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Abstract
The accurate estimation of lithium-ion battery state of charge (SOC) is the key to ensuring the safe operation of energy storage 
power plants, which can prevent overcharging or over-discharging of batteries, thus extending the overall service life of energy 
storage power plants. In this paper, we propose a robust and efficient combined SOC estimation method, GRU-ASG, which 
combines the gated recurrent unit (GRU) neural network and the adaptive Savitzky-Golay filter (ASG). Firstly, the “many-
to-one” structure GRU is used to establish the mapping model between the battery-measured variables (voltage, current, 
temperature) and SOC, and achieve the SOC initial estimation. Then, the output SOC of the GRU network is smoothed online 
using the Spielman coefficient–based ASG filtering algorithm proposed in this paper to reduce the fluctuation of SOC. Finally, 
the accurate and stable estimated SOC is obtained. This paper uses six different operating condition datasets collected from 
an energy storage plant during the discharge process and uses four of them as training datasets and the remaining two as test 
datasets. The results show that the proposed method can select the optimal window length online adaptively to smooth the 
initial estimate of SOC. Moreover, the estimation accuracy of the proposed method is the highest compared to the single 
GRU network and the GRU network with a combination of other filtering algorithms. In particular, the mean square error 
(MSE) is less than 0.15% and the mean absolute error (MAE) is less than 3% for the two test sets.

Keywords  State of charge (SOC) · GRU neural network · Adaptive Savitzky-Golay filter · Energy storage plant · Lithium-
ion batteries

Introduction

Under the background of the global “bi-carbon” consensus 
and the reform of the world energy system, energy storage 
plants with the functions of smooth transition, peak and val-
ley filling, frequency modulation, and voltage regulation 
have received widespread attention and rapid development 
[1]. Lithium-ion batteries are strongly used in the field of 
energy storage power plants because of their excellent per-
formance such as high storage capacity, small size, and zero 

pollution [2–4]. To ensure operational safety, durability, and 
reliability, battery status needs to be monitored in real time 
and accurately by advanced battery management systems 
(BMS) [5–8]. SOC is the ratio of the current capacity to the 
full capacity of the battery and is one of the most impor-
tant states monitored by the BMS [9]. However, due to the 
complex dynamic coupling activities and mechanisms inside 
the battery, SOC cannot be measured directly and needs to 
be obtained indirectly with the help of battery measurement 
variables (voltage, current, and temperature) combined with 
relevant SOC estimation algorithms [10–12]. It is still a chal-
lenge to accurately obtain the battery SOC because of the 
highly time-varying and nonlinear nature of Li-ion batteries.

Literature review

Many methods for SOC estimation have been proposed 
nowadays, which can be specifically classified into three 
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categories: traditional estimation methods, model-based 
methods, and deep learning–based methods. The conven-
tional estimation method consists of two types of methods: 
the ampere-time integration method [13] and the open-
circuit voltage method [14]. The ampere-time integration 
method calculates the battery charge change by current inte-
gration, which is simple and suitable for real-time applica-
tion. However, it relies heavily on the starting SOC value 
and produces error accumulation as the discharge charge 
increases, which has a large impact on the final estimation 
results. The open-circuit voltage method estimates the SOC 
by calibrating the one-to-one relationship between the open-
circuit voltage and the SOC [15]. Although this method can 
easily achieve the SOC estimation requirements, it cannot 
perform real-time estimation because of the long rest time 
required before measuring OCV. Thus, various model-based 
filtering methods have been proposed to achieve more accu-
rate battery SOC estimation.

The model-based methods mainly contain H-infinity filter 
(HIF) [16], Luenberger observer [17], slip film observer 
method (SMO) [18], particle filter (PF) [19], and Kalman 
filter (KF) method [20]. Among them, KF [21] is the most 
widely used model-based method and has been theoretically 
proven to be an effective SOC estimation method due to 
its self-correction and online computational capabilities. 
Since the Li-ion battery is a nonlinear model and the basic 
KF algorithm can only be used for linear systems, some 
extension algorithms have been developed from it, including 
extended Kalman filter (EKF) [22], unscented Kalman 
filter (UKF) [23], and cubature Kalman filter (CKF) [24]. 
If the selected battery models can accurately simulate the 
real internal state of the battery, they can perform well in 
SOC estimation. Unfortunately, the model-based methods 
have some inherent disadvantages. For instance, model 
construction requires cumbersome tests, which need to 
be repeated for different battery chemistries. In addition, 
errors arise when we assume constant process noise and 
measurement noise, which are time-varying in reality [25].

With the rapid development of artificial intelligence and 
chip technology, researchers are increasingly paying attention 
to deep learning–based SOC estimation methods [26, 27]. 
Deep learning–based SOC estimation methods can directly 
map sampled battery operating signals (e.g., current and volt-
age) to SOC. Therefore, arduous battery modeling or feature 
engineering is no longer needed [28–30]. In addition, deep 
learning methods have high scalability, which allows train-
ing models based on large datasets coming from different 
types of batteries. Nowadays, the current SOC estimation 
methods based on deep learning methods are mainly DNNs 
with specific various types of layers. Among them, fully 
connected neural networks (FCNNs), convolutional neural 
networks, and recurrent neural networks (RNNs) are the 
most commonly used [31]. Chemali et al. [32] developed 

a SOC estimation method based on an FCNN. In the pro-
posed method, the present SOC is modeled as a function 
of the present voltage, current, temperature, and the aver-
age current and voltage over 400 precedent time steps. 
The proposed method shows high accuracy under various 
temperatures. In a follow-up study by How et al. [33], the 
influence of the number of middle layers on SOC estimation 
was investigated. Their results show that deep FCNNs have 
improved modeling ability under unseen conditions but face 
overfitting risk. The FCNNs have intrinsic limitations. First, 
the fully connected structure comprises a large number of 
parameters, especially when a long sequence is directly taken 
as input. This issue gives rise to high computational costs 
and overfitting risk. Besides, it can hardly process multivari-
ate sequences unless the input data are flattened. Therefore, 
the fully connected structure can hardly be directly used to 
estimate battery SOC without condensing its input. More 
advanced DNN architectures have become the mainstream 
for SOC estimation. Hannan et al. [34] developed a CNN in 
which four blocks comprising convolutional and max-pooling 
layers are stacked to process the input current, voltage, and 
temperature sequence, followed by a fully connected layer to 
map the extracted features to the SOC estimation. In addition 
to the basic CNN, more advanced CNN variants have been 
applied to SOC estimation. For example, Hu et al. [35] and 
Guo et al. [36] devised the temporal convolutional neural 
network (TCN) for SOC estimation. The above examples 
confirm the ability of CNNs to provide effective SOC estima-
tion. However, CNNs still have some limitations in the task 
of SOC estimation. CNNs are not sensitive to the order of the 
inputs and therefore cannot capture temporal dependencies in 
the input sequence. Since battery SOC estimation is a prob-
lem based on time series data. Therefore, RNNs and their 
variant structures, which are good at processing time series 
data, are often used in SOC estimation. Chaoui et al. used 
recurrent neural networks (RNN) to estimate SOC from past 
charging and discharging data and verified the effectiveness 
of the RNN method. However, due to the gradient vanish-
ing and explosion problems, standard RNNs have difficulty 
in capturing long-time dependencies. Two advanced gated 
RNNs (LSTM and GRU) with superior ability to handle long 
sequences were then proposed to solve this problem. Che-
mali et al. used the LSTM network for SOC estimation. The 
proposed method can correctly estimate the SOC at various 
ambient temperatures. Meng et al. proposed a GRU-based 
deep learning method to estimate the state of charge (SOC) of 
a battery. Its proposed method constructs a GRU model that 
uses measured voltages and currents as inputs to estimate the 
SOC. Hannan et al. [37] developed a GRU model to estimate 
SOC with current, voltage, and temperature sequences. A 
one-cycle learning rate policy was adopted to improve the 
DNN performance. Validation results demonstrate that the 
proposed method is more accurate and efficient than LSTM. 
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The flexibility of RNNs allows us to stack multiple layers to 
improve learning. Yang et al. [38] built a deep LSTM model 
by stacking three LSTM layers. Hannan et al. [37] developed 
a two-layer GRU model. Their validation results show that 
deep RNNs with more than one layer have improved learn-
ing ability than those RNNs with only one layer. However, 
stacking more layers does not always give rise to accuracy 
improvement and may encounter the problem of overfitting, 
which limits the generalization of a DNN to unseen inputs. 
In addition to the stacked RNN layers, the bidirectional archi-
tecture is also an attractive alternative to improve the learn-
ing ability of DNNs. A bidirectional LSTM was utilized for 
SOC estimation in [39]. The experimental validation results 
confirm that the bidirectional LSTM outperforms the single-
direction one. Although deep learning–based methods have 
been successfully applied in many studies, almost all meth-
ods that are only based on deep learning have the problem of 
large fluctuations in estimated SOC when targeting complex 
operating conditions with large variations in battery current.

In recent years, a combined approach based on neural net-
works and filtering methods has been proposed. This type 
of method first uses a neural network to predict the battery 
SOC, initially establishes a nonlinear mapping relationship 
between battery measurement variables and SOC, and then 
uses a filter to smooth the output SOC of the neural network. 
In 2014, He et al. [40] were the first to use UKF to smooth 
the NN output SOC and validated the method using lith-
ium battery data collected from the Federal Urban Driving 
Scheme (FUDS) and the Dynamic Stress Test (DST). After 
this, Yang et al. [41] combined LSTM-RNN with UKF to 
accomplish similar work. Chen et al. [42] combined GRU 
with AKF to estimate SOC. Its algorithm uses the AKF with 
noise adaptation to smooth the output SOC of GRU, which 
solves the problem of unstable single GRU estimation and 
greatly improves the SOC estimation accuracy. Tian et al. 
[43] proposed an adaptive closed-loop DNN model that first 
decouples the used voltage and current sequences into open-
circuit voltage (OCV), ohmic response, and polarized voltage 
to enhance the inputs to the deep neural network (DNN). The 
SOC estimates from the DNN are then adaptively fused with 
short-term ampere-hour predictions using a Kalman filter-
ing algorithm. An accurate SOC estimate is finally obtained. 
Tian et al. [44] proposed a SOC estimation method based on 
the combination of deep neural network (DNN) and Kalman 
filter for improving the robustness of SOC estimation against 
random noise and error spikes. Tian et al. [45] combined 
LSTM-RNN with ACKF to estimate SOC. There are two 
very noteworthy points in their proposed approach LSTM-
ACKF. The first point is to improve the estimation accuracy 
by using a “many-to-one” structural LSTM model. The sec-
ond point is the necessity of noise adaptation in KF.

All six of these papers used a combination of deep neu-
ral networks and Kalman-type filtering to estimate SOC, 

and the final results proved that the SOC estimation accu-
racy was also improved in all of them. However, the big-
gest drawback of the Kalman-type filtering method is that 
it is necessary to provide a determined initial SOC and a 
reference SOC computed by the Ampere-hour counting 
method in order to filter the SOC estimated by the neural 
network. This method cannot be implemented when the 
initial SOC is unknown. In fact, when estimating the SOC 
of a lithium-ion battery for energy storage, its initial SOC 
is many times unknown. The filtering effectiveness of this 
method is also affected when the initial SOC is known 
but inaccurate. To solve this problem, Jiao et al. [46] pro-
posed a method SG-BILSTM based on the combination 
of SG filter and bidirectional LSTM neural network. The 
SG filter used in this method can directly smooth the ini-
tial SOC estimated by the bidirectional LSTM neural net-
work without the reference SOC. This method can greatly 
reduce the hardware requirements of the computer, and 
the real-time estimation performance is also stronger. But 
this method currently has two drawbacks; the first is that 
it uses a “one-to-one” structure LSTM, which does not 
take into account the influence of previous measurements 
on the current SOC, resulting in relatively low estima-
tion accuracy. The second point is that the SG filter used 
cannot adaptively select the optimal window length W for 
the SOC estimation of different operating conditions to 
achieve the best filtering effect [47].

Key contributions

In order to accurately estimate battery SOC under complex 
operating conditions in energy storage plants, based on 
the problems of current methods, a robust and efficient 
combined SOC estimation method GRU-ASG is proposed 
in this paper. The main contributions of this paper are as 
follows:

(1)	 Proposed the combined method GRU-ASG; the method 
only requires energy storage battery data (voltage, 
current, temperature) for accurate estimation of SOC 
under complex operating conditions.

(2)	 Create a “many-to-one” structured GRU network 
consisting of a 1-layer GRU layer and a 3-layer fully 
connected layer. This network can maximize the impact 
of previously measured SOC on the current SOC and 
thus improve the accuracy of SOC estimation.

(3)	 Proposed an adaptive SG filter based on the Spearman 
correlation coefficient. The method can be used to 
select the optimal window length W adaptively online, 
which in turn greatly improves the SOC estimation 
accuracy. Moreover, it has good SOC estimation per-
formance and generalization ability for unknown data 
under different complex working conditions.

299Ionics (2024) 30:297–310



1 3

Organization of the paper

The remaining paper is organized as follows: the “Data-
sets and ASG-GRU-related algorithm principles” section 
introduces the used energy storage plant operation data-
set, GRU neural network, and SG filter. The “GRU-ASG 
model” section describes the overall structure and specific 
process of GRU-ASG, the established “many-to-one” GRU 
model architecture and parameter settings, and the theo-
retical basis and implementation of the ASG filter. The 
“Results and analysis” section presents the validation and 

discussion of the proposed method. Finally, the paper is 
summarized in the “Conclusions” section.

Datasets and ASG‑GRU‑related algorithm 
principles

Datasets introduction

The battery data used in this paper are from the actual 
operating data of an energy storage plant, and the battery 
type used is 280Ah 3.2V lithium iron phosphate battery 
CB310 for energy storage produced by CATL. The specific 
parameters of the battery are shown in Table 1.

Six actual operating datasets collected during the dis-
charge of the energy storage plant were randomly selected, 
and all six datasets corresponded to different complex 
operating conditions. The variation of the discharge cur-
rent for the six operating conditions is shown in Fig. 1. In 
this paper, four datasets with discharge current conditions 
a–d are used as training sets for model training, and two 
datasets with discharge current conditions e and f are used 
as test sets for model testing. Table 2 shows the specific 
purposes of the six datasets in this paper.

Table 1   Battery parameters

Projects Value

Rated capacity 280Ah
Operating voltage 2.5–3.65V
Nominal voltage 3.2V
Nominal charging current 140A
Nominal discharge current 140A
Max. continuous charging current 280A
Max. continuous discharge current 280A
Operating temperature (charging) 0~60°C
Operating temperature (discharge) −20~60°C
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Fig. 1   Six different discharge strategies: a–f 
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Introduction to the principle of GRU algorithm

Since voltage, current temperature, and SOC are time-varying 
physical quantities, so we consider using RNN or its variants 
to construct the SOC estimation model, which is excellent at 
handling time series correlation. GRU and LSTM are both 
variant forms of RNN, and their roles are similar. The only 
structural difference is that GRU combines the forget gate and 
the input gate of the LSTM model into a single update gate, 
thus becoming simpler and easier to train than the LSTM. 
Therefore, the GRU group is chosen as the base network in 
this paper, and its neuron structure is shown in Fig. 2. GRU 
has two gate functions, the update gate and the reset gate. The 
update gate defines how much previous information is saved 
to the current time.

The GRU is computed as follows: the input information 
xt at moment t and the hidden layer state ht − 1 at moment t−1 
are used as inputs. The outputs rt and zt of the reset gate and 
update gate are updated by Eq. (1) and Eq. (2). The temporary 
output state h̃t is updated by Eq. (3), and the hidden layer state 
ht is updated by Eq. (4). ht mainly refers to targeted retention 
of xt and ht−1.

(1)zt = �
(

Wz ⋅

[

ht−1, xt

])

where Wz, Wr , and Wh denote the weight matrices. “·” 
represents the matrix multiplication operation. “+” 
represents the matrix addition operation.

Introduction of SG filter principle

SG filter is a low-pass digital filter proposed by Savitzky 
and Golay in 1964 [48]. It can smooth a set of data without 
changing the trend of the signal and thus improve the accuracy 
of the data. The SG filter is implemented by a convolution 
process. The process is as follows: a continuous subset of 
adjacent data points is fitted by least squares to a low-order 
polynomial. Find the analytical solution of the least squares 
equation when the data points are equally spaced. It takes the 
form of a set of “convolution coefficients” that can be applied 
to all subsets of the data..

The principle of SG filter is as follows: as shown in Fig. 3, 
for a time series dataset X of length T.

Let there be 2M+1 discrete data points in each window, 
then the value of the window length W is 2M+1. The 
data from the temporal data the subset C of data for each 
filtering window drawn from the set X is shown in Eq. 
(6). Take the first window C1 as an example. First, the 
N-order polynomial shown in Eq. (7) is used to combine 
the 2M+1 data points within its window. Then, use Eq. 
(8) to calculate the mean square approximation error for 
the data subset C1 centered at ξ0=0. Finally, according to 
the traditional least squares theorem, when the MSE εN is 
minimized, the optimal coefficients of the polynomial p(ξ) 
can be found. The filtered value can be determined from 
the optimal coefficients.

(2)rt = �
(

Wr ⋅

[

ht−1, xt

])

(3)h̃t = tanh
(

Wh ⋅

[

rt ⋅ ht−1, xt

])

(4)ht =
(

1 − zt

)

⋅ ht−1 + zt ⋅ h̃t

(5)X =
(

x1, x2, x3,⋯ , xT−2, xT−1, xT
)

(6)Ci = Xi =
[

x−M ,⋯ , x0,⋯ , xM

]

i
, i = 1, 2,⋯ , n

(7)
p(�) =

∑N

k=0
ak�

k = a0 + a1� + a2�
2 +⋯ + aN�

N

� =
�

�−M ,⋯ , �0,⋯ , �M

�

= [−M,⋯ , 0,⋯ ,M]

(8)�N =

∑M

d=−M

(

p
(

�d

)

− C1

)2
=

∑M

d=−M

(

∑N

k=0
ak�

k
d
− xd

)2

Table 2   Specific uses of the 
dataset

Dataset Discharge 
strategy

Using

1 a Training 1
2 b Training 2
3 c Training 3
4 d Training 4
5 e Testing 1
6 f Testing 2

Fig. 2   GRU recurrent neural network parameter transfer process
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GRU‑ASG model

GRU‑ASG model overall structure

The GRU-ASG model is composed of two components. The 
first part is the GRU neural network, which is mainly used 
for feature extraction and initial SOC estimation. The sec-
ond part is the ASG filter, which is mainly used to filter the 
initial SOCs estimated by the GRU model and output the 
final estimates. The structure of the GRU-ASG model is 
shown in Fig. 4.

To evaluate the estimation effectiveness of the GRU-
ASG model, we use 2 indicators, MSE and MAE, to 
evaluate the estimation accuracy of the model. Smaller 
MSE and MAE values represent better model fitting ability 
and higher estimation accuracy. The MSE will also be used 
as an evaluation index of the filtering effect, and a smaller 
MSE means a better filtering effect. The calculation is 
shown in Eq. (9).

where y(l) denotes the true value of SOC, ẏ(l) denotes the 
estimated value of SOC, and L denotes the length of ẏ.

(9)
MSE =

1

L

∑L

l=1
(y(l) − ẏ(l))2

MAE =
1

L

∑L

l=1
∣ y(l) − ẏ(l)

�

∣

Many‑to‑one structural GRU neural network

In this paper, a GRU network for complex working condi-
tions SOC estimation is developed. This network consists 
of three layers, which are the input layer, the hidden layer, 
and the output layer. The first layer is the input layer, which 
includes the voltage, current, and temperature for each time 
step t. The second layer is the hidden layer, which contains 
1 GRU layer and 3 fully connected (FC) layers. The GRU 
layer is used to extract features, and the FC layer to map 
the hidden features extracted by the GRU layer. Due to the 
high sampling frequency of the dataset, the number of steps 
contained in a discharge cycle is high. In order to make the 
most of past information, we have improved the standard 
GRU network. The “many-to-one” structured GRU network 
is designed as shown in Fig. 5.

For an input X =
[

�t1
,⋯ , �tn

]

 , where n is the number of 
steps in the entire discharge cycle, δt = [Vt, It, Tt] representing 
the voltage, current, and temperature for each time step. 
The standard GRU network input of one δt will output an 
estimated SOC. In contrast, the “many-to-one” structured 
GRU network is input for n steps of δt before an estimated 
SOC is output.

The experimental hardware included a CPU (Intel(R) 
Core(TM) i5-10400F), a GPU (NVIDIA GeForce GTX 
1060), and the Windows operating system. The network 

Fig. 3   SG filter schematic

Fig. 4   Overall structure of 
GRU-ASG model
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model was built in the Tensorflow architecture, with the 
basic parameters of the target network set, as shown in 
Table 3.

ASG for SOC filtering

Usually, the implementation of SG filtering requires not 
only the input of a time series signal but also the setting 
of two important parameters that have a large impact on 
the filtering effect, the fitting order N and the window 
length W. For the selection of the optimal N, we know 
from the nature of SG filtering that its value is gener-
ally constant when the input time series signal is of the 
same type. Combining this nature and the characteris-
tics of the SOC of different working condition datasets 
of energy storage plants, we can determine the best-fit 
order Nbest applicable to it in advance. So for the battery 
SOC estimation, we used the enumeration method for 
four different operating conditions datasets in the experi-
ment, and the experimental results are shown in Table 4. 
From the experimental results, we can conclude that the 
most applicable best-fit order Nbest is 5 when using SG 
filtering to filter the SOC of the energy storage battery. 

For the choice of the optimal window length Wbest, the 
conventional signal can be found it by the enumeration 
method. The reason is that the true value of the conven-
tional signal is generally known and constant. However, 
this method cannot be used to find the Wbest for online 
SOC estimation of energy storage batteries, because the 
real SOC corresponding to different operating conditions 
datasets are different and unknown.

To solve this problem, this paper proposes an ASG 
filtering algorithm based on the Spearman correlation 
coefficient, which is used to find the Wbest for different 
complex operating conditions online when the true value 
of SOC is unknown. The specific process of the ASG 
algorithm is the following three steps.

Step 1: Set the fitting order of the SG filter to 5, and 
then filter the initial SOC estimate ŷ which was obtained 
from the GRU network by Eq. (10). Obtained the filtering 
results ỹi under different window lengths.

where 0.02L < Wi < L, i = 1, 2, ⋯, L − 50, L is the length of ŷ.
Step 2: Calculate the Spearman coefficient of ỹi and the 

initial estimated SOC ŷ using Eq. (11). The calculation 
results in the set R shown in Eq. (12).

(10)
ỹi = SG

(

ŷ,Wi,N
)

= SG
(

ŷ,Wi, 5
)

=

[

ỹ(W1,5)
, ỹ(W2,5)

,⋯ , ỹ(Wi,5)

]

Fig. 5   Many-to-one structured 
GRU network

Table 3   GRU Network 
parameters

Hyperparameter Unit

Time steps 10
Neural network layer 1
Fully connected layer 3
Batch size 32
LR 0.0001
Optimizer Adam

Table 4   Experimental results of 
the best-fit order

Dataset Nbest

Training 2 5
Training 4 5
Testing 1 5
Testing 2 5
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where dj denotes the difference between the place value of 
ỹi and ŷ at the j-th data pair, and n denotes the total number 
of observed samples.

Step 3: Find the first descending convergence point Pc 
in the set R. The Wi corresponding to Pc is the optimal 
window length Wbest found by ASG filtering algorithm.

ASG is proposed based on the properties of the SG filter 
and Spearman correlation coefficient. This will be elaborated 
on the next section. First, the standard SG filter has one impor-
tant property: The smaller the W, the closer the curve is to the 
real curve; the larger the W, the better the smoothing effect. 
To investigate the results of this property on SOC filtering, 
we conducted experiments using Testing 1. From the results 
shown in Fig. 6, it can be seen that when W is small, the fil-
tered curve 

∼

y is very close to the pre-filtered curve ŷ , resulting 
in a poor filtering effect. When W is large, the smoothness of 
the filtered curve 

∼

y is particularly large and the filtering effect 
is equally poor. Because only the general trend of the curve 
ŷ is retained at this point, certain processes in between are 
completely ignored. Hence, we can draw Conclusion 1: when 
W is taken to a critical point, the degree of closeness to the real 
curve and the smoothing effect will reach a balanced state. At 
this point, W is the optimal window length Wbest, MSE obtains 
the minimum value, and the filtering effect is the best. When 
W passes the critical point, it will be out of balance again and 
the MSE will continue to increase again. In this paper, Con-
clusion 1 was verified using the Testing 1. The experimental 
results obtained are shown in Fig. 7.

For the energy storage battery SOC filtering. Combined 
with Conclusion 1 and the properties of the Spearman cor-
relation coefficient P: For a data pair (X, Y), when X is 
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)

,⋯ ,P

(
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unchanged and Y is changed, its P will not change as long 
as the bit values at the corresponding positions between X 
and Y remain unchanged. Then, the principle of ASG can 
then be determined:

When W is small, the filtered curve 
∼

y is very close to 
the pre-filtered curve ŷ . The variation of ŷ and 

∼

y bits on 
the corresponding time step is small and the difference of 
bit values d is small. Since the total number of observed 
samples n is constant, the P is highest when W is smallest. 
When W starts to increase but does not reach near the critical 
point Wbest, the overall smoothness of the curve 

∼

y becomes 
higher and the difference of the place value d becomes larger. 
The P will then decrease to near the minimum point. When 
W crosses Wbest and continues to increase, the overall trend 
of the curve 

∼

y and the waveform basically stop changing 
significantly. The P will show an essentially constant trend 
and converge around its minimum value.

In this paper, the proposed ASG method is validated by the 
Testing (1, 2). The experimental results are shown in Fig. 8 
that reveal that the Wbest obtained using the ASG algorithm 
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Fig. 6   Filtering effect with three different window lengths W: a W takes the minimum value of 31; b W takes the optimum value of 861; c W 
takes the maximum value of 1563
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is quite close to the actual optimal window length. The feasi-
bility of the proposed ASG algorithm is fully demonstrated.

Results and analysis

Comparison experiments of three neural network: 
RNN, LSTM, and GRU​

In order to verify the superiority of the improved “many-to-
one” structured GRU network over RNN and LSTM models 
in SOC estimation of energy storage batteries, we compare 
the estimation results with those of RNN and LSTM. The 
3 models are identical except for the different types at the 
neural network layers. The specific parameter information 
is shown in Table 3. The estimated SOC and estimation 
error of the above three neural networks under Testing set 

(1, 2) are shown in Fig. 9, and the values of the evaluation 
metrics are shown in Fig. 10 and Table 5. From Fig. 9, we 
can see that the three neural networks can basically capture 
the decreasing trend of SOC, but the maximum estimation 
errors are all relatively large. The lowest maximum estima-
tion error is the GRU model with about 7%, followed by the 
LSTM model with about 8%, and the largest is the RNN 
model with about 12%. This indicates that its estimation 
results are volatile and need to be smoothed by using fil-
ters. From Fig. 10, we can visualize that the SOC estimation 
accuracy of the GRU network is optimal in all cases. The 
average MSE and MAE of the two test sets can be derived 
from Table 5. The estimated MSE of the GRU network is 
0.17%, which is 59% lower than that of the RNN network 
and 39% lower than that of the LSTM network; the estimated 
MAE of the GRU network is 3.49%, which is 33% lower 
than that of the RNN network and 20% lower than that of the 
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Fig. 9   Estimated SOC and estimation errors for 2 test sets under different networks: a Testing 1; b Testing 2
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LSTM network. The above results fully illustrate the advan-
tages of the estimation accuracy of the proposed “many-to-
one” structured GRU network. To satisfy the requirements of 
practical engineering applications, we use the ASG filtering 
algorithm to further improve the accuracy of SOC estima-
tion in this paper. The results are given and discussed in the 

“ASG filtering algorithm performance evaluation experi-
ment” section.

ASG filtering algorithm performance evaluation 
experiment

First, for all three models in this comparison experiment, the 
parameters of the neural network model GRU are the same 
as those in Table 3. The parameter fitting order N of the SG 
filters in both Best-GRU-SG and GRU-ASG was set to 5 
based on the results in Table 4.

Then, we summarize the actual optimal window length Wbest 
and the window length W2 obtained with the ASG algorithm for 
the two test sets in Table 6. It can be concluded from Table 6 
that for a very large range of values of W, two test sets can find 
a value close to the actual optimal window length by the ASG 
algorithm and the average error is only 39. In this paper, the esti-
mation results of the GRU-ASG model are compared with those 
of the GRU network and the Best-GRU-SG model with the 
actual optimal window length Wbest. The SOC estimation results 
for the two test sets in the above three models are depicted in 
Figs. 11 and 12 and summarized in Table 7. Comparing the SOC 
estimated by GRU-ASG and GRU, it is obvious from Fig. 11 
that adding ASG filtering can greatly smooth the output SOC 

Fig. 10   Evaluation metrics of 
the 2 test sets in different neural 
networks: a MSE; b MAE
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Table 5   Performance of the 2 test sets with different neural networks

Bold shows the results of the GRU-ASG algorithm proposed in this 
paper

Error criterion Testing RNN LSTM GRU​

MSE(%) 1 0.329 0.245 0.147
2 0.49 0.313 0.192

MAE(%) 1 4.48 4.04 3.14
2 5.89 4.71 3.84

Table 6   Window length W selection for 2 test sets

Bold shows the results of the GRU-ASG algorithm proposed in this 
paper

Testing W selectable value 
range

Wbest W2

1 31–1563 863 919
2 23–1155 767 789
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Fig. 11   Estimated SOC and estimation errors for 2 test sets before and after ASG filtering. a Testing 1, b Testing 2
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of GRU. From Fig. 11, we can visualize the accuracy advantage 
of the GRU-ASG model over the GRU. The maximum estima-
tion error of GRU-ASG is about 5%, which is about 2% lower 
than the maximum estimation error of the GRU model. The 
average MSE and MAE of the two test sets can be derived from 
Table 7. The MSE of the GRU-ASG network is 0.1%, which 
is 41% lower than that of the GRU network. The MAE of the 
GRU-ASG network is 2.61%, which is 25% lower than that of 
the GRU network. This is sufficient to indicate that the addition 
of ASG can significantly reduce the SOC estimation error.

Moreover, compared to the Best-GRU-SG model, from 
Fig. 11 and Fig. 12, it can be seen that the GRU-ASG and 
Best-GRU-SG estimation results are basically the same, and 

the evaluation indicators are also basically equal. According to 
the estimation results shown in Table 7, it can be concluded that 
the MSE and MAE of the ASG-GRU model are only 0.001% 
and 0.01% lower than those of the Best-GRU-SG model on 
average for the two test sets. The correctness of the ASG filter-
ing algorithm proposed by this paper is demonstrated.

Comparison experiments under different filters

For all three models in this comparison experiment, the 
parameters of the neural network model GRU are also the 
same as in Table 4. The parameters of GRU-ASG are the 
same as those in the “ASG filtering algorithm performance 
evaluation experiment” section. To verify the superiority of 
the ASG filtering algorithm compared with other online filter-
ing algorithms for SOC estimation in energy storage plants, 
we applied the most commonly used moving median filter 
(MD) and Gauss filter (GA) to filter the GRU model estima-
tion results. The estimated SOCs and estimation errors of the 
above three filters are shown in Fig. 13, and the values of the 
evaluation metrics are shown in Fig. 14 and Table 8. Best-
GRU-MD represents the filtering result when the parameters 
of the MD filter are set to optimal. Best-GRU-GA represents 
the filtering result when the parameters of the GA filter are 

Fig. 12   Evaluation metrics of 
the 2 test sets before and after 
ASG filtering: a MSE; b MAE
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Table 7   Performance of the 2 test sets before and after ASG filtering

Bold shows the results of the GRU-ASG algorithm proposed in this 
paper

Error criterion Testing GRU​ Best-GRU-SG GRU-ASG

MSE(%) 1 0.147 0.078 0.079
2 0.192 0.120 0.121

MAE(%) 1 3.14 2.36 2.38
2 3.84 2.84 2.84
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Fig. 13   Estimated SOC and estimation errors for 2 test sets at different filters: a Testing 1; b Testing 2
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set to optimal. As can be seen from Fig. 13, all three filters 
can reduce the initial SOC fluctuations and improve the sta-
bility of the GRU network output results. It can be visualized 
from Fig. 14 that the SOC estimation accuracy of GRU-ASG 
is the highest. The average MSE and MAE of the two test 
sets can be derived from Table 8. The MSE and MAE of the 
GRU-ASG model decreased by 29% and 23% compared to 
the Best-GRU-MD model and by 20% and 12% compared to 
the Best-GRU-GA model. The above results demonstrate that 
the combination of GRU and ASG is the most advantageous.

Conclusions

In this paper, we propose a combined SOC estimation method 
GRU-ASG based on the GRU network and ASG filter. The 
method first uses the GRU network to obtain an approximate 
SOC estimate and then applies ASG to further improve the 
accuracy of the SOC estimate. The article establishes the 
“many-to-one” structured GRU network, which can better uti-
lize the previous measurements to improve the estimation accu-
racy. The ASG algorithm proposed in the article can update the 
window length adaptively online so that we do not need to focus 
on choosing the optimal window length. The GRU-ASG model 
is trained using the first four of six different operating condition 
datasets collected from an energy storage plant and validated 
using the last two datasets. The experimental results show that 
the SOC estimation accuracy of GRU-ASG is better than that 
of GRU, GRU-MD, and GRU-GA. And it is extremely close to 
that of GRU-SG under the actual optimal window. In particular, 
the maximum MSE of the two test sets does not exceed 0.15% 
and the maximum MAE does not exceed 3%. In addition, the 

proposed method has good generalization capability and is able 
to correct SOC errors under different practical and complex 
operating conditions. Therefore, GRU-ASG may have a broad 
application prospect in practice. Especially with the large num-
ber of energy storage plants being built and put into operation, 
this will provide enough and abundant data to train the neural 
network, thus making the proposed method more applicable 
to SOC estimation and safety management of energy storage 
plants. In future work, the effects of temperature and battery 
capacity degradation in the operating environment of energy 
storage plants will be considered. Transfer learning techniques 
will also be introduced to further improve the applicability of 
the proposed approach in real-world conditions.
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