The binding energies 
of  Fe0,  Co0,  Ni0, and  Mo0 of FeCoNiMoCe HEA/C showed 
negative shifts compared with FeCoNiMo/C without Ce, 
indicating that the introduction of Ce in the FeCoNi/C alloy 
results in the movement of electrons on Fe, Co, Ni, and Mo 
surfaces. It is further evidence of a synergistic electronic 

Fig. 1  a XRD patterns of FeCoNi/C, FeCoNiMo/C, and FeCoNi-
MoCe HEA/C; b SEM images of the synthesized FeCoNiMoCe 
HEA/C; c TEM image of FeCoNiMoCe HEA/C; d HRTEM image 
of the magnified TEM image from the red square region in c. Cor-
responding SAED pattern is shown as inset; e HRTEM image of the 
particles in the red region; f FFT image obtained from the red region; 
g lattice planes of the particles in the red region; h elemental map-
ping of FeCoNiMoCe HEA/C

◂
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coupling effect among the Fe, Co, Ni, Mo, and Ce atoms, 
which may alter the adsorption of the HER and OER inter-
mediates under the Co, Ni, Fe and Mo sites [64, 65].

An evaluation was conducted on the electrochemical 
performance of the prepared ternary FeCoNi/C, quaternary 
FeCoNiMo/C, and FeCoNiMoCe HEA/C in a 1.0 M KOH 

Fig. 2  High-resolution XPS spectra of FeCoNiMoCe HEA/C, 
FeCoNiMo/C and FeCoNi/C. a Survey XPS spectra of FeCoNiMoCe 
HEA/C, FeCoNiMo/C and FeCoNi/C; b Fe 2p of FeCoNiMoCe 
HEA/C, FeCoNiMo/C and FeCoNi/C; c Co 2p of FeCoNiMoCe 

HEA/C, FeCoNiMo/C and FeCoNi/C; d Ni 2p of FeCoNiMoCe 
HEA/C, FeCoNiMo/C and FeCoNi/C; e Mo 3d of FeCoNiMoCe 
HEA/C, FeCoNiMo/C; f Ce 3d of FeCoNiMoCe HEA/C
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three-electrode system, with commercial RuO2 used as a 
control for comparison. As shown in Fig. 3a, the ternary 
FeCoNi/C alloy exhibited an overpotential of 370 mV at a 
current density of 10 mA  cm−2, which was higher than that 
of commercial  RuO2 (300 mV). The overpotential of the 
quaternary FeCoNiMo/C alloy can be continuously reduced 
from 370 to 280 mV with the addition of Mo, which is 20 
mV lower than that of commercial  RuO2. An excellent OER 
electrocatalyst is formed by adding the rare earth element 
Ce to form FeCoNiMoCe HEA/C, with an overpotential of 
only 260 mV, significantly lower than the commercial  RuO2 
(300 mV). This improvement in catalytic activity may be 
attributed to the addition of an appropriate amount of Ce. 
Ce enhances the catalytic activity of the high entropy alloy 
by regulating the electronic structure of Fe, Co, Ni, and Mo, 
leading to changes in the lattice spacing of the alloy. As a 
result, the FeCoNiMoCe HEA/C exhibits moderate adsorp-
tion energy, achieving optimal performance [66]. The Tafel 

slope of FeCoNiMoCe HEA/C (63.4 mV  dec−1) is lower 
than that of FeCoNiMo/C (77.2 mV  dec−1), FeCoNi/C 
(110.5 mV  dec−1), and  RuO2 (101.6 mV dec-1). Addition-
ally, we compared the EIS of FeCoNi/C, FeCoNiMo/C, and 
FeCoNiMoCe HEA/C. As shown in Fig. 3c, FeCoNiMoCe 
HEA/C has the lowest charge transfer resistance, with  Rct and 
 RS values of 15 Ω and 1.25 Ω, respectively. In addition, we 
manually compensated the measured LSV curves using IR 
and compared the compensated and uncompensated FeCoNi-
MoCe HEA/C (Fig. S8a). We also compared the OER LSV 
curves and Tafel slopes of the compensated groups (Fig. S8b, 
c). The double-layer capacitance  (Cdl) between the electrolyte 
and the electrocatalyst was calculated by cyclic voltammetry 
(Fig. S9), and the results are presented in Fig. 3d. The electri-
cal double-layer capacitance  (Cdl) of FeCoNiMoCe HEA/C 
is significantly higher (9.17 mF  cm−2) than that of FeCoNi/C 
(7.96 mF  cm−2) and FeCoNiMo/C (5.67 mF  cm−2), and 
slightly lower than that of  RuO2 (6.89 mF  cm−2).

Fig. 3  a OER LSV curves of ternary FeCoNi/C, quaternary 
FeCoNiMo/C, quinary FeCoNiMoCe HEA/C, and the control  RuO2; 
b Tafel slopes of ternary FeCoNi/C, quaternary FeCoNiMo/C, qui-
nary FeCoNiMoCe HEA/C, and the control  RuO2; c EIS meas-

urements of ternary FeCoNi/C, quaternary FeCoNiMo/C, qui-
nary FeCoNiMoCe HEA/C, and the control  RuO2; d  Cdl values 
obtained by fitting the CV curves of ternary FeCoNi/C, quaternary 
FeCoNiMo/C, quinary FeCoNiMoCe HEA/C, and the control  RuO2
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As shown in Fig. 4a, with the increase of metal elements, 
the ECSA also significantly expands. The ECSA of FeCoNi-
MoCe HEA/C (229.3  cm2  mg−1) is approximately 1.61 times 
larger than that of FeCoNi/C (141.8  cm2  mg−1) and 1.2 times 
larger than that of FeCoNiMo/C (119.0  cm2  mg−1). Further-
more, the current density of ECSA is normalized to reveal 
the intrinsic surface area catalytic activity of these catalysts. 
FeCoNiMoCe HEA/C still exhibits the highest OER cata-
lytic activity (Fig. 4b). It can also be seen from Fig. S8d that 
under the same conditions, FeCoNiMoCe HEA/C outper-
forms many previously reported non-precious metal OER 
high-entropy electrocatalysts.

We also evaluated the HER activity of ternary FeCoNi/C, 
quaternary FeCoNiMo/C, and FeCoNiMoCe HEA/C in 
1.0 M KOH. Similar to the OER performance, the HER 
activity improved with an increase in the number of metal 
species. Specifically, the overpotential at 10  mA   cm−2 
decreased from 440 mV for FeCoNi/C to 250 mV for qua-
ternary FeCoNiMo/C and 130 mV for FeCoNiMoCe HEA/C 
(Fig. 5a). Additionally, as a commercial electrocatalyst, the 
overpotential of Pt/C at 10 mA  cm−2 was only 60 mV lower 
than that of FeCoNiMoCe HEA/C, indicating the promis-
ing potential for large-scale use of FeCoNiMoCe HEA/C. 
The Tafel slope of FeCoNiMoCe HEA/C was 94.4 mV 
 dec−1 (Fig. 5b), significantly lower than that of ternary 
FeCoNi/C (187.9 mV dec-1) and quaternary FeCoNiMo/C 
(161.3 mV  dec−1). As a commercial catalyst, we separately 
tested the EIS and CV of Pt/C and calculated its  Cdl based 
on the CV (Fig. S10). The HER LSV curves of FeCoNi/C, 
FeCoNiMo/C, and FeCoNiMoCe HEA/C after IR compen-
sation, as well as the Tafel slope, are shown in Fig. S11. Fig-
ure 5c presents the HER ECSA normalized curves of ternary 
FeCoNi/C, quaternary FeCoNiMo/C, and FeCoNiMoCe 
HEA/C, comparing the overpotential at 10 mA  cm−2 with 

various reported non-precious metal materials. It is found 
that FeCoNiMoCe HEA/C is comparable to some excellent 
candidate materials.

The turnover frequency (TOF) values were also employed 
to evaluate the catalytic activities of all samples toward the 
HER and the OER [67]. As presented in Fig. 6, the TOF 
value of FeCoNiMoCe HEA/C catalyst towards OER is cal-
culated to be 0.158  s−1 at an overpotential of 1.55 V, which 
is much larger than that of  RuO2 (0.117  s−1), FeCoNiMo/C 
(0.07  s−1), and FeCoNi/C (0.006  s−1) catalysts. As for the 
HER, the FeCoNiMoCe HEA/C catalyst presents a TOF 
value of 0.522  s−1 at an overpotential of 0.3 V, which is 
also significantly superior to Pt/C (0.401  s−1), FeCoNiMo/C 
(0.184  s−1), and FeCoNi/C (0.025  s−1) catalysts.

The FeCoNiMoCe HEA/C catalyst demonstrates excel-
lent stability for 12 h at a voltage of 1.55 V, as shown in 
Fig. 7a. Additionally, during the 12-h measurement at a cur-
rent density of 20 mA  cm−2, the fluctuation is only about 
1 mA, as seen in Fig. 7b. These results suggest that the 
FeCoNiMoCe HEA/C catalyst is highly stable.

The stability of electrocatalysts over time depends on 
the structure of the active material and surface reconstruc-
tion after prolonged use. To investigate the morphological 
and surface chemical changes of the FeCoNiMoCe HEA/C 
catalyst after stability testing, various characterization 
techniques including FESEM and TEM were employed. 
The nanoparticle morphology of the FeCoNiMoCe HEA/C 
catalyst was found to be maintained after stability testing, 
as shown in Fig. 8a. Figure 8b shows the high-entropy alloy 
(HEA) of the FeCoNiMoCe HEA/C (HEA) sample after 
12 h of stability testing, along with the newly formed high-
entropy oxide (HEO). HRTEM images in Fig. 8c–d reveal 
the interplanar spacing of HEO and the presence of numer-
ous dislocations and stacking faults, indicating that the 

Fig. 4  a ECSA (Electrochemically Active Surface Area) of ternary FeCoNi/C, quaternary FeCoNiMo/C, quinary FeCoNiMoCe HEA/C and 
 RuO2; b ECSA-normalized OER LSV curves of nary FeCoNi/C, quaternary FeCoNiMo/C, quinary FeCoNiMoCe HEA/C and  RuO2
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Fig. 5  a HER LSV curves of ternary FeCoNi/C, quaternary 
FeCoNiMo/C, quinary FeCoNiMoCe HEA/C, and the control  RuO2; 
b Tafel slopes of ternary FeCoNi/C, quaternary FeCoNiMo/C, qui-
nary FeCoNiMoCe HEA/C, and the control Pt/C; c ECSA-normal-

ized HER LSV curves of nary FeCoNi/C, quaternary FeCoNiMo/C, 
and quinary FeCoNiMoCe HEA/C; d Comparison of the overpoten-
tials of HER performance to drive a current density of 10 mA  cm−2 
for the FeCoNiMoCe HEA/C with recently reported electrocatalysts

Fig. 6  TOF curves of different samples for (a) HER and (b) OER
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Fig. 7  a Chronopotentiometry responses (E–t) of FeCoNiMoCe HEA/C; b Chronoamperometric responses (I–t) of FeCoNiMoCe HEA/C

Fig. 8  a Schematic diagram of the overall water splitting device; b 
overall water splitting performance of FeCoNiMoCe||FeCoNiMoCe 
and Pt/C||RuO2 electrode pairs. Insets: Schematic diagram of com-
plete water splitting using FeCoNiMoCe HEA/C catalyst as both 

electrodes; c chronoamperometric responses (I–t) of FeCoNiMoCe 
HEA/C and (Pt/C||RuO2); d performance of FeCoNiMoCe HEA/C 
electrolyzer compared with reported water splitting catalysts
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structure of the HEA has been partially preserved while new 
oxides have formed after prolonged stability testing. Based 
on the HAADF-STEM-EDS analysis presented in Fig. 8e, 
the Fe, Co, Ni, Mo, Ce, and O elements of the FeCoNiMoCe 
HEA/C catalyst are evenly dispersed throughout the entire 
region following stability testing.

After demonstrating that the FeCoNiMoCe HEA/C 
catalyst has good OER and HER activity and stabil-
ity, a two-electrode electrolysis cell was assembled to 
verify the performance of FeCoNiMoCe HEA/C for 
the total hydrolysis of water, which is shown schemati-
cally in Fig. 8a. We also used Pt/C||RuO2 as a commer-
cial reference, and the results are shown in Fig. 8b. For 
the FeCoNiMoCe||FeCoNiMoCe catalyst, a current den-
sity of 10 mA  cm−2 was achieved at only 1.59 V, which 
was about 100  mV lower than Pt/C||RuO2 (1.69  V). 
Stability testing was conducted at 1.7  V for both 
FeCoNiMoCe||FeCoNiMoCe and Pt/C||RuO2 (Fig. 8c), and 
it can be observed that FeCoNiMoCe||FeCoNiMoCe main-
tained good stability, surpassing Pt/C||RuO2. Interestingly, 
the FeCoNiMoCe HEA/C dual-electrode electrolyzer also 
outperformed many previously reported advanced cata-
lysts (Fig. 8d). Additionally, we compared the OER, HER, 
and overall water splitting performance of the FeCoNi/C, 
FeCoNiMo/C, and FeCoNiMoCe HEA/C catalysts we 
prepared under conditions of 10 mA  cm−2 with the latest 
literature-reported excellent catalysts. Our findings indicate 
that the FeCoNiMoCe HEA/C catalyst also outperforms 
many recently reported non-precious metal high-entropy 
material electrocatalysts (Table S2) [33, 68–72].

In order to investigate the Faraday efficiency of the 
FeCoNiMoCe HEA/C, a drainage system presented in 
Fig. 9 a was adopted to collect the gases and evaluate 
the overall water splitting behavior in a more practical 
application. As shown, the collected amount of  H2 and 

 O2 constantly evolves in a stoichiometric proportion of 
2:1 (Fig. 7 b). Acquisition of 20 mL  H2 is realized within 
approximately 3468 s, with a Faradaic efficiency (FE) of 
almost 99.58%. Whereas the harvest of 10 mL  O2 is real-
ized within approximately 3502 s, with a Faradaic effi-
ciency (FE) of almost 98.4% [73].

Finally, a brief analysis of the active sites of FeCoNi-
MoCe HEA/C was conducted based on the results of the 
literature testing. Compared to doping transition metals, 
introducing rare earth element cerium (Ce) with unique 
4f orbitals as an external atom into the valence orbitals 
between Fe, Co, Ni, and Mo, combined with surface deco-
ration to expose more active sites and high-entropy coordi-
nation to enhance intrinsic activity and structural stability, 
improves the activity and durability of the catalyst. This 
provides a novel design for HEA catalysts [74]. Accord-
ing to the consulted literature, FeCoNiCuCe high-entropy 
alloy nanoparticles (NPs) can effectively drive non-active 
Ce to electron-enriched active sites through strong local 
electronic interactions caused by electronegativity differ-
ences between low electronegativity Ce and high electron-
egativity Mo with Fe, Co, and Ni metals. This reduces the 
adsorption energy of reactants, intermediates, and prod-
ucts, enhancing the activities of the hydrogen evolution 
reaction (HER) and oxygen evolution reaction (OER) of 
the HEA [75–78].

Conclusions

In summary, we synthesized a high-entropy alloy using the 
critical acid polymerization method and calcination-reduc-
tion method. By incorporating unique rare earth elements 
(Ce) into the FeCoNiMo/C, the catalytic performance of the 
water electrolysis catalyst was significantly enhanced. The 

Fig. 9  a  H2 and  O2 gas collection device; b amount of  H2 and  O2 between experimental and the theoretical
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FeCoNiMoCe HEA/C nanoparticles can be used as dual-
function catalysts, thanks to the high-entropy materials and 
rare earth elements. The catalyst’s excellent catalytic activity 
is a result of the mixing of different atoms and the diversity 
of components, which induce synergistic effects. It exhibits 
outstanding electrocatalytic performance in both the oxygen 
evolution reaction (OER) and hydrogen evolution reaction 
(HER), surpassing most recently reported multifunctional 
electrocatalysts. This research expands the synthetic strate-
gies for high-entropy compounds and provides a method for 
the rational design and manufacture of high-entropy electro-
catalysts in the energy and catalysis fields.
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