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Abstract
In this paper, an accelerated proximal gradient based forgetting factor recursive least squares (APG-FFRLS) algorithm
is proposed for state of charge (SOC) estimation with output outliers. First, a second-order resistance-capacitance (RC)
equivalent circuit model is built to reflect the operating characteristics of the battery. Then, the APG method is applied to
correct the output outliers. The FFRLS and extended Kalman filtering (EKF) are used to estimate the batterymodel parameters
and SOC interactively. In order to verify the effectiveness of the proposed algorithm, this paper models the Samsung lithium
battery and compares the effectiveness of different algorithms in estimating SOC. The experimental results show that the
proposed APG-FFRLS-EKF algorithm has higher accuracy.

Keywords State of charge · Forgetting factor recursive least squares algorithm · Accelerated proximal gradient algorithm ·
Second-order RC model · Output with outliers

Introduction

Electric vehicles have emerged as a crucial direction in
the development of environmentally friendly transportation,
primarily due to their low emissions and energy-saving
attributes [1, 2]. In the realm of electric vehicle power batter-
ies, lithium batteries are extensively utilized owing to their
notable advantages, including high specific energy and com-
pact size [3, 4]. Within the battery management system, the
state of charge (SOC) serves as a critical parameter, and
precise estimation of SOC holds paramount significance in
enhancing battery efficiency and safety performance [5, 6].

B Jing Chen
chenjing1981929@126.com

Xixi Ji
xixiji19981107@126.com

Zili Zhang
zhangzili1995@126.com

Yawen Mao
myw0530@163.com

1 School of Science, Jiangnan University, Wuxi 214122,
People’s Republic of China

2 School of Mechatronic Engineering and Automation,
Shanghai University, Shanghai 200444, People’s Republic
of China

Nevertheless, in practical applications, the accurate estima-
tion of SOC proves to be a formidable challenge due to the
nonlinear characteristics inherent to batteries and the intri-
cate nature of the external operating environment [7–9].

Several methods are available for estimating SOC, includ-
ing the open circuit voltage method, particle filtering algo-
rithm, neural network method, and Kalman filtering algo-
rithm, among others [10–14]. The open-circuit voltage
method exhibits high accuracy in estimating SOC during
stationary states, but it is not suitable for real-time estima-
tion [15]. On the other hand, the particle filtering algorithm
offers accurate results but comes with high computational
complexity, consuming significant computational resources
[16]. The neural networkmethod demonstrates high accuracy
for a specific battery, but its adaptability to different battery
types is limited due to variations in battery characteristics at
the individual cell level [17]. Currently, the extendedKalman
filter algorithm has emerged as a prominent research focus
in battery management systems due to its simplicity in com-
putation, high accuracy, and suitability for real-time SOC
estimation [18–21].

In some control systems, such as distillation control and
combustion process control, outliers may appear in the mea-
surable data due to sensor failures or interrupted information
transmission [22–25]. Outliers in the system output can
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significantly decrease the accuracy of parameter identifica-
tion or even lead to identification failure [26–30]. Therefore,
in recent years, numerous scholars have developed a mul-
titude of algorithms to address the issue of outliers. For
example, Zhou et al. improved the autoregressive integral
moving average (ARIMA) model and applied it to quality
control of seafloor observations through sliding windows
and cleaning of input modeling data [31]. Su et al. pro-
posed OmniAnomaly, a stochastic recurrent neural network
for multivariate time series anomaly detection, which recon-
structs the input data through robust representation and uses
the reconstruction probability to determine the outliers [32].
Peter et al. approximated the sum of squares of the residuals
to create a least median of squares (LMS) algorithm [33].

In practical applications, the state of lithium batteries is
prone to being influenced by the external working envi-
ronment, leading to the presence of outliers in the process
information matrix [16]. To address this issue, this paper
introduces the APG algorithm, aiming to handle the state
matrix that contains outliers [34, 35]. The fundamental con-
cept of theAPGalgorithm involves iteratively approximating
the low-rank structure of the original matrix [36]. The APG
algorithm effectively recovers the outliers in the state matrix,
transforming them into normal data [37, 38].

The contributions of this study are summarized below.

1. Introduce the APG algorithm to deal with state vectors
containing outliers, which can improve the estimation
accuracy of SOC.

2. Build the APG-FFRLS-EKF algorithmic framework for
online interactive estimation of SOC, which is highly
extensible.

The rest of this paper is structured as follows. “Model
derivation” introduces the parameter identification model
and the SOC estimation model. “SOC estimation based
on APG-FFRLS-EKF algorithm” presents an APG-FFRLS-
EKF algorithm for SOC estimation models with output
outliers. In “Examples”, an example for Samsung lithium

batteries is provided. “Conclusions” summarizes this paper
and gives future directions.

Model derivation

Parameter identificationmodel

In this paper,we apply the second-orderRCequivalent circuit
model for the study. It can nicely simulate the charging and
discharging behavior of lithium batteries [39, 40]. The basic
structure of the model is shown in Fig. 1.

According to Kirchhoff’s voltage-current law, the circuit
physical quantities can be described as:

⎧
⎪⎨

⎪⎩

iL(t) = C1u̇1 + u1(t)
R1

,

iL(t) = C2u̇2 + u2(t)
R2

,

uL(t) = uocv(t) − iL(t)R0 − u1(t) − u2(t).

(1)

where uL denotes the terminal voltage, uocv denotes the open
circuit voltage, R0 is a series resistance, R1 is a polarization
resistance, R2 is a concentration polarization resistance, C1

is a polarization capacitance, andC2 is a concentration polar-
ization capacitance.

Applying the Laplace transform to Eq. 1, yields

⎧
⎪⎨

⎪⎩

U1(s) = IL (s)R1
1+R1C1s

,

U2(s) = IL (s)R2
1+R2C2s

,

UL(s) = Uocv(s) − IL(s)R0 −U1(s) −U2(s).

(2)

Integrating the above equation, we get

Uocv(s) = (
R1

R1C1s + 1
+ R2

R2C2s + 1
+ R0)IL(s)+UL(s).

(3)

Fig. 1 Schematic diagram of
the second-order RC model
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Transform the above equation into a differential equation
and discretize it, and define

h(k) = uocv(k) − uL(k), (4)

ϕ(k) = [h(k − 1) h(k − 2) i(k) i(k − 1) i(k − 2)]T, (5)

UL(s) = Uocv(s) − IL(s)R0 −U1(s) −U2(s). (6)

θ1, θ2, θ3, θ4 and θ5 are expressed as follows.

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

θ1 = 8a1−2
1+2a2+4a1

,

θ2 = − 1−2a2+4a1
1+2a2+4a1

,

θ3 = − a4+2a3+4a1R0
1+2a2+4a1

,

θ4 = − 2a4−8a1R0
1+2a2+4a1

,

θ5 = − a4−2a3+4a1R0
1+2a2+4a1

,

(7)

and
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a1 = R1C1R2C2,

a2 = R1C1 + R2C2,

a3 = R1R2C2 + R1C1R2 + R0(R1C1 + R2C2),

a4 = R0 + R1 + R2.

(8)

Then, the battery model is simplified to the following lin-
ear form:

h(k) = ϕT(k)θ .

Since the open circuit voltage uocv is unknown, the param-
eters in the model cannot be estimated and need to be
alternately estimated in conjunction with the SOC model.

SOC estimationmodel

The establishment of a lithium battery state space model is
the fundamental for SOC estimation. The expression for the
SOC of lithium batteries is given below:

SOC(t1) = SOC(t0) − 1

Cr

∫ t1

t0
ηiL(t)dt, (9)

where SOC(t1) denotes the battery SOC at the sampling
moment t1, Cr indicates the rated capacity of the battery, η

is the Coulomb coefficient, and iL(t) denotes the current of
the battery.

Combining Eqs. 1 and 7, we can get the state space model
of lithium battery as follows.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u1(k + 1) = e
− �tk+1

R1C1 u1(k) + (1 − e
− �tk+1

R1C1 )R1iL(k),

u2(k + 1)= e
− �tk+1

R2C2 u2(k)+ (1− e
− �tk+1

R2C2 )R2iL(k),

SOC(k + 1) = SOC(k) − ηt
Cr
iL(k),

uL(k) = Q(SOC(k)) − u1(k) − u2(k) − R0iL(k).

(10)

Considering the noise term, we can obtain the following
discretized state space equation for SOC,

{
x(k + 1) = A(k)x(k) + B(k)iL(k) + R(k),

y(k) = C(k)x(k) + D(k)iL(k) + V (k),
(11)

where

x(k) =
⎡

⎣
SOC(k)
u1(k)
u2(k)

⎤

⎦ , A(k) =

⎡

⎢
⎢
⎣

1 0 0

0 e
− �tk+1

R1C1 0

0 0 e
− �tk+1

R2C2

⎤

⎥
⎥
⎦ ,

B(k)=

⎡

⎢
⎢
⎣

− ηt
Cr

(1− e
− �tk+1

R1C1 )R1

(1− e
− �tk+1

R2C2 )R2

⎤

⎥
⎥
⎦ ,C(k)=[−1 −1

∂Q(SOC)

∂SOC
]T,

D(k) = −R0, R(k) =
⎡

⎣
R1(k)
R2(k)
R3(k)

⎤

⎦ .

Q(·) describes the relationship between SOC and uocv . At
the k − th moment, the process noise and the measurement
noise are R(k) and V (k), respectively.

The open-circuit voltage uocv and SOC of Li-ion batteries
have a strong nonlinear relationship [39, 40]. This can be
obtained by pulse charge and discharge tests, as shown in
Fig. 2.

Remark 1 Batteries follow different curves between charg-
ing and discharging due to the hysteresis of the batteries. In
this paper, the average of their curves is taken as the true
SOC − uocv relationship.

SOC estimation based on APG-FFRLS-EKF
algorithm

In this section, we give an algorithmic framework for SOC
estimation of lithium batteries containing outliers.

Terminal voltage recovery based on accelerated
proximal gradient algorithm

In control systems such as chemical process control and net-
work control, the problem of outliers in measured data sets
often arises.

In the battery model parameter identification, the current
and voltage information of the battery needs to be collected
as the input and output of the model. Assume that the col-
lected terminal voltages contain outliers due to operational
errors or complex environments. In this paper, the accelerated
proximal gradient algorithm is used to process the outliers.
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Fig. 2 Battery SOC-OCV
average curve under intermittent
charge and discharge test
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The APG algorithm is commonly used to solve Robust
Principal Component Analysis (RPCA) problems [41]. It is
widely used in computer visionfields such as face recognition
and image recovery [42, 43].

The RPCA problem is mainly the following form.

min
A,E

‖A‖∗ + λ ‖E‖1 s.t . D = A + E, (12)

where D is the measurable matrix, A is the recovered low-
rank matrix, and E is the sparse matrix.

The APG algorithm is used to solve the above problem.
It is an iterative algorithm commonly used in optimization
problems to recover low-rank matrices. The idea is to gradu-
ally approximate the optimal solution by alternately updating
the matrix and the estimated gradient, combining the most
closest estimate and the most closest gradient in each step.

By the definition in “Model derivation”, let uL(1), ..., uL
(M) be the collected terminal voltages. In this case, ūL (l1), ...,
ūL(lm) are the outliers.

First, the terminal voltage vector
[
uL(1), ..., uL (M)

]T
is

converted to a matrix �̄, where

�̄ =
⎡

⎣
uL(1) uL(n + 1) ... uL(M − n + 1)

... ... ... ...

uL(n) uL(2n) ... uL(M)

⎤

⎦ .

Then, we can recover the terminal voltage matrix with
outliers �̄ to � by the APG algorithm.

The APG algorithm is intended to solve the following
optimization problem.

min
�,E

‖�‖∗ + λ ‖E‖1 s.t . �̄ = � + E, (13)

where E is a sparse matrix and λ is a penalty factor.

Define W = (�, E), f (W) =
∥
∥
∥�̄ − � − E

∥
∥
∥
2

F
2 and

g(W) = μ
∥
∥�

∥
∥∗ + λμ

∥
∥E

∥
∥
1. From Eq. 10, we construct

the following Lagrangian function.

G(W) = g(W) + f (W)

= μ
∥
∥�

∥
∥∗ + λμ

∥
∥E

∥
∥
1 +

∥
∥�̄ − � − E

∥
∥2
F

2
,

where μ is a relaxation factor.

Lemma 1 [44] Approximate G(W) at the point W using the
quadratic separable sequence Q(W , W̃). The expression for
Q(W , W̃) is:

Q(W , W̃) = g(W) + f (W̃) +
< � f (W̃),W − W̃ > + L f

2

∥
∥W − W̃

∥
∥2 ,

where < � f (W̃),W − W̃ >= tr(� f T(W̃)(W − W̃)) and
L f is the Lipschitz constant of f (W).

Minimizing G(W) is equivalent to minimizing Q(W , W̃)

in Lemma 1. Define D
.= W̃ − 1

L f
� f (W̃), then we have

argmin
W

Q(W , W̃)=argmin
W

{

g(W)+ L f

2
‖W−D‖2

}

. (14)

Remark 2 If W̃k = Wk , the APG algorithm will degrade to
a gradient descent algorithm.

The steps of the APG algorithm contain alternate updates
to� and E. According to Eq. 11, E can be solved as follows.

argmin
E

{

μλ ‖E‖1 + L f

2

∥
∥�̄ − � − E

∥
∥2
F

}

.
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Define

Sτ [i]
.=

⎧
⎨

⎩

i − τ, i f i > τ,

i + τ, i f i < −τ,

0, otherwise,

where i ∈ R and τ > 0. According to the definition above,
at the (k + 1)th iteration, let Dk = (DA

k , DE
k ), then Ek+1 is

updated according to the following equation.

Ek+1 = S λμ
L f

[
DE
k

]
. (15)

Similarly, � can be computed by

argmin
�

{

μ ‖�‖∗ + L f

2

∥
∥�̄ − � − E

∥
∥2
F

}

,

let USVT be the singular value decomposition of DA
k , then

�k+1 = US λμ
L f

[
DA
k

]
VT. (16)

Remark 3 In theAPG algorithm, by setting tk+1 = 1+
√

4t2k +1

2 ,
the convergence rate can reach quadratic convergence [45].

Fig. 3 The framework of the APG-FFRLS-EKF algorithm
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Fig. 4 The battery test platform

We summarize the APG algorithm as Algorithm 1.

Algorithm 1 APG algorithm.

1: Input: Expanded matrix �̄.
2: Initialization: t0, t−1 ← 1; �0,�−1 ← 0; E0, E−1 ← 0.
3: repeat
4: k ← k + 1
5: Update Ek+1 based on Eq. 13.
6: Update �k+1 based on Eq. 14.

7: Update tk+1 by tk+1 ← 1+
√

4t2k +1

2 .
8: until

∥
∥�̄ − �k − Ek

∥
∥
F /

∥
∥�̄

∥
∥
F < ε.

Output: � ← �k , E ← Ek .

The APG-FFRLS-EKF algorithm for SOC

When there are outliers in the terminal voltages of the output
data, traditional identification algorithms have low efficiency
and accuracy. The APG-FFRLS-EKF algorithm solves this
problem by recovering the outliers in the terminal voltages.
Compared with the traditional SOC estimationmethod, it not
only improves the estimation accuracy of the identification
model, but also decreases the error of SOC estimation.

In this section, the APG-FFRLS-EKF algorithm for SOC
estimation of output voltages containing outliers is presented
in detail.

First, the APG algorithm is used to recover the terminal
voltage outliers. Then, themodel parameters R0, R1, R2,C1,

C2 are estimated using the FFRLS algorithm. In this case, the
open circuit voltage uocv in the output data can be obtained
from the relationship between SOC and uocv . The model

parameters are identified so that they can be used to alterna-
tively estimate the SOC.

In summary, the steps of the APG-FFRLS-EKF algorithm
are as in Algorithm 2.

1. Collect current and terminal voltage data {iL(1), uL(1)}
... {iL(M), uL(M)} from lithiumbatteries,where ūL(l1),
..., ūL(lm) is the sequence of outliers.

2. Expand the terminal voltage vector [uL(1), ...ūL(l1), ...,
ūL(lm), ...uL(M)]T as a matrix �̄.

3. Use the APG algorithm to recover the matrix �̄ into
a clean matrix �. � is then vectorized to [uL(1),
...ûL(l1), ..., ûL (lm), ...uL(M)]T, where [ûL(l1), ..., ûL
(lm)]T is the recovered terminal voltage vector.

4. Initialize θ(0), P(0), SOC(0) and x(0).
5. Get uocv(0) from the nonlinear relationship between uocv

and SOC. Obtain h(k) based on the terminal voltages
obtained from step 3 and Eq. 4.

6. Obtain the observation vector ϕ(k) according to Eq. 5.

Table 1 The parameters of NCR18650PF

Capacity 2900 mAh

Normal voltage 3.63 V

Min/max voltage 2.75 V/4.2 V

Standard charge/rapid charge 1.3 A/2.6 A

Max charge current 2.6 A

Max discharge current 5.2 A

Operating discharge temperature −20◦C/60◦C
Dimensions 18.00*65.00 mm
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Fig. 5 Intermittent current
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7. Compute the gain matrix:

L(k) = P(k − 1)ϕ(k)

λ + ϕT(k)P(k − 1)ϕ(k)
, (17)

update parameter estimation:

θ̂(k) = θ̂(k − 1) + L(k)[h(k) − ϕT(k)θ̂(k − 1)], (18)

update the covariance matrix:

P(k) = [I − L(k)ϕT(k)]P(k − 1). (19)

Obtain the battery model parameters R0, R1, R2,C1,C2

according to Eqs. 7 and 8.
8. Substitute the battery model parameters obtained from

step 7 into Eq. 11.
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Fig. 6 Output estimates and errors with number of outliers 100
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Fig. 7 Output estimates and errors with number of outliers 200

9. Make predictions about the state vector and the covari-
ance matrix:

x̂−(k)= A(k−1)x̂(k−1)+B(k−1)iL (k−1), (20)

P̃−(k)= A(k−1) P̃−(k−1)AT(k−1) + V (k−1). (21)

10. Gain Kalman Gain:

K (k) = P̃−(k)CT(k)[C(k) P̃−(k)CT(k) + V (k)]T.

(22)
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Fig. 8 Output estimates and errors with number of outliers 500
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Fig. 9 SOC estimates and errors with number of outliers 100
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11. Update the state vector:

x̂(k) = x̂−(k) + K (k)[y(k) − C(k)x̂−(k) − D(k)iL(k)],
(23)

where x̂(k) = [SOC(k) u1(k) u2(k)]T.
12. Update the covariance matrix:

P̃(k) = [I − K (k)C(k)] P̃−(k). (24)

13. If k � M , then take up the state vector x̂(k); otherwise,
let k = k + 1 and go back to step 5.

The framework of the APG-FFRLS-EKF algorithm is
shown in Fig. 3.

Examples

The battery tester platform

In order to verify the accuracy of theAPG-FFRLS-EKF algo-
rithm in SOC estimation of Li-ion batteries, discharge trial
experiments are conducted. As shown in Fig. 4, lithium-ion
batteries are tested using the battery experimental platform.
The experiments are conducted at room temperature of 25◦C
during the whole process. The battery experiment platform

includes a battery tester, a battery holder, Samsung lithium-
ion batteries and a host computer. The main parameters of
the Samsung lithium-ion battery are shown in Table 1.

Experiments and analysis

Intermittent discharge experiments are conducted on lithium
batteries to obtain current and voltage data by sampling. Bat-
tery discharge tests were performed at the current profiles
shown in Fig. 5.

Generate 100, 200, and500 randomnumbers, respectively,
to simulate the case of different numbers of outliers in the
battery terminal voltage data. The APG-FFRLS-EKF algo-
rithm and FFRLS-EKF algorithm are applied to estimate the
output voltage with outliers and SOC.

Under the influence of different numbers of outliers, the
output estimates and errors are shown in Figs. 6, 7, and 8.
The SOC estimates and errors are shown in Figs. 9, 10, and
11. From Figs. 6, 7, and 8, it can be seen that the terminal
voltage data after recovery by the APG algorithm is close
to normal. When the percentage of outliers is close to 3%,
the data after APG recovery is almost normal. When the
percentage of outliers is more than 10%, the data after APG
recovery is still close to normal.

From Table 2, it can be seen that the proposed APG-
FFRLS-EKF algorithm can obtain high SOC estimation
accuracy, with MAE less than 2.0787, and RMSE less than
2.0986.
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Fig. 11 SOC estimates and errors with number of outliers 500
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Table 2 Estimation errors of SOC

Number of outliers 100 200 500

MAE 2.0605 2.0649 2.0787

RMSE 2.0825 2.0863 2.0986

Conclusions

AnAPG-FFRLS-EKF algorithm is proposed for the problem
of SOC estimation of lithium batteries with output outliers.
TheAPG-FFRLS-EKFalgorithmpolishes the outlier outputs
in advance, which can lead to higher SOC estimation accu-
racy. Compared with the traditional SOC estimation method,
this method has more accurate estimation accuracy and is
more robust. It should be noted that the theoretical proof of
the convergence analysis of theAPG-FFRLS-EKF algorithm
is challenging and deserves further study.
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