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Abstract
Tin dioxide-based high-performance anode materials for lithium-ion batteries have been a hot research topic in recent years. 
In this study, nitrogen-doped and double-layered  SnO2@NC hollow spheres were prepared via simple and convenient method 
using carbon spheres as template. A series of products were obtained by varying additive amount of dopamine. When tested 
in the current density of 400 mA  g−1,  SnO2@NC-3 can provide a robust reversible capacity of 697.7 mAh  g−1 after 270 
cycles. The discharge capacity can remain 640.8 mAh  g−1 after 800 cycles at 1000 mA  g−1. Above excellent electrochemical 
properties were attributed to the synergistic effect between nitrogen-doped carbon and nanosized-SnO2 particles. The hol-
low structure can not only effectively buffer the structure crushing of the electrode in the process of charge and discharge, 
but also facilitate the electron diffusion by improving the electronic conductivity. Therefore, the unique nitrogen-doped and 
double-layered tin dioxide is a promising anode material for lithium-ion battery.
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Introduction

Lithium-ion batteries (LIBs) are critical portable electronic 
power sources with high energy density, long cycle life and 
low self-discharge [1–3]. In order to meet the increasing 
demand for large-scale applications, especially in the field 
of transportation, there are still high expectations for new 
electrode materials with high energy density and long-term 
cycling stability [4, 5]. However, with the rapid development 
and growth of energy demand, the commercial graphite with 

a theoretical specific capacity of 372 mAh  g−1 has been una-
ble to meet the increasing demand for battery capacity [6, 
7]. Thus, it is the pursuit of scientific researchers to explore 
novel anode materials with higher theoretical specific capac-
ity to meet the urgent requirements.

As one of the most competitive candidates for lithium-ion 
batteries,  SnO2 has attracted much attention on account of its 
abundant resources, high theoretical specific capacity, and 
low working potential [8–10]. Furthermore, the voltage win-
dow of  SnO2 electrode matches well with the positive elec-
trode material, which guaranteed wider application range 
[11, 12]. However, in the electrode reaction, poor electronic 
conductivity and serious volume change (~ 359%) will inevi-
tably lead to electrode disintegration and other problems, 
further reducing its capacity, cycle performance, and rate 
performance [13]. In addition, the pulverization and shed-
ding of active substances will occur in the process of dis-
charge–charge cycle, which will destroy the solid electrolyte 
interface (SEI), resulting in rapid capacity attenuation, and 
severely limiting its application in life. [14]

Various strategies have been devoted to overcome above 
problems for decades and kinds of tactics have been pro-
posed. One effective approach is to design materials with 
nano/microstructure hierarchies to take the advantages of 
relatively stable microstructure, short diffusion path, and 
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large interfacial contact area, which is benefit for excellent 
rate capacity, better cycling performance, and improved 
lithium storage capacity. [15, 16] Tong group fabricated 
tube-in-tube  SnO2 superstructure with high specific surface 
area and sufficient volume, which supplied enough room for 
buffering volume changing during Li insertion and extrac-
tion and exhibited excellent discharge capacity when evalu-
ated as lithium-ion battery anode. [17]

Another approach is to enhance electronic conductivity 
of  SnO2 electrode. In recent years, various carbon-based 
substrates have been widely reported for encapsulation or 
recombination of  SnO2 active materials, including gra-
phene, carbon black, carbon nanotubes, carbon nanofibers, 
and carbon frames [18–20]. Furthermore, the agglomera-
tion of nanomaterials electrode is alleviated with the intro-
duction of carbon component. Notohara group synthesized 
 SnO2/SWCNT nanocomposite in a vacuumed glass using 
SWCNT and  SnCl2 as raw material. The nanoconfinement 
structure of  SnO2 nanoparticles in SWCNT limited the vol-
ume change and is benefit for reversible electrode reaction 
[21]. The introduction of nitrogen atoms into the carbon 
layer will produce more defects, providing more active sites 
for lithium storage, thus nitrogen-doped carbon (NC) can 
effectively improve electron conductivity in carbon mate-
rials [22]. Liang group reported a simple route to obtain 
nitrogen-doped graphene/SnO2 composite. Nitrogen doping 
in graphene give rise to good conductivity, simultaneously 
compensates defects of pure  SnO2, and displayed higher 
lithium storage capacity and good cycling stability [23].

In this paper, nitrogen-doped and double-layered porous 
 SnO2 hollow spheres are prepared by electrostatic adsorp-
tion between negatively charged carbonaceous microspheres 
(CMS) template and positive metal cation  (Sn4+) followed 
by annealing treatment. The porous  SnO2 hollow spheres 
are loaded with nitrogen-doped carbon (NC) by deposition 
reaction. The double-layered  SnO2@NC-3 electrode mate-
rials delivered high specific capacity of 697.7 mAh  g−1 at 
400 mA  g−1 after 270 cycles. What’s more, the  SnO2@NC-3 
composite materials reveal outstanding cycling stability 
under high current density (640.8 mAh  g−1 at 1000 mA  g−1 
after 800 cycles).

Experimental section

Synthesis and treatment of carbon spheres

Synthesis of carbon spheres: 2 g glucose was dissolved in 
32 mL water. Subsequently, the solution was transferred 
to a 40-mL autoclave at 170 °C for 12 h in an oven. After 
the reaction, the product was naturally cooled to room tem-
perature, washed several times with water and ethanol, and 
dried at 80 °C in the oven. Alkali-treated carbonaceous 

microspheres: a certain quantity of carbon spheres was 
added to 0.05 M sodium hydroxide solution followed by 
stirring for a certain time at room temperature and drying 
at 80 °C for 12 h.

Synthesis of hollow  SnO2

The 0.6 g alkali-treated carbonaceous microspheres were 
dispersed in 1 M  SnCl4·5H2O solution for ultrasonic disper-
sion, and the resulting suspension was aged at room tem-
perature for 4 h, filtered, washed and dried at 80 °C for 12 h. 
Then the obtained alkaline carbon spheres were calcined at 
700 °C in the air to obtain white products, which was named 
 SnO2.

Synthesis of double layered  SnO2@NC

In a typical process, 0.08 g hollow  SnO2 and 0.24 g dopa-
mine were stirred in 25 ml of Tris buffer for 24 h. The 
 SnO2@polydopamnine hollow balls were centrifuged and 
carbonized in an  N2 atmosphere at 600 °C for 2 h (denoted as 
 SnO2@NC-3). The  SnO2@NC-2 and  SnO2@NC-1 samples 
were synthesized via the identical process by adapting the 
content of dopamine.

Material characterization

The crystal structures of the as-prepared samples were 
studied using X-ray diffraction (XRD) on Shimadzu XRD-
6100 powder with Cu Kα radiation (λ = 1.5406 Å). The 
morphology of the samples and elemental distribution was 
obtained by transmission electron microscope (TEM, JEOL 
JEM-2100). Scanning electron microscopy (SEM) images 
were obtained on Hitachi S-4800 field emission microscope 
equipped with an X-ray energy dispersive spectrometer 
(EDS), and X-ray photoelectrons (XPS) was conducted on 
ESCALAB 250 system to analyze element composition and 
surface element states.

Electrochemical measurements

First of all, active material, cochin black, and polyvinylidene 
fluoride (PVDF) were mixed with a mass ratio of 70: 20: 
10 in N-methyl-2-pyrrolidone (NMP). The resultant slurry 
was coated on copper foil and dried in a vacuum cabinet at 
100 °C for 12 h. The mass loading calculated was approx-
imately 0.6–0.8 mg  cm−2. Lithium sheet was used as the 
counter electrode and polyethylene (PE) film as the separa-
tor. 1 M  LiPF6 dissolved in ethylene carbonate, dimethyl 
carbonate, and ethylmethyl carbonate (1:1:1, in volume 
ration) was employed as the electrolyte. The half cells were 
assembled in a glove box filled with highly pure argon 
 (H2O,  O2 < 0.3 ppm, Etelux) using CR 2032-coin cells. The 
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charge–discharge measurement was tested on LAND CT-
2001A (Wuhan, China). Cyclic voltammetry (CV) meas-
urements were employed in the voltage range of 0.01–3.0 V 
with a scan rate of 0.1 mV  s−1 in RST5000 electrochemical 
workstation. Electrochemical impedance spectroscopy (EIS) 
measurements of cells were also recorded on RST 5000 elec-
trochemical workstation over a frequency range of 100 kHz 
to 0.01 Hz.

Results and discussion

Material synthesis and characterization

The synthesis diagram of double-layer  SnO2@NC was 
shown in Fig. 1. Variation of dopamine from 0.08 g, 0.16 g, 
to 0.24 g give rise to three products,  SnO2@NC-1,  SnO2@
NC-2, and  SnO2@NC-3, respectively.

The XRD spectrums of the synthesized  SnO2@NC com-
posite and  SnO2 were shown in Fig. 2a. The sharp diffraction 

peaks at 2θ values of 26.61°, 33.89°, 37.94°, 51.78°, 54.75°, 
and 62.59° were corresponded to (110), (101), (200), (211), 
(220), and (221) planes of tetragonal rutile  SnO2, which 
matches well with JCPDS card No.41–4451 [24, 25]. After 
careful observation, there was still a small amount of car-
bon remaining in the  SnO2 sphere, the typical bulging peak 
of carbon appears at about 20°. From the XRD results of 
 SnO2@NC-3,  SnO2@NC-2, and  SnO2@NC-1, the intensity 
of the  SnO2 peak became stronger than  SnO2 sphere, which 
can be ascribed to better crystallinity at higher temperature 
after calcination under  N2 atmosphere. No obvious coexist-
ing carbon peaks were observed, which was supposed to 
amorphous carbon produced by the carbonization of polydo-
pamine. The surface electronic state and composition of the 
as-prepared  SnO2@NC-3 was detected by XPS in Fig. 2b–2f. 
The full XPS spectrum of  SnO2@NC-3 in Fig. 2b included 
Sn, N, C, and O elements. Peaks at 495.3 eV and 486.9 eV in 
the fine spectrum of Sn  3d3/2 and Sn  3d5/2 manifested the for-
mation of  SnO2 in Fig. 2c. [26] A symbolic spin energy sep-
aration of 8.4 eV in Fig. 2c corresponds well to the Sn (IV) 

Fig. 1  Composite schematic 
diagram of double layered 
 SnO2@NC

Fig. 2  a XRD patterns of  SnO2@NC-3,  SnO2@NC-2,  SnO2@NC-1, and  SnO2; b full XPS spectra of  SnO2@NC-3; high-resolution spectra of c 
Sn 3d, d N 1 s, e C 1S, and f O 1S
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oxidation state of  SnO2 [27–29] .High resolution peak of N 
in Fig. 2d demonstrated the three forms of nitrogen element, 
which are pyridinic N (398.2 eV), pyrrolic N (400.3 eV), 
and graphitic N (401.6 eV), respectively [30, 31]. N-doped 
carbon can provide sufficient defects and active sites, which 
inevitably improve lithium storage capacities [32]. As shown 
in Fig. 2e, the C1s spectrum can be divided into three peaks 
corresponding to the 284.6, 286, and 288.6 eV of C–C  (sp2 
C), C = O, and O-C = O groups, respectively [33, 34] .The 
peak of C1s was mainly due to the nitrogen-doped carbon 
outside  SnO2  nanoparticle. In the Fig. 2f, the O1s binding 
energy of  SnO2 was 532 eV, corresponding to the typical 
Sn–O bond binding energy. Meanwhile, the peak at 533.4 eV 
was ascribed to C–O–C bond. Full XPS spectrum and fine 
spectrums of  SnO2 were shown in Fig. S1, which demon-
strated the existing of Sn–O bonds.

The morphology and detail structure of the prepared 
 SnO2 samples were characterized by SEM and TEM. It 
can be seen from Fig. 3a–b that the carbon spheres syn-
thesized by hydrothermal method were of uniform size and 
good dispersion, with a diameter of 600–700 nm. From 
the SEM images of  SnO2 formed by calcination of tin salt-
soaked carbon sphere in Fig. 3c–d, uniformly  SnO2 hollow 
spheres were detected clearly. Subsequent TEM images of 
 SnO2 were presented in Fig. 3e–f, from which hollow sphere 
structures were confirmed and porous sphere shell accumu-
lated by many small particles can also be observed distinctly. 
The crystal structure of  SnO2 was measured by HRTEM in 

Fig. 3g. A clear lattice fringe of approximately 0.33 nm was 
detected in the image, which matches well with the (110) 
plane of  SnO2. [35, 36] The selected area electron diffraction 
(SAED) patterns of  SnO2 showed characteristic diffraction 
rings in Fig. 3h, which demonstrated the rutile structure of 
 SnO2 and polycrystalline state of the material. Above results 
were in good accordance with XRD results, indicating the 
polycrystalline structure of the product.

Using dopamine as carbon source to carbonize polycrys-
talline  SnO2, variation of dopamine additive amount lead-
ing to three products, as is shown in Fig. 4. From Fig. 4a, a 
layer of nitrogen doped carbon (NC) can be detected on the 
surface of hollow  SnO2, which maintained the hollow mor-
phology. As shown in Fig. 4b, when the amount of dopamine 
was 0.16 g, the NC coating layer loaded on  SnO2 surface was 
thicker than that of 0.08 g dopamine. When the amount of 
dopamine was increased to 0.24 g, the hollow tin dioxide has 
been completely wrapped by nitrogen-doped carbon, form-
ing an intact spherical structure in the Fig. 4c. From the 
above analysis, it can be speculated that with the continuous 
increase of dopamine content, the nitrogen doped carbon 
on the surface of hollow  SnO2 spheres became more and 
more, until the hollow tin dioxide spheres were completely 
enveloped, forming a spherical double-layered tin dioxide 
hollow sphere structure. Corresponding TEM pictures in 
Fig. 4d–4f displayed the same tendency of thicker carbon 
layer with more dopamine additive amount. Selected area 
electron diffraction pattern of brown circle in TEM picture 

Fig. 3  a, b SEM images of car-
bon spheres; c, d SEM image, 
e-h TEM and SAED pattern 
of as-prepared  SnO2 hollow 
nanospheres
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was presented in Fig. 4g–i. From Fig. 4g, typical polycrystal 
diffraction points were observed and amorphous diffraction 
ring appeared with the thickening of carbon layer as shown 
in Fig. 4h and i. The EDX spectrum  SnO2@NC-3 in Fig.S2 

revealed the presence of C, O, Sn, and N peaks in  SnO2@
NC-3, implying that nitrogen-doped carbon has been suc-
cessfully loaded on the surface of  SnO2. Figure 4j presents 
the elemental mapping images of  SnO2@NC-3 electrode, 
from which uniform distribution of Sn, O, C, and N can be 
clearly observed, representing even carbon coating on the 
surface of  SnO2 and good integrity of electrode materials.

The electrochemical characterization of the  SnO2@
NC-3 composite was investigated in Fig. 5. From Fig. 5a, 
the CV curves of the composite were obtained in a range 
from 0.1 to 3.0 V at a scanning rate of 0.1 mV  s−1. During 
the initial anode scan, a sharp and wide peak at 0.5 V was 
observed, which was ascribed to dealloying, while the two 
peaks at 1.25 and 1.91 V corresponded to the oxidation of 
 SnO2 [37, 38]. In the initial cathodic scanning, the reduc-
tion reaction at the peaks of 0.9 V represented the lithia-
tion reaction of  SnO2: ���2 + 4��+ + 4�− → �� + 2��2� . 
The peak at about 0.2 V was attributed to the lithiation 
reaction of Sn:�� + ���

+ + ��+ → ��
�
��(0 ≤ � ≤ 4.4) [39, 

40]. In addition, the unique peak at about 0.71 V revealed 
the lithiation of  SnO2 and the irreversible formation of 
the SEI (solid electrolyte intermediate phase) layer [41]. 
However, the peak density gradually decreases during 
the cycle, indicating the irreversible nature. The SEI film 
formed during the first cycle is beneficial to the stability 
of the anode material structure and improvement of elec-
trochemical performance. The following CV curves were 
almost overlapping, thus verifying the good reversibility 
of the  SnO2@NC-3 composite.

Fig. 4  SEM, TEM pictures, and SAED patterns of a, d, g  SnO2@
NC-1; b, e, h  SnO2@NC-2; c, f, i  SnO2@NC-3; and j elemental map-
pings of  SnO2@NC-3

Fig. 5  a Cyclic voltamme-
try curve of  SnO2@NC-3; b 
Charge/discharge curves at a 
current density of 100 mA  g−1; 
c Cycling performance at a 
current density of 400 mA  g−1; 
d Rate capabilities at differ-
ent current densities of  SnO2, 
 SnO2@NC-1,  SnO2@NC-2, and 
 SnO2@NC-3 electrodes
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Figure  5b disclosed the first charge and discharge 
curves of  SnO2@NC-1,  SnO2@NC-2,  SnO2@NC-3, and 
 SnO2 electrodes at a current density of 100 mA  g−1. The 
first cycle discharge specific capacities of  SnO2@NC-3, 
 SnO2@NC-2,  SnO2@NC-1, and  SnO2 electrode materi-
als were 1944.3, 1894.8, 1479.5, and 1470.8 mAh  g−1, 
respectively.

When tested at a current density of 400 mA  g−1,  SnO2@
NC-3 can provide a high reversible capacity of 697.7 mAh 
 g−1 after 270 cycles, which was distinctly higher than 
 SnO2@NC-1 (294 mAh  g−1),  SnO2@NC-2 (362.9 mAh 
 g−1), and  SnO2 (137.7 mAh  g−1) in Fig. 5c, showing excel-
lent cycling stability. In order to further study the differences 
in the electrochemical performance of  SnO2@NC-1,  SnO2@
NC-2,  SnO2@NC-3, and  SnO2, rate performance tests were 
carried out on four samples. The rate capabilities of the as-
obtained samples were displayed in Fig. 5d, the  SnO2@NC-3 
electrode delivered discharge capacities of about 990.9, 
689.2, 579.3, 478.4, and 433.8 mAh  g−1 at increasing cur-
rent rates of 100, 200, 400, 800, and 1000 mA  g−1, respec-
tively. Furthermore, a high capacity of the electrode can be 
backed to 650.4 mAh  g−1 when the current was rebounded 
to 100 mA  g−1, while  SnO2@NC-2,  SnO2@NC-1, and  SnO2 
showed the discharge specific capacity of 906, 593.6, 455.4, 
313.8, 250.2 mAh  g−1; 886.3, 676.9, 546.1, 390.6, 331.8 
mAh  g−1; and 604.8, 421.3, 349.4, 208.6, 204.2 mAh  g−1 
respectively. Rate performance test of  SnO2@NC-3 elec-
trode showed step-sensitive changes under different current 
densities; furthermore, higher discharge capacities implied 
better stability than  SnO2@NC-2,  SnO2@NC-1, and  SnO2 
electrode materials.

Long-cycle stability of all samples was tested at a high 
current density of 1000 mA  g−1 in Fig. S3a; the double lay-
ered  SnO2@NC-3 can provide a high capacity of 640.8 mAh 
 g−1 after 800 cycles. The reversible capacity was signifi-
cantly superior to  SnO2@NC-2 (235.1 mAh  g−1),  SnO2@
NC-1 (192.5 mAh  g−1), and  SnO2 (146.9 mAh  g−1). It can 
be seen from Fig. S3a that the discharge specific capacity of 
the four electrode materials showed a downward trend before 
100 cycles; however, after 100 cycles, the discharge specific 
capacity exhibited an upward trend. The full immersion of 
active material in electrolyte and activation of electrode in 
previous loop give rise to upward tendency, which is benefit 
for the maintenance of capacity [42]. The reversible capac-
ity degradation of  SnO2@NC-1,  SnO2@NC-2, and  SnO2 
electrodes has a more severely decline than that of  SnO2@
NC-3, on account of the instability of the electrode structure 
and the formation of thicker SEI film. Finally, the long-cycle 
stability of  SnO2@NC-3 under an ultra-high current density 
of 5000 mA  g−1 was shown in Fig. S3b; the double layered 
 SnO2@NC-3 still can maintain a discharge capacity of 212.7 
mAh  g−1 after 1000 cycles, with 100% Coulombic efficiency. 
According to the description of above results,  SnO2@NC-3 

exhibited excellent cycling stability, which was more suit-
able for large current charging and discharging.

There were two main reasons for the high reversible 
capacity of the  SnO2@NC-3 electrode material: One reason 
was the advantage of the hollow sphere structure of inte-
rior  SnO2, which was accumulated by small nanoparticles 
of  SnO2. Nanosized  SnO2 crystal can fully contact with the 
electrolyte to improve the reversibility of the reaction, and 
the hollow sphere structure can relieve the volume expansion 
in the process of charge and discharge. Another reason was 
the introduction of nitrogen doped carbon. Nitrogen doped 
carbon coated on the surface of  SnO2 hollow spheres can not 
only inhibit the volume effect of  SnO2 nanocrystals during 
cycling, but also prevent the accumulation of  SnO2. Mean-
while, it can also improve the formation and decomposition 
of SEI films to prevent the capacity decline caused by the 
formation of thicker SEI films.

More importantly, nitrogen-doped carbon can signifi-
cantly improve the conductivity of the electrode material, 
and ultimately improved the electrochemical performance of 
the  SnO2@NC-3. It can be speculated from the above analy-
sis that the amount of carbon content has a great influence on 
the electrochemical performance of battery materials. More 
amount of nitrogen-doped carbon coating on the surface of 
the hollow  SnO2 is conducive to alleviate the large volume 
expansion and the crushing and shedding charge/discharge 
process of active materials. Thus,  SnO2@NC-3 electrode 
material (dopamine addition was 0.24 g) has excellent elec-
trochemical performances.

To further investigate the transmission kinetics of elec-
trons and ions promoted by the designed multilayer hollow 
structure, electrochemical impedance spectroscopy was per-
formed on half-cells under the test frequency ranges from 
100 kHz to 0.01 Hz in Fig. 6a, which showed that each plot 
was composed of semicircles (high frequency region) and 
straight lines (low frequency region). After calculation, the 
Rct of  SnO2@NC-3 electrode was about 84.86 Ω, which 
was lower than  SnO2@NC-1 (103 Ω),  SnO2@NC-2 (86.07 
Ω), and  SnO2 (193 Ω). The relatively low charge transfer 
resistance of  SnO2@NC-3 can accelerate the ion migration 
between the electrolyte and the active material, which accel-
erated electrode reaction and generated better electrochemi-
cal performance.

In the low frequency region, the slope value σ in Fig. 6b 
can be obtained by Eq. (1): [43, 44].

After calculation, the slope of the  SnO2@NC-3 was 
25.44, which was smaller than  SnO2@NC-2 (30.54),  SnO2@
NC-1 (186.43), and  SnO2 (350.54), indicating  SnO2@NC-3 
was more conducive to the diffusion of  Li+ between active 
material particles and electrolyte. This result was consistent 

(1)Z� = R
D
+ R

L
+ ��

−1∕2
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with the excellent electrochemical performance of  SnO2@
NC-3.

The cyclic voltammetry curves at different scan rates of 
 SnO2@NC-3 (in a voltage window of 0.01 to 3 V) were 
shown in Fig. 6c; the pseudocapacitance behavior was dis-
cussed and capacitance contribution can be evaluated by 
Eq. (2): [45, 46].

The value of a is an empirical parameters and b can be 
calculated from the slope of the linear relationship between 
logi and logv in Fig. 6d. The b value close to 0.5 discloses 
a diffusion-controlled behavior and the b value close to 1 
demonstrates an excellent pseudocapacitive behavior. As 
shown in Fig. 6d, the b-value for peak 1 and peak 2 was 
0.869 and 0.897, respectively, manifesting that the diffusion-
controlled and pseudocapacitive behaviors were responsible 
for the high capacity of  SnO2@NC-3. Therefore, we can 
reasonably infer that the two processes contributed to the 
total capacity.

The contribution of capacitance to total lithium storage 
capacity can be quantitatively calculated by Eq. (3): [47–49].

In Eq. (3), i(v) is the total current value, meanwhile the 
values of  k1v and  k2v1/2 reflect the pseudocapacitive and 
diffusion-controlled process, respectively. From Fig. 6e, 
the capacitive contribution of  SnO2@NC-3 electrode 

(2)log(i) = blog(v) + log(a)

(3)i(v) = k1v + k2v
1∕2

was ~ 71.4% at a scan rate of 0.8 mV  s−1. When the scan 
rates ascended from 0.2 to 1.6 mV  s−1 in Fig. 6f, the percent-
age of the pseudocapacitive contribution increased from 62 
to 83.4%. It can be concluded that capacitive behavior was 
beneficial to predominant capacity for the enhanced cycling 
stability and rate performances.

Conclusions

SnO2@NC composite material was synthesized by simple 
hydrothermal and deposition reactions. Polydopamine was 
successfully loaded on the surface of  SnO2 through a depo-
sition reaction and carbonized under the protection of  N2 
atmosphere. Carbon stabilized the electrode structure and 
improved the charge transfer ability of active material, which 
are responsible for better electrochemical performance. The 
introduction of nitrogen atoms in carbon skeleton can bring 
in more defects and active sites. N-doped carbon coating 
on the surface of  SnO2 prominently alleviate volume effect, 
which is beneficial to the propagation and diffusion of  Li+. 
Moreover, hollow interior provided sufficient room for vol-
ume change because of insertion and extraction of  Li+ dur-
ing electrode reaction. In conclusion,  SnO2@NC-3 electrode 
can retain a reversible capacity of 640.8 mAh  g−1 after 800 
cycles at a current density of 1000 mA  g−1 and displayed 
steady cycling stability. Furthermore, rate evaluation of 
 SnO2@NC-3 electrode at different current densities also 
demonstrated best and most flexible response. The above 

Fig. 6  a Nyquist diagram in the frequency range of 0.01 Hz–100 kHz 
and b Z΄-ω−1/2 curve in the low-frequency range of  SnO2@NC-3, 
 SnO2@NC-2,  SnO2@NC-1, and  SnO2; diagrams of  SnO2@NC-3: c 
CV curves at different scanning rates; d The line relationship of log(i) 

vs. log(v); e capacitive contribution at the scan rate of 0.8 mV   s−1; 
f Comparison of the pseudocapacitive contribution under different 
sweeping rates
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results well proved that the double layered  SnO2@NC-3 hol-
low sphere was a potential and prospective anode material 
for lithium-ion batteries.
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