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Abstract
Volatile organic compounds (VOCs) are atmospheric pollutants that are considered the concerns for researchers as they 
can damage the human health by irritating the eyes and respiratory tract, causing skin allergies, headaches, sore throat, and 
fatigue. Therefore, the removal of indoor VOCs is urgently sought. Catalytic oxidation of VOCs over cost-effective metal 
oxides has been reported to be a promising strategy for the removal of VOCs because of the advantages of high efficiency, 
low cost, and less secondary pollution. In this review, we summarize the recent advances of metal oxide engineering for 
VOC oxidation, with the special attention to the categories and features of each VOC and the engineering strategies of metal 
oxides. Moreover, the applications of various metal oxides for catalytic VOC oxidation and the underlying structure-activity 
relationship are also illustrated. We hope this review will bring researchers new ideas for the design and fabrication of more 
efficient metal oxide catalysts.
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Introduction

Volatile organic compounds (VOCs) refer to organic com-
pounds that have high saturated vapor pressure, low melt-
ing point, and low content, and are prone to volatilization 
under normal conditions at room temperature [1, 2]. In gen-
eral, VOCs are a class of organic compounds with cheerful 
physical properties, volatility, and potential harm [3, 4]. The 
key components of VOCs include carbon compounds (com-
monly known as carbon oxides, which are chemical sub-
stances composed of carbon and hydrogen atoms, including 
ethane, cycloalkanes, cyclohexanols, alkynes, and aliphatic 
hydrocarbons), homologues of benzene (chemical sub-
stances in which hydrogen atoms in hydrocarbon molecular 
structures are replaced by halogen atoms), oxygen contain-
ing organic compounds, and nitrogen containing organic 
compounds [5–7].

VOCs have a pungent and irritating taste, which can dam-
age the respiratory system. In addition, VOCs contain com-
pounds with carcinogenic and teratogenic, such as benzene 
and volatile phenols [8, 9]. Moreover, it is also demonstrated 
that VOCs can cause serious harm to the natural environ-
ment and induce haze pollution, which will thus damage 
the atmosphere and lead to global warming. As a unique 
type of pollutant, VOCs have unique pollution characteris-
tics that distinguish them from other pollutants. Due to their 
diverse composition and adverse effects, they are listed as 
potentially hazardous pollutants in the natural environment 
and should be prioritized for manipulation [10]. Therefore, 
how to effectively and reasonably handle and repair volatile 
organic chemical pollution has become an urgent problem 
to be solved.

Many effective strategies have been proposed for the 
removal of VOCs, which can be divided into two types: 
recycling technology and destruction technology. Gener-
ally, the recycling technology includes the condensation 
technology, adsorption technology, membrane separation 
technology, and so on, whereas the destruction technologies 
are consisted of plasma degradation, biological oxidation, 
catalytic oxidation, and so on [11]. In the last decades, the 
adsorption and membrane separation technologies have been 
widely used for the removal of VOCs. However, the use of 
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highly effective adsorbents and membranes will inevitably 
lead to a high cost and the problems of secondary pollution 
[12]. In recent years, the catalytic oxidation technologies 
are standing out among various methods, which are demon-
strated to be promising VOC elimination technologies with 
few byproducts under relatively low operation temperatures 
[8, 13]. However, the catalytic oxidation efficiency and rate 
are strongly correlated with the properties of catalyst. Noble 
metals, such as Pt, Pd, Ru, Rh, and their alloys are well 
documented to be highly active for VOC oxidation. How-
ever, the high cost of these noble metals and unsatisfactory 
performance have seriously hampered their widespread 
applications [14, 15]. To this end, exploring low-cost cata-
lysts to substitute noble metals is an attractive topic. Upon 
the enormous endeavors devoted, it is found that transition 
metal oxide catalysts also possess high catalytic activity. The 
mostly used transition metal oxides are often composed of 
oxides of elements in the fourth period of the periodic table, 
such as CuOx, TiO2, Co3O4, and Fe2O3. [16]. These metal 
oxides have the merits of good electronic mobility, strong 
oxidation, and outstanding catalytic activity [17]. There-
fore, these oxides can function as the promising substitute 
of noble metals. Benefitting from these merits, transition 
metal oxides are emerging as promising catalysts for the 
removal of VOCs, and enormous endeavors have been dedi-
cated to the design and fabrication of more effective metal 
oxide catalysts. Therefore, many effective strategies for fur-
ther promoting the catalytic performance of metal oxides 
toward VOC oxidation have been proposed. However, a 
systematic review in terms of the engineering strategies and 
their influences on catalytic oxidation performance has been 
rarely reported.

Herein, we summarize the recent progress of the effective 
strategies for further enhancing the catalytic performance of 
metal oxides for VOC oxidation (Scheme 1). In this review, 
we have firstly illustrated the five main VOCs in atmosphere. 
Subsequently, four effective strategies proposed for enhanc-
ing the catalytic VOC performance of metal oxides are also 
systematically discussed, which include the morphology 
design, vacancy engineering, heteroatom doping, and con-
structing multicomponent composites. Finally, the chal-
lenges and prospects of this interesting field are also briefly 
discussed. Expectedly, this review will appeal widespread 
attention toward metal oxide catalysts for VOC elimination.

Main VOCs and their catalytic oxidation

VOCs are harmful for human health. As well known, 
VOCs released into the atmosphere are made up of more 
than 300 groups, which can be primarily divided into five 
types: aromatic, aliphatic hydrocarbon, oxygen-containing 
VOCs (OVOCs), halogenated VOCs, and N/S-containing 
VOCs [18–20]. Due to the complexity and large emissions 

of VOCs, the VOC treatment technology still has huge 
challenges. The widely known VOCs are aromatics, such 
as toluene, xylene, benzene, acetaldehyde, butyl acetate. 
These compounds may be released into indoor air through 
volatilization, thereby polluting indoor air. According to 
previous research, long-term inhalation of these compounds 
can affect human health, including causing headaches, eye 
discomfort, impaired smell and memory, and damage to the 
immune system [21]. Aliphatic hydrocarbon, such as ethyl-
ene, butane, hexane, and octane, is also an important type of 
VOCs that can cause damage to human health [22]. Besides, 
the OVOCs are the second largest VOCs in industrial emis-
sions that can cause photothermal destruction of ozone layer 
secondary aerosols and ozone generation. HCHO is a typi-
cal representative of the OVOCs with carcinogenicity and 
teratogenicity. HCHO can react with NOx and thus poses an 
adverse effect on the air quality [23–25]. Therefore, remov-
ing HCHO is meaningful for achieving green atmosphere. 
Halogenated VOCs are common industrial pollutants and 
an important cause of greenhouse gases. Among various 
halogenated VOCs, Cl-VOCs have become the key pollut-
ants to be removed due to their high emission, high toxicity, 
and low biodegradability [26]. In regarded to N/S-VOCs, 
it is well known that the N/S-VOCs are released into air by 
natural and man-made sources [27]. To remove the N-VOCs, 
it should carefully consider the selectivity of N2 and the 
control of NOx formation to avoid secondary pollution [28]. 
For S-VOCs, it should be noted that the S atoms or their 
intermediates may preferentially adsorb on the active site of 
catalyst, resulting in the low catalytic activity.

Scheme 1   Schematic diagram of the categories of VOCs and effec-
tive strategies for optimizing the catalytic performance of metal 
oxides
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In recent years, the government has limited the emis-
sions of VOCs. However, due to the high demand for 
industrial products, it is still challenging for society to 
decrease the production and emissions of VOCs. Accord-
ingly, developing effective strategies to degrade VOCs is 
now becoming a hotspot.

Generally, the catalytic oxidation technology has been 
widely regarded as an effective and promising strategy 
for the removal of VOCs. For catalytic oxidation technol-
ogy, the use of catalysts is highly important [29–31]. For 
instance, noble-metal-based catalysts are demonstrated to 
display low catalytic activity for the degradation of S/N-
VOCs or VOCs containing Cl because of the toxicity of 
catalysts. The Cl, S, or N atom will react with the active 
ingredients of the catalyst, resulting in permanent deac-
tivation of the catalyst. To address this issue, introduc-
ing appropriate supports to load noble metals can effec-
tively alleviate the toxicity of catalysts. Besides, support 
can also well disperse the noble metal nanoparticles to 
expose a great deal of active sites. Furthermore, the strong 
metal-support interaction of supported catalysts can also 
significantly improve the intrinsic activity of catalyst by 
unique electronic effect [32, 33].In addition to introduc-
ing appropriate supports, synthesizing other cost-effective 
catalysts to substitute noble metals is also another effec-
tive method for achieving high catalytic VOC oxidation 
performance. For example, metal oxides are widely inves-
tigated and considered to be a good choice for catalytic 
VOCs because of their low cost and superb reducibility 
and toxicity resistance. In recent years, enormous endeav-
ors have been dedicated to the design and fabrication of 
high-performing metal oxide catalysts.

Types of metal oxide catalyst for VOC oxidation

Non-noble metal oxide catalysts, including oxides of Cu, 
Mn, Co, Fe, etc., although the activity maybe not as good as 
that of noble metal catalysts, their inexpensiveness and long-
term thermal stability have drawn increasing attention and 
have the potential to be dominant in the future. These metal 
oxides have the merits of good electronic mobility, strong 
oxidation, and outstanding catalytic activity [17]. Owing to 
these advantageous merits, metal oxide catalysts are now 
attracting great interest in recent years for catalytic VOC 
oxidation reactions. In general, the mostly used metal oxide 
catalysts are titanium dioxide (TiO2), zinc oxide (ZnO), iron 
oxide (Fe2O3), manganese oxide (MnOx), and mixed metal 
oxides such as cerium-based oxides, copper-based oxides, 
and vanadium-based oxides. Although the great advantages, 
the performance of these metal oxide catalysts still cannot 
meet the standards, which require further modifications.

Strategies for improving catalytic oxidation 
performance of metal oxide catalysts

Morphology design

The surface morphology of catalysts refers to the morpho-
logical structure, crystal surface morphology, pore distri-
bution, and surface species of the catalyst surface, which 
directly affects the reaction activity, selectivity, and stability 
of the catalyst [34–36]. Research has shown that surface 
morphology poses an important impact on the catalytic 
performance of catalysts [37–39]. Generally, the effects of 
surface morphology on the catalytic performance can be 
divided into three categories.

First, the effect of surface morphology on reaction activ-
ity. Surface morphology can affect the quality of the cata-
lyst surface and the rate of chemical reactions, changing the 
position of active centers, binding energy, structure, elec-
tron distribution, and charge transfer properties [40–42]. For 
example, pore structure and particle size can affect chemical 
adsorption and diffusion, thereby affecting the reaction rate 
constant. In addition, the surface crystal planes can affect 
surface structure and electrical properties, alter surface 
characteristics, and play an important role in redox cata-
lysts [43–45]. Moreover, the surface oxide content, crystal 
surface configuration, and defects can effectively affect the 
electronic state and energy of the active centers on the cat-
alyst surface, significantly affecting the catalytic reaction 
activity [36, 46, 47]. For example, Liang et al. selectively 
synthesized a series of Co3O4 nanomaterials with different 
morphologies ranging from hierarchical ellipsoidal (Fig. 1a, 
e, i) to hierarchical flowerlike (Fig. 1b, f, j), hierarchical 
spindle-like (Fig. 1c, g, k), and hierarchical book-shaped 
structure (Fig. 1d, h, l) [48]. After a thorough study, they 
found that the catalytic oxidation performance of propane 
was strongly correlated with the morphology of Co3O4 
nanomaterials, where the book-shaped Co3O4-B catalyst 
can exhibit the highest catalytic activity toward propanol 
oxidation (Fig. 1j). More importantly, Co3O4-B catalyst 
shows the highest propane oxidation rate (0.86 × 10−8 mol 
m−2 s−1) and the highest turnover frequency (TOF = 11.49 
× 10−3 s−1) at 220 °C. Detailed mechanisms revealed that 
the superb catalytic performance was stemmed from the 
large specific surface area, small crystal size, and a highly 
exposed (110) facet, which facilitated the low-temperature 
reducibility and oxygen mobility and thereby accounted for 
the promoted adsorption and activation of propane on the 
surface of catalyst.

Second, the surface morphology of catalyst also poses a 
significant impact on the selectivity [49]. As well known, 
surface morphology not only affects the activity of the 
reaction, but also determines the selectivity of the reaction 
[50]. For example, the crystal morphology of Au surface 
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can affect the oxidation selectivity of redox reactions. The 
Ag surface has excellent selectivity, which can promote 
the reaction to be dominated by heterogeneous reactions 

[51, 52]. The surface structure of Ni can regulate the reac-
tion route of carbonyl gas phase reactions [53]. Similar to 
the metal nanocatalysts, the surface morphology of metal 

Fig. 1   SEM images of the Co3O4 samples with different morpholo-
gies. a, e, i Co3O4-E; b, f, j Co3O4-F; c, g, k Co3O4-S; and d, h, l 
Co3O4-B. j Schematic images of the controlled synthesis of Co3O4 

nanomaterials with different shapes and their applications for cata-
lytic propane oxidation at different temperatures. Reproduced with 
the permission from ref. [48] Copyright 2021, Elsevier
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oxides also significantly affects the catalytic selectivity 
of VOC oxidation. For instance, Wu and coworkers syn-
thesized the CeO2 with different morphologies (rod, par-
ticle, and cube) and combined with non-thermal plasma 
to catalytic methanol oxidation [54]. After a systematic 
test, they found that the optimal CeO2 rods could display 
the highest methanol conversion (94.1%), CO2 selectivity 
(90.1%), COx selectivity (96.3%), and ozone suppression, 
followed by the CeO2 particle and CeO2 cube. Detailed 
mechanism study demonstrated the great significance of 
oxygen vacancies on the catalytic selectivity, where the 
CeO2 rods possessed the highest concentration of oxygen 
vacancies, which could exhibit better ozone decomposi-
tion performance and create more reactive oxygen species 
(Fig. 2).

Third, before influencing the catalytic activity and selec-
tivity, the morphology can also significantly affect the cata-
lytic durability of catalysts. Previous works have demon-
strated that the morphology can affect the stability of the 
catalyst. For example, in CO oxidation reactions, the Pt 
(111) surface is more stable than the Pt (100) surface and 
has a longer average lifespan [55]. In addition, the distribu-
tion of surface species also affects the stability of chemical 
reactions, and the Pt-CO bond length can be controlled to 
improve the stability of Pt catalysts. When turning the atten-
tion to the catalytic VOC oxidation over metal oxides, the 
similar phenomenon can also be clearly observed. As dem-
onstrated by Zhang and coworkers, they realized the con-
trollable synthesis of 3D hierarchical Co3O4 catalysts with 
different morphologies and facets toward catalytic toluene 
combustion (Fig. 3a–f) [56]. According to a series of tests, 
it is demonstrated that the optimal samples with closely 
packed regular Co3O4 plates are highly active toward toluene 
oxidation (Fig. 3g). More importantly, it can also display a 
stable activity during 100 h test (Fig. 3h), suggesting that the 

morphology is also very significant for affecting the catalytic 
stability of catalyst.

Heteroatom doping

Transition metal oxides or complexes are gradually becom-
ing the next-generation candidate catalysts in electrochemi-
cal equipment that can replace precious metals [57–60]. 
Under the induction effect, doping foreign metal ions with 
strong electronegativity will decrease the number of elec-
trons in the anti-bonding state between the core metal ions 
and oxygen ions [61–63], leading to a downward shift in the 
Fermi surface and an increase in the corresponding redox 
potential of the core metal ions in the chemical reaction 
[64–66].

In addition, heteroatom doping can also modify the elec-
tronic properties of metal oxides because of their difference 
in electronegativity [67–69]. And the modified electronic 
structure will affect the adsorption of intermediates. Ration-
ally tailoring the doped element and dopant amount will 
achieve the optimized binding strength with intermediates 
[70]. Moreover, the introduction of heteroatom may also 
function as new active sites for further elevating the cata-
lytic performance. Furthermore, the strong synergistic effect 
between host metal ions and doped ion will greatly contrib-
ute to the further improvement in catalytic performance [71]. 
Taking these favorable terms into consideration, enormous 
endeavors have been dedicated to the design and fabrication 
of heteroatom-doped metal oxides to boost catalytic VOC 
oxidation. For instance, Sun et al. reported the synthesis 
of metal-doped α-MnO2 and β-MnO2 and investigated their 
catalytic performance toward VOCs [19]. Compared with 
pure α-MnO2 and β-MnO2, it is reported Co and Ni dop-
ing can greatly enhance the catalytic activity toward toluene 
and HCHO. And the extraordinary catalytic performance is 

Fig. 2   Schematically illustrating the synthesis of CeO2 with different morphologies (rod, particle, and cube) and employed them as advanced 
catalysts for the selectively catalytic methanol oxidation. Reproduced with the permission from ref. [54] Copyright 2019, Elsevier
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primarily originated from the low crystallinity, more surface 
defects, large specific surface area, and abundant oxygen 
vacancies.

Besides, heteroatom doping can also increase the concen-
tration of high-valence metal ions and facilitate the surface 
oxygen migration capability, which is also favorable for the 
adsorption and dissociation of VOCs. As demonstrated by 
Li and coworkers, they reported the synthesis of Ag-doped 
MnCeOx catalyst to boost the catalytic oxidation of propane 
(Fig. 4a–e) [72]. After a systematic test, it is demonstrated 
that the Ag-doped MnCeOx catalyst with an Ag loading 
of 5 wt% could exhibit the highest catalytic activity and 

durability (Fig. 4f, g). Mechanism study reported that the 
addition of Ag species can effectively convert the propane 
into propylene and thus reduce the activation energy barrier, 
which account for the extraordinary catalytic performance 
(Fig. 4h, i).

More recently, Li et al. synthesized the Fe doped δ-MnO2 
catalyst to boost the VOC oxidation [73]. It is discovered 
that the Fe1Mn5 oxide can achieve the optimum catalytic 
performance for toluene oxidation with a T90 of 209 °C, 
along with outstanding durability and good water resistance. 
Upon the combination of mechanism study and experimental 
results, it is uncovered that Fe doping method can induce the 

Fig. 3   a–f SEM images of the Co3O4 catalysts with different morphologies. g Catalytic performances of the Co3O4 catalysts. h Stability test of 
the optimal sample. Reproduced with the permission from ref. [56], Copyright 2020, Elsevier
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Fig. 4   a STEM image and b–e elemental mapping images of the 
Ag-doped MnCeOx. f Propane total oxidation activity and g specific 
surface activity. Primitive steps and Gibbs free energy diagram of 

propane oxidation over the slab model of h Ag2O-Ce(Mn)O2 and i 
Ce(Mn)O2 surface. Reproduced with the permission from ref. [72], 
Copyright 2023, Elsevier
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formation of high concentration of oxygen vacancy, which 
improve the lattice oxygen mobility and oxygen species 
activity (Fig. 5).

Oxygen vacancy engineering

Oxygen vacancy is first proposed in 1960, which has been 
used to study the mechanism of interaction between gases 
and solid metal oxides [74]. Specific external environment 
can cause the detachment of oxygen in the lattice, leading 
to oxygen deficiency and the formation of oxygen vacancies 
[75], which can be described as the following equation:

In short, a defect is formed by the removal of an oxygen 
atom from a metal oxide lattice. For metal oxides, their oxy-
gen vacancies are a type of defect (point defect) [76, 77]. As 
well known, in metal oxides, the electronegativity of other 
elements is generally lower than that of oxygen, so when 
oxygen is lost, it is equivalent to take one oxygen atom and 
add two positively charged electron holes [78]. If these two 
electron holes are bound to the oxygen vacancy, the oxygen 
vacancy is generally positively charged.

The creation of oxygen vacancies has been demonstrated 
to be favorable for boosting the catalytic reactions. On the 
one hand, creating oxygen vacancies can regulate the elec-
tronic structure of metal oxides to regulate the energy band 
structure [79]. And the presence of oxygen vacancies causes 
the Fermi level of the oxide to shift upwards, resulting in 
defect energy levels in the band gap that decrease the band 
width [80]. As a result, it can substantially improve the light 
absorption, promote the carrier separation, and accelerate 
surface reduction reaction via promoting carrier separa-
tion. On the other hand, oxygen vacancies can also generate 

MO
x
− �O(lattice oxygen) = V0 +MO

x−1 + �∕2O2

unsaturated coordination sites on the surface (edges, cor-
ners, or terraces), which can function as active site [81, 82]. 
Oxygen vacancies can optimize the adsorption energy of 
reactants on the catalyst surface, thereby reducing the reac-
tion energy barrier and promoting molecular activation [83, 
84]. Moreover, there is a synergistic effect between oxygen 
vacancies and nearby active metal sites in the catalyst.

Inspired by these, creating oxygen vacancies in metal 
oxide catalysts have been demonstrated to be a promising 
strategy for optimizing their catalytic performance. For 
example, Lu and coworkers engineered a composite of Au-
modified hollow Ni–Mn nanospheres with abundant oxygen 
vacancies and used for boost toluene and benzene oxidation 
reaction (Fig. 6a–c) [85]. It is indicated that the synergis-
tic role of defects from surface and intrinsic O-vacancies 
between different components benefits for the generation of 
many adsorbed oxygen species, which are conducive to the 
oxidation-reduction cycle and promote the catalytic activ-
ity of toluene oxidation (Fig. 6d). Moreover, the oxygen 
vacancies can also effectively activate the lattice oxygen and 
enable them to migrate to react with the adsorbed toluene. 
As a result, the optimal catalyst can exhibit extraordinary 
toluene and benzene oxidation performance, obtaining 100% 
conversion at 155 and 148 °C with a WHSV of 36,000 mL 
g−1 h−1 (Fig. 6e, f).

Liu et al. synthesized the CoCuOx catalysts with abun-
dant oxygen vacancies to boost the catalytic oxidation of 
VOCs [27]. To be specific, the CoCuOx catalysts were syn-
thesized by depositing the Cu(OH)2 nanorod on the surface 
of Cu foam and then growing the CoCu-MOF (Fig. 7a, b). 
After a post treatment, the composites can be converted into 
CoCuOx catalysts that enriched with oxygen vacancies. It is 
reported that the mutual contact between Cu and Co benefits 
for the formation of oxygen vacancies and boosting the elec-
tron transfer to molecular oxygen, thereby accounting for the 

Fig. 5   The toluene oxidation mechanism over Fe doped δ-MnO2. Reproduced with the permission from ref. [73] Copyright 2023, Elsevier
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enhanced oxygen activation performance (Fig. 7c–e). As a 
result, such catalyst can exhibit superb stability in long-time 
cycle and good water resistance. These works demonstrated 
that the oxygen vacancy engineering posed a great influence 
on the catalytic performance.

Multicomponent composites

Given that the performance of single component catalysts 
is still unsatisfactory, combining two or more catalytic 
materials to fabricate composites is now emerging as a 

Fig. 6   a–c TEM images of the Au-modified hollow Ni–Mn nano-
spheres. d Schematic illustration of the reaction mechanism of tolu-
ene and benzene oxidation. e, f Toluene conversion of the different 

samples in each step. Reproduced with the permission from ref. [85] 
Copyright 2023, Elsevier
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promising avenue for improving the catalytic performance 
[86–89]. As well known, constructing multicomponent can 
not only induce the electron redistribution and, but also 
generate new heterointerfaces by varying the composition 
and crystal phase of the structure [37, 90–92]. Generally, 
the advantages of multicomponent composites are included 
as the following aspects: (1) synergistic effect—the bond 
cooperation between different component interfaces can 
increase the electron transfer rate. By combining with differ-
ent materials, the conductivity, hydrophilicity, chemical sta-
bility, and active site density of composites can be tailored 
[93–95]. (2) Strain effect—different chemical components 
and crystal structures in composites can cause lattice strains 
such as stretching and compression, affecting the adsorption 
energy of sites on intermediates, and improving the catalytic 
activity of materials [96, 97]. (3) Electronic interaction—in 
composites, the arrangement of energy bands in different 

phases can lead to charge transfer at the interface, which is 
beneficial for surface electron modulation of the composites 
[98, 99]. Owing these favorable terms, constructing metal 
oxide composites has attracted great interest in recent years, 
and enormous endeavors have been devoted to the design 
and fabrication of advanced metal oxide composites toward 
VOC oxidation.

For instance, Lu and coworkers have synthesized the 
spinel oxide coated with porous covalent triazine frame-
works (COFs) and used for improved photothermal cata-
lytic oxidation of toluene [100]. As illustrated in Fig. 8a, 
the CuO@CoMn2O4 was first synthesized via hydrother-
mal method (Fig. 8b), followed by the amino modifica-
tion and polymerization reaction (Fig. 8c, d). Upon the 
characterizations, it was found that the CuO@CoMn2O4 
was enriched with oxygen vacancies. In addition, after 
the modification of COFs, the adsorption of toluene was 

Fig. 7   a Scheme of the synthesis of the 12CoCu-R catalyst on the 
Cu foam. b Elemental mapping images of the 12CoCu-R catalyst. c 
Acetone conversion and d CO2 yield over different catalysts. e Sketch 

map of reaction mechanism and the effect of oxygen vacancies on 
catalytic reaction. Reproduced with the permission from ref. [27], 
Copyright 2021, American Chemical Society
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significantly improved, and the catalytic reaction rate was 
also largely enhanced. Owing to the synergistic contribu-
tion of these advantageous merits, such composite can 
exhibit extraordinary catalytic toluene oxidation perfor-
mance, in which the toluene conversion and CO2 yield 
were as high as 100% and 98% within 40 min, respec-
tively (Fig. 8e–g).

Conclusions and prospects

The increasing emissions of VOCs in recent years have 
led to the formation of tropospheric ozone and secondary 
organic aerosols. Catalytic oxidation over transition metal 
oxides have been demonstrated to be a promising strategy 

Fig. 8   a Schematic illustration of the synthesis of CuO@CoMn2O4@
COF. b TEM image of the CuO@CoMn2O4. c HAADF-STEM 
image and corresponding elemental mapping image of the CuO@
CoMn2O4@COF. d TEM image of the CuO@CoMn2O4@COF. e 

Toluene and f CO2 conversion of different catalysts. g The proposed 
mechanism of photothermal catalytic oxidation of toluene. Repro-
duced with the permission from ref. [100], Copyright 2023, Elsevier
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for VOC abatement. This comprehensive review summa-
rizes the recent progress of catalysts used for VOC oxi-
dation, with the special focus on the categories of VOCs 
and their features. In addition, many effective strategies 
for further improving the catalytic performance of VOC 
oxidation over transition metal oxides are also manifested, 
which pose great influence on the catalytic performance. 
The proposed strategies have been demonstrated to be 
favorable for further improving the catalytic performance 
of metal oxides. However, there are still some challenges 
that should be addressed before the industrial applications.

The facets of metal oxides can also greatly affect the cata-
lytic oxidation performance for VOCs. It is still difficult to 
realize the controllable synthesis of metal oxides with highly 
active facets, and more advanced strategies should be further 
developed and proposed.

As well known, the catalytic VOC oxidation is a typi-
cal redox process, in which the electron transfer is crucial 
to determining their catalytic performance. However, the 
poor conductivity of the metal oxides may limit the electron 
transfer and result in poor catalytic activity. Therefore, it is 
imperative to substantially improve the conductivity of metal 
oxides by developing some effective strategies.

Oxygen vacancies play a critical role in affecting the 
catalytic performance of metal oxides. However, the con-
struction strategy for the oxygen vacancies should be further 
optimized to control the building accurately. In this regard, 
it is necessary to explore new synthetic strategy for realizing 
the controllable and straightforward fabrication of oxygen 
vacancies. In addition, the identification, distribution, and 
function of oxygen vacancies are still unclear. More endeav-
ors should be devoted to the exploration and understanding 
of these crucial factors.

To further elevate the catalytic performance, a better 
understanding on the interaction between metal oxides and 
VOCs is necessary, which can help researchers to develop 
cost-effective catalytic reactors. In addition, the scale-up 
production of high-performing metal oxide catalysts is also 
highly important as the industrial VOC removal requires a 
large number of advanced catalysts.

Although metal oxides have been demonstrated to be 
highly active toward VOC oxidation, they can only cata-
lytic no more than three VOC oxidation. However, the VOCs 
all existed in the form of mixtures. Therefore, systematic 
studies of various VOCs removal should be carried out, and 
metal oxides with multifunction should also be designed 
and developed.

The selectivity and long-term stability are two crucial 
parameters evaluating the performance and potential of 
metal oxide catalysts for VOC oxidation. However, for the 
practical applications, the metal oxide catalyst should not 
only possess high selectivity but also extraordinary long-
term cycle stability.
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