RESEARCH

In-situ synthesis of NiCo₂S₄@graphene composite **for high‑performance supercapacitor**

Xiaojun Xu¹ · HuiZhong Xu1 · Qiannan Zhou1,2 · Weifeng Liu1 · Jie Gao1 · Ziqiushui Zhuang1 · Xin Zhou1 · Wei Li1

Received: 18 July 2023 / Revised: 25 August 2023 / Accepted: 2 September 2023 / Published online: 13 September 2023 © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract

Binary transition metal sulfdes have garnered widespread concentration result from their superior electrical conductivity and outstanding capacitance. However, their poor cycling stability hinders their applications in energy storage devices. The objective of this study is to devise and prepare graphene and $NiCo₂S₄$ composite ($NiCo₂S₄$ @graphene) using a simple onestep hydrothermal modality. Graphene is used as a conductive substrate, and $NiCo₂A$ nanoparticles are formed in situ and homogeneously anchored on graphene nanosheets through C-S-C covalent bonds. For example, the NiCo₂S₄@graphene composite has a high specific capacitance of 918.0 C g^{-1} at a current density of 1 A g^{-1} and enhanced cycling stability (90.1% after 6000 cycles). In addition, the asymmetric supercapacitor was fabricated with NiCo_2S_4 @graphene as the positive electrode and graphene (GR) as the negative electrode, and the device provided a maximum energy density of 49.8 Wh kg⁻¹ at a power density of 845.3 Wh kg−1. Besides, the capacitance retention rate was as high as 92.0% after 1000 cycles. The superior electrochemical properties of the $NiCo₂Q$ graphene material verified its huge potential for realistic applications.

Keywords NiCo₂S₄ · Graphene · Supercapacitors · Covalent bonds · Synergistic effect

Introduction

The pollution and non-renewability of conventional oil resources have been obstacles to sustainable development for humans. Accordingly, there is much interest in developing environmental benignity and low-cost and clean renewable energy sources [\[1](#page-8-0), [2\]](#page-8-1). Scientists and researchers have been focusing on developing and studying electrochemical energy storage technologies such as lithium-ion batteries (LIBs) $[3, 4]$ $[3, 4]$ $[3, 4]$ $[3, 4]$, sodium-ion batteries (SIBs) $[5, 6]$ $[5, 6]$ $[5, 6]$ $[5, 6]$, and supercapacitors (SCs) [[7](#page-8-6), [8](#page-8-7)]. Supercapacitors are new energy devices that combines the characteristics of conventional capacitors with the energy storage properties of batteries.

² Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China

Supercapacitors offer several advantages, including good safety, high power density, rapid charging and discharging rates, and long cycle life [[9,](#page-8-8) [10\]](#page-8-9). Supercapacitors can be categorized into electric double-layer capacitors (EDLCs) and pseudocapacitors based on their operating principles [\[11](#page-8-10)]. The electrical double-layer capacitors store energy primarily through the interfacial double layer formed between the electrodes and the electrolyte [[12\]](#page-8-11). An critical characteristic of this process is that no transfer of charge occurring at the interface between the electrode and electrolyte. In other words, it is a non-Faraday process [[13\]](#page-8-12). Pseudocapacitors rely heavily on the Faraday process to store charges, which involves rapid and reversible oxidation and reduction reactions on or around the superficies of the active material $[14]$ $[14]$. Among the above two mechanisms, the bilayer capacitor usually shows higher rate performance, and the pseudocapacitor exhibits higher capacitance performance but poorer rate performance and cycling stability. Those with the same positive and negative electrode materials are known as symmetric supercapacitors, while those with diferent ones are known as asymmetric supercapacitors (ASCs) [\[15\]](#page-8-14). In the past several years, supercapacitors have gained widespread concern due to the aforementioned advantages. Gonçalves et al. assembled supercapacitors based on trimetallic oxides

 \boxtimes Wei Li 02075@qust.edu.cn

¹ Engineering Research Center of High Performance Polymer and Molding Technology, Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China

by (a) heteroatom doping, (b) hierarchical nanostructuring, and (c) combination with other suitable materials to prepare nanocomposites [\[16](#page-8-15)]. Mariappan and colleagues prepared the stand-alone carbyne (SAC) flm by dehydrohalogenation on the porous polyvinylidene fuoride (PVDF) mat [\[17](#page-8-16)].

The performance of supercapacitors is primarily infuenced by the electrode materials, which mostly include carbon materials, conductive polymers, and transition metal compounds [[18](#page-8-17)]. Among them, transition metal compounds (TMCs) are capable of storing charges rapidly through Faraday reaction, with large energy storage capacity and electrical conductivity, as well as environmental friendliness $[19-21]$ $[19-21]$ $[19-21]$. And transition metal sulfides (TMSs) have been widely recognized due to their higher theoretical capacity and electrical conductivity, as well as more easily tunable morphology compared with other transition metal compounds [[22](#page-8-20)[–25](#page-8-21)]. Compared with mono-metal sulfdes, such as \cos_2 [[26](#page-8-22)], NiS₂ [[27](#page-8-23)], MoS₂ [\[28\]](#page-8-24), and MnS [[29](#page-9-0)], bimetallic sulfides, such as $CoMoS₄ [30]$ $CoMoS₄ [30]$ and $NiCo₂S₄ [31]$ $NiCo₂S₄ [31]$ have better electrical conductivity and richer redox reactions, which can provide higher specifc capacitance and exhibit better electrochemical properties. Therefore, bimetallic sulfdes are regarded as a new research hotspot in supercapacitors [[32\]](#page-9-3).

Among the various TMSs, $NiCo₂S₄$ -based materials have a high theoretical specifc capacitance and are therefore considered by researchers as ideal electrode materials for supercapacitors. The current studies report that diferent nanostructures of $NiCo₂S₄$ materials have been successfully designed, such as nanoneedles [\[32\]](#page-9-3), nanosheets [\[33\]](#page-9-4), nanoparticles [[34](#page-9-5)], and nanospheres [\[35](#page-9-6)]. However, among the many $NiCo₂S₄$ morphologies, fewer reports on $NiCo₂S₄$ nanoparticles have been reported. For instance, Xin and colleagues reported the devise and synthesis of nanoflower-NiCo₂S₄ with remarkable performance (specific capacitance of 1141.0 F g^{-1} at 1 A g^{-1}) using low-cost [CH₃NH₃][Ni(HCOO)₃] and [CH₃NH₃] $[Co(HCOO)₃]$ as the precursor [[36](#page-9-7)]. Xiang et al. Successfully reported an approach for designing and synthesizing $NiCo₂S₄$ polyhedral structures with stable structure and good performance (specific capacitance of 1298.0 F g^{-1} at 1 A g^{-1}) using $NiCo₂O₄$ as the precursor [\[37](#page-9-8)]. However, although NiCo2S4 materials are used as excellent battery materials, $NiCo₂S₄$ nanoparticles tend to aggregate during charging and discharging, which reduces the stability and specifc capacitance of supercapacitors [\[38](#page-9-9)]. Moreover, the alteration in the volume of NiCo2S4 nanoparticles during cycling results in a rapid decrease in the capacity and cycling stability of the $NiCo₂S₄$ material [\[39](#page-9-10)]. To address these disadvantages of the NiCo2S4 material, researchers considered combining the $NiCo₂S₄$ material with a conductive substrate to improve its electrochemical properties. Typically, carbon spheres [\[40\]](#page-9-11), graphene [\[41\]](#page-9-12), Ni foam [\[42\]](#page-9-13), and carbonized polymer sponges [\[43](#page-9-14)] are chosen as conductive substrates. For instance, Mariappan et al. used antimonene sheets as a conductive substrate to grow nanostructures to generate antimonene/3DNi [\[44](#page-9-15)]. Tian et al. used CNT fber as the primary core and in situ growth on CNT to obtain PANI/N-CNT@CNT fber [[45\]](#page-9-16). However, most of the composites of $NiCo₂S₄$ nanoparticles and carbon materials are simply mixed, and the $NiCo₂S₄$ nanoparticles cannot be tightly bonded with the carbon materials, thus easily leading to the dislodgement of NiCo_2S_4 nanoparticles from the carbon materials during the charging and discharging process [\[46,](#page-9-17) [47\]](#page-9-18).

In this work, we prepared $NiCo₂S₄@graphene$ composite by a simple one-step hydrothermal method, which uses graphene nanosheets as conductive substrate and immobilizes $NiCo₂S₄$ nanoparticles onto graphene nanosheets by constructing C-S-C covalent bonds. Graphene is a 2D monolayer material with a theoretical specifc surface area of up to 2630 m² g⁻¹, which facilitates electron transport and exposes numerous adsorption sites. Therefore, it is capable of being an excellent conductive substrate for $NiCo₂S₄$ nanoparticles [[48](#page-9-19), [49](#page-9-20)]. Graphene nanosheets can avoid the agglomeration of NiCo2S4 nanoparticles to a certain extent [[50\]](#page-9-21). Meanwhile, the lamellar structure of graphene nanosheets provides protection for NiCo2S4 nanoparticles, hinders the volume variation of $NiCo₂S₄$ nanoparticles during charge/discharge process, and effectively improves the cycling stability of the material. In addition, $NiCo₂S₄$ nanoparticles enter into the interlayers of graphene nanosheets, efectively reducing the agglomeration of graphene nanosheets, thereby enhancing the material's electrical conductivity [\[51](#page-9-22)]. Meanwhile, the construction of C-S-C covalent bonds enhance the interfacial interaction between $NiCo₂S₄$ nanoparticles and graphene, anchoring $NiCo₂S₄$ nanoparticle frmly on the graphene conducting substrate, thus improving the charge transfer of $NiCo₂S₄@graphene$ composite. NiCo₂S₄@graphene electrodes presented a high capacitance of up to 918.0 C g⁻¹ at 1 A g⁻¹, and they also demonstrate exceptional cycling stability with a capacitance retention of 90.4% even after 5000 cycles. The asymmetric supercapacitor was assembled with $NiCo₂S₄@graphene$ as the positive electrode and graphene (GR) as the negative electrode. Such device exhibited a remarkable energy density of 49.8 Wh kg⁻¹ at a power density of 845.3 Wh kg⁻¹ and a remarkable capacitance retention rate of 92.0% after 1000 cycles. With the $NiCo₂S₄@graphene composite exhibit$ good cycling stability and capacitance performance, their great potential for supercapacitors applications is verifed.

Experimental section

Synthesis of NiCo₂S₄@graphene composite

 $NiCo₂S₄@graphene composite was synthesized by a typical$ one-step hydrothermal method. First, 50 mg graphene was once brought to a combination of 40 ml deionized water and 20 ml anhydrous ethanol to gain a homogeneous suspension by means of sonication. Then, 1 mmol $Ni(NO₃)₂·6H₂O$, 2 mmol $Co(NO_3)_{2}·6H_2O$, and 7 mmol thiourea were added to the above suspension and stirred at room temperature for 1 h to acquire a homogeneous mixture. The combination was then transferred into a Tefon-lined stainless steel autoclave and kept at 180 °C for 12 h. The precipitate was obtained by fltration, washed a few times with deionized water, and then, gathered after freeze-drying for 12 h.

Structural characterizations

The nanomorphology and microstructure of the samples were investigated using scanning electron microscopy (SEM, JEOL JSM-6700F) and transmission electron microscopy (TEM, JEOL JEM-2100PLUS) with energy spectroscopy (EDS). The crystal structure of the products was characterized using X-ray difractometer (XRD, Rigaku, D/ MAX/2500PC). Raman spectroscopy was carried out using a laser Raman spectrometer (Renishaw, inVia Qontor). An X-ray photoelectron spectrometer (XPS, Thermo Fisher Scientific, ESCALAB XI^+) was used for the valence analysis of Ni, Co, S, O, and C elements.

Electrochemical measurements

The electrochemical properties of the materials are tested by electrochemical workstation under room temperature conditions using techniques such as cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS). In the three-electrode measurement, $NiCo₂S₄@graphene$ on nickel foam is used as the working electrode, platinum as the counter electrode, Hg/ HgO electrode as the reference electrode, and 2.0 M KOH aqueous solution as electrolyte. The working electrodes were prepared by grinding the sample and carbon black into a fne powder in the ratio of 8:1 and then adding 3.0 wt% PTFE as a binder. The resulting mixture was rolled into a thin sheet and attached to nickel foam, wherein the average mass loading of the active material was $1.0-1.5$ mg cm⁻². Then, the nickel foam containing the active material was dried in an oven at 60 °C for 12 h to obtain the working electrode. The specific capacity (C_S , C g⁻¹) of the electrode material can be calculated from the GCD curve. The calculation formula is as follows $[52, 53]$ $[52, 53]$ $[52, 53]$:

$$
Cs = \frac{I\Delta t}{m} \tag{1}
$$

where $I(A)$ represents the discharge current, Δt (s) represents the discharge time, and *m* (g) represents the mass of the active electrode materials.

In order to assess its usefulness, asymmetric supercapacitor (ASC) was prepared with graphene as negative electrode and NiCo_2S_4 @graphene as positive electrode. The following equations can be used to calculate the specifc capacitance $(C_{ASC}, F g⁻¹)$, the mass of the positive and negative materials, the energy density $(E, Whkg^{-1})$, and the power density $(P, Wh kg^{-1})$ [\[54](#page-9-25)]:

$$
C_{\rm ASC} = \frac{I\Delta t}{M\Delta V} \tag{2}
$$

$$
\frac{m^+}{m^-} = \frac{\left(C_s^- \times \Delta V^-\right)}{\left(C_s^+ \times \Delta V^+\right)}\tag{3}
$$

$$
E = \frac{C_{\text{ASC}} \times \Delta V^2}{2 \times 3.6} \tag{4}
$$

$$
P = \frac{E}{\Delta t} \times 3600\tag{5}
$$

where m^{\pm} and C^{\pm} denote the mass and specific capacitance of the active substance at the positive (or negative) electrode, respectively; $I(A)$, $t(s)$, and $\Delta V(V)$ denote the discharge current, discharge time, and potential window of the ASC device, respectively [\[55\]](#page-9-26).

Results and discussion

The process of growing $NiCo₂S₄$ nanoparticles on graphene nanosheets is proven in Fig. [1](#page-3-0). First, graphene nanosheets were uniformly dispersed in deionized water by ultrasonication. The reaction was then carried out under hydrothermal conditions with thiourea providing the sulfur source, $Ni(NO₃)₂·6H₂O$ providing the Ni source, and $Co(NO₃)₂·6H₂O$ providing the Co source. Due to the strong interaction between S atoms and transition metals, $NiCo₂S₄$ nanoparticles were gradually formed and firmly dispersed on graphene nanosheets through covalent bonds C-S-C. In Fig. [2a](#page-3-1), b, the growth of $NiCo₂S₄$ nanoparticles on graphene nanosheets is uniform and does not result in signifcant particle aggregation. Figures S1a and S1b show the SEM images of $NiCo₂S₄$ nanoparticles and graphene sheets, respectively. SEM images show that without the introduction of graphene sheets, the $NiCo₂S₄$ nanoparticles are clustered together, which can seriously compromise the material's electrochemical properties. Figure [2](#page-3-1)c shows the TEM image of $NiCo₂S₄@graphene$, which further illustrating that $NiCo₂S₄$ nanoparticles are uniformly distributed on graphene nanosheets. Furthermore, the curved lamellar structure of graphene nanosheets efectively suppressed the volume expansion of $NiCo₂S₄$ nanoparticles

Fig. 1 Schematic of the design and synthesis of NiCo_2S_4 @graphene

during the charge/discharge process. Then, the microstructure of $NiCo₂S₄@graphene$ nanoparticles was further investigated and observed using HRTEM (Fig. [2d](#page-3-1)). The 0.28 nm and 0.54 nm lattice fringes observed in the HRTEM images are in line with the (311) and (111) planes of NiCo_2S_4 , respectively, which is also supported by the XRD patterns. In addition, the lattice fringes with a pitch of 0.34 nm indexed to the (002) plane of graphene. The elemental distributions of the NiCo₂S₄@graphene and $NiCo₂S₄$ samples were investigated using TEM-EDS elemental mapping. Figure S1e shows the elemental distribution of $NiCo₂S₄$, demonstrating a uniformed distribution of elements Ni, Co, and S. Figure [2](#page-3-1)e shows the elemental distribution of NiCo₂S₄@graphene, which further demonstrates that Ni, Co, and S elements are evenly distributed on the graphene nanosheets. The graphene nanosheets possess a high specifc surface area, and numerous adsorption sites can prevent the massive aggregation of $NiCo₂S₄$ and induce the uniform growth of $NiCo₂S₄$ nanoparticles on

the graphene sheet, thus improving the material's structural stability [[50](#page-9-21)].

The X-ray diffraction (XRD) patterns of $NiCo₂S₄$ and $NiCo₂S₄@graphene$ are shown in Fig. [2a](#page-3-1). The peaks of $NiCo₂S₄$ and $NiCo₂S₄$ @graphene matches well with $NiCo₂S₄$ (JCPDS-20-0782) [[25](#page-8-21)]. The X-ray diffraction peaks of $NiCo₂S₄$ and $NiCo₂S₄$ @graphene with centers of 16.3°, 26.8°, 31.6°, 38.2°, 47.4°, 50.3°, and 55.0° can be indexed to the (111), (220), (311), (400), (422), (511), and (440) planes of $NiCo₂S₄$, respectively. These characteristic peaks confirm the successful synthesis of $NiCo₂S₄$ nanoparticles. The broad peak of $NiCo₂S₄@graphene$ near 23.6° is associated with the (002) face of graphene. The results indicate that $NiCo₂S₄@graphene compos$ ite was successfully synthesized. The Raman spectra of the NiCo₂S₄@graphene sample (Fig. [2b](#page-3-1)) shows two distinct peaks at 1350 cm⁻¹ and 1590 cm⁻¹ representing the D-band and G-band of graphene, which are usually associated with disordered and ordered graphite, respectively. By examining the intensity ratio (ID/IG) between these two bands, we can determine the level of graphene graphitization. Furthermore, the wide peak at 2700 cm^{-1} is a 2D band with a large correlation with the layer structure and stacking mode, indicating that the graphene nanosheets consist of several layers of graphene. As shown in Fig. [2](#page-3-1)c, three distinct peaks around 460, 509, and 660 cm⁻¹ correlate with the F_{2g} , F_{2g} , and A_{1g} models of NiCo₂S₄, suggesting that $NiCo₂S₄$ was successfully introduced into graphene [\[55,](#page-9-26) [56](#page-9-27)].

The NiCo₂S₄@graphene composites were then examined using analysis by X-ray photoelectron spectroscopy (XPS) to determine their compositional composition and chemical bonding state. The presence of elements such as C, O, Ni, Co, and S in the NiCo₂S₄@graphene composite as shown in the full measurement spectrum of XPS in Fig. S2a. In the Ni 2p spectrum (Fig. [3](#page-4-0)e), it can be observed that in addition to the two shake-up satellites at 861.9 and 880.5 eV (considered as "Sat."), the peaks at 873.9 and 856.4 eV are related to $Ni³⁺$, and the peaks at 871.5 and 854.2 eV correspond to $Ni²⁺$, indicating coexistence of $Ni³⁺$ and $Ni²⁺$. Similar to Ni 2p, except for two shake-up satellites at 786.7 and 803.3 eV, the 2p spectrum of Co (Fig. [3f](#page-4-0)) shows four peaks: the peaks are located at 778.9 and 797.2eV, respectively, corresponding to Co^{3+} ; while the peaks at 781.6 and 798.9 eV indexed to Co^{2+} , suggesting the simultaneous presence of Co^{2+} and $Co³⁺$. Figure S2a shows the S 2p spectrum, where the peaks at the binding energies of 161.7 and 162.8 eV are indexed as S $2p_{3/2}$ and S $2p_{1/2}$, respectively, indicating that the prepared $NiCo₂S₄$ material consists of metal-sulfur bonds. The peak at 164.3 eV is associated with an aromatic C-S-C covalent bonds, which indicates the successful construction of a C-S-C covalent bonds that can firmly anchor the $NiCo₂S₄$ nanoparticles to the graphene nanosheets and prevent the $NiCo₂S₄$ nanoparticles from falling off during cycling. The high-resolution C 1s spectrum of NiCo₂S₄@graphene (Fig. S2b) yields four major peaks located at 284.6, 285,0, 286.1, and 290.1 eV, attributing to C=C/C-C, C-S, C-O, and O-C=O, respectively.

Fig. 3 a XRD patterns of NiCo₂S₄ and NiCo₂S₄@graphene; Raman spectra of NiCo₂S₄@graphene within different ranges: **b** 1000–3300 cm⁻¹ and **c** 200–900 cm⁻¹; high-resolution XPS spectra of **d** Ni 2p, **e** Co 2p, and **f** S 2p in NiCo₂S₄@graphene

The electrochemical behavior of the working electrode including $NiCo₂S₄$ and $NiCo₂S₄$ @graphene was studied with a three-electrode system under alkaline KOH electrolyte environment. A general method for characterizing the capacitive behavior of electrode materials is cyclic voltam-metry (CV). Figure [4](#page-5-0)a shows the CV curves of $NiCo₂S₄$ and $NiCo₂S₄@graphene$ materials at a scan rate of 20 mV s^{-1} . Based on the CV curves, there are well-defined redox peaks which corresponds to the presence of Faraday redox behavior [[36\]](#page-9-7):

 $NiCo₂S₄ + OH⁻ + H₂O \rightarrow NiSOH + 2CoSOH + 2e⁻$ (6)

$$
CoSOH + OH^- \rightarrow CoSO + H_2O + e^-
$$
 (7)

$$
NiSOH + OH^- \rightarrow NiSO + H_2O + e^-
$$
 (8)

At the scan rate of 20 mV s⁻¹, the CV curve for $NiCo₂S₄@graphene$ has a bigger area than that of $NiCo₂S₄$, suggesting that the incorporation of graphene provides the material with superior charge storage capacity [\[33\]](#page-9-4). Figure S3a displays the NiCo2S4@graphene electrode's CV curves for various scan rates. There may be a polarization efect between the electrode and electrolyte in the electrochemical process since the oxidation peak shifts slightly to a higher potential as scan rate is raised, while the reduction peak shifts slightly to a lower potential. Even at scanning rates as high as 100 mV s^{-1} , the CV curves still exhibit

obvious redox peaks, which indicates that the structure of $NiCo₂S₄@graphene$ has the benefit of promoting rapid redox reactions. The geometry of the CV curves has fne symmetry, suggesting that the redox reaction of the electrode material has good reversibility. The charge storage mechanism of the NiCo₂S₄@graphene electrode is deeply explored using the following equation [[57\]](#page-9-28):

$$
i = av^b \tag{9}
$$

$$
log(i) = log(a) + b log(v)
$$
\n(10)

The *b* is the slope and is determined by a plot of log (*i*) and $log (v)$. The value of *b* of 0.5 indicates that the electrochemical process is a difusion-controlled process. The value of *b* of 1 denotes a surface-controlled process. When the *b* value is between 0.5 and 1, it indicates the coexistence of both control processes. The plots of the redox peaks for log (ν) and log (*i*) of NiCo₂S₄@graphene are shown in Fig. S3b, and from the linear ft, it can be seen that the values for b of each of the redox peaks are 0.56 and 0.57, demonstrating that the charge storage of the $NiCo₂S₄@graphene$ electrode is dictated by a combination of difusion control and surface control. The capacitive contribution at a scan rate of 100 mV s^{-1} is 34.7% of the total capacity, as shown by the yellowshaded area in Fig. S3c. Furthermore, the capacitive contribution of the NiCo₂S₄@graphene electrode is illustrated in Fig. S3d, covering scan rates that range from 5 to 100 mV s⁻¹. The capacitive contribution of the NiCo₂S₄@graphene

Fig. 4 a CV curves of NiCo₂S₄ and NiCo₂S₄@graphene at 20 mV s⁻¹; **b** GCD curves of NiCo₂S₄ and NiCo₂S₄@graphene at 1 A g⁻¹; **c** GCD curves of NiCo_2S_4 @graphene under different current densities;

d rate performances of NiCo₂S₄ and NiCo₂S₄@graphene at 20 mV s⁻¹; **e** cycling performance NiCo₂S₄ and NiCo₂S₄@graphene at 10 A g⁻¹. **f** EIS curve of NiCo₂S₄, NiCo₂S₄@graphene

Fig. 5 a CV curves of NiCo₂S₄ electrode and AC electrode at scan rate of 10 mV s⁻¹. **b** CV curves of NiCo₂S₄@graphene//GR at different scan rates. **c** GCD voltage profles at various current densities. **d** The specifc capacitance values from discharge curves. **e** Cycling

stability tests for NiCo₂S₄@graphene//GR at 5 A g^{-1} . **f** Ragone plot of NiCo₂S₄@graphene//GR ASC compared with other previously reported devices

electrode increases from 11.7 to 34.7% with raising scan rate. At a current density of 1 A g^{-1} , their specific capacities can be calculated from the NiCo₂S₄ and NiCo₂S₄@graphene electrodes' GCD curves (Fig. [4](#page-5-0)b) to be 614.0 and 918.0 C g⁻¹, respectively, indicating that the specific capacity could be greatly improved by adding graphene nanosheets. Fig-ure [4](#page-5-0)c shows the GCD curves for $NiCo₂S₄@graphene$ for a potential range from 0 to 0.5 V and at current densities of 1, 2, 4, 6, 8, and 10 A g^{-1} . The charging and discharging curves show a relatively fat slope, which corresponds to the CV curve, indicating the battery-type charge storage behavior of the NiCo₂S₄@graphene composites. The calculated specific capacities of $NiCo₂S₄@graphene$ are 918.0, 706.0, 574.4, 501.6, 460.8, and 430.0 C g⁻¹, respectively. The NiCo₂S₄@graphene electrode's capacity increases with decreasing current density, indicating that the electrode material can be better utilized at lower current densities. The capacity of the $NiCo₂S₄@graphene$ electrode can be maintained at around 46.8% and that of the $NiCo₂S₄$ electrode can be maintained around 36.6% as the current density is expanded (Fig. [4d](#page-5-0)), evidencing that the introduction of graphene improves the rate performance of $NiCo₂S₄$. We repeated charge/discharge testing at a constant current density of 5 A g−1 to examine the electrochemical stability of the electrodes in depth. After 5000 cycles, $NiCo₂S₄@gra$ phene had a specifc capacity retention of 90.4%, whereas $NiCo₂S₄$ retained only 51.5% (Fig. [4e](#page-5-0)). The incorporation of graphene nanosheets introduced more active sites, which enhance binding with $NiCo₂S₄$ and reduce the aggregation of $NiCo₂S₄$ material, leading to the excellent structural stability and outstanding electrochemical performance of NiCo₂S₄[@] graphene. At the same time, graphene nanosheets provide protection for $NiCo₂S₄$ nanoparticles during charging/discharging, bufering the volume expansion of the material during charging/discharging and to enhance the material's energy storage capacity and cycling stability. Electrochemical impedance spectroscopy (EIS) measurements were conducted for NiCo₂S₄ and NiCo₂S₄@graphene composite. The slope of the Nyquist plot (Fig. [4](#page-5-0)f) in the low-frequency range represents the Warburg impedance (R_w) , the intercept with the real axis at high-frequency range indicates the internal resistance (R_s) , while the diameter of the semicircle reflects the interfacial charge transfer resistance (R_{ct}) [\[58](#page-10-0)]. Compared to pure $NiCo₂S₄$, $NiCo₂S₄$ @graphene composite exhibits a higher tilt in the low-frequency range, resulting in a lower R_w for NiCo₂S₄@graphene. The intercept value of $NiCo₂S₄@graphene composite is smaller than that of pure$ $NiCo₂S₄$ at high frequencies, indicating that the NiCo₂S₄[@] graphene material has lower R_s . NiCo₂S₄@graphene composite has smaller semicircular diameters, which suggests that it has a smaller interfacial charge $R_{\rm ct}$ than pure NiCo₂S₄. Therefore, $NiCo₂S₄@graphene$ materials have good capacitive behavior and better electrical conductivity.

To deeply investigate the practical application of the $NiCo₂S₄@graphene composite, an asymmetric capacitor$ (ASC) was made with $NiCo₂S₄@graphene$ as the positive

electrode, graphene (GR) as the negative electrode (noted as $NiCo₂S₄@graphene//GR)$, and aqueous KOH solution as the electrolyte. Prior to this, the electrochemical properties of GR were investigated. Figure S4a shows the GCD curve of graphene at 2 A g^{-1} with a specific capacity of 128.6 C g^{-1} . According to the charge balance principle, the mass ratio of $NiCo₂S₄@graphene$ to GR in the ASC was controlled to be around 1:2.7(see Eq. (1) (1) and Eq. (3) (3)). Figure S4b shows the EIS curves of GR. The CV curves of GR show the double-layer capacitance characteristics, indicating stable cycling properties (Fig. S4c). The stable working potential window of the electrodes was evaluated before conducting electrochemical tests. Figure [5a](#page-6-0) shows the CV curves of NiCo₂S₄@graphene and GR electrodes at 10 mV s−1 for stable potential windows of 0 to 1.6 and − 1 to 0 V, respectively. Thus, the working potential window of the prepared $NiCo₂S₄@graphene$ // GR ACS is 0 to 1.6 V. Figure S4d presents the CV curves of the NiCo₂S₄@graphene//GR ASC device for dissimilar voltage windows, in which the CV curves maintain a good geometry without obvious polarization, indicating that the ASC's stabilized operating voltage can be as high as 1.6 V. Therefore, the 0 to 1.6 V potential bias range is applied on the $NiCo₂S₄@graphene//GR ASC. The CV$ curves of NiCo₂S₄@graphene//GR ASC at 5 to 100 mV s^{-1} are collected in Fig. [5b](#page-6-0). The redox peak displacement of the CV curves did not change signifcantly as the scan rate is increased and there is no noticeable distortion in the geometry, which indicate that the ASC has outstanding reversibility and good rate property. Figure [5](#page-6-0)c displays the GCD curves of $NiCo₂S₄@graphene//GR ASC at cur$ rent densities from 1 to 10 A g^{-1} . The specific capacitance was computed by Eq. ([2\)](#page-2-2) to be 140.3, 99.5, 83.35, 71.18, 62.7, and 57 F g^{-1} when current densities are 1, 2, 4, 6, 8, and 10 A g^{-1} , respectively. Besides, the CV curves have apparent redox peaks, and the GCD curves have relatively fat slopes, indicating that the capacitance of ACS is the result of the combined efect of electric double-layer capacitance and pseudo-capacitance. Figure [5d](#page-6-0) demonstrates that around 41% of the capacitance is retained while the current density rises from 1 to 10 A g⁻¹. Figure [5e](#page-6-0) shows the continuous charge/discharge test for $NiCo₂S₄@graphene//GR ASCs with a constant cur$ rent density of 5A g^{-1} . After 1000 cycles, 92.7% of the capacitance of the $NiCo₂S₄@graphene//GR ASC device$ is retained, demonstrating excellent cycling stability. In Fig. [5](#page-6-0)f, the Ragone plot illustrates the energy density and power density of the $NiCo₂S₄@graphene//GR ASC device.$ At a power density of 845.3 Wh kg⁻¹, the device provides a maximum energy density of up to 49.8 Wh kg⁻¹. Energy density remains at 20.3 Wh kg−1 even after the power density is boosted to 7931.7 Wh kg⁻¹. The energy density of the $NiCo₂S₄@graphene//GR ASC device is better$

than the majority of the previously reported composites, such as H-NiCo₂S₄//AC [\[30\]](#page-9-1), EC@NiCo₂S₄//EC [[33\]](#page-9-4), C/ NCS-12//AC $[35]$ $[35]$, NiCo₂S₄//AC $[37]$, NiCo₂S₄/PRGO//AC [[38\]](#page-9-9), NCS@MCMB//AC [\[40\]](#page-9-11), NiCo₂S₄@G//PC [[41\]](#page-9-12), and CoS@eRG//AC [[59](#page-10-1)].

The synergism between $NiCo₂S₄$ and graphene is the main factor leading to the preeminent electrochemical properties of the NiCo₂S₄@graphene composite, specifically, as follows: (i) the bimetallic sulfide $NiCo₂S₄$ is rich in redox reactions and has a high specifc capacitance; (ii) the high specifc surface area of graphene can supply more adsorption sites to bind to $NiCo₂S₄$, thus greatly preventing the aggregation of NiCo₂S₄; (iii) the NiCo₂S₄@graphene composite are rich in C-S-C covalent bonds to enhance the $NiCo₂S₄$ nanoparticles interfacial bonding between the $NiCo₂S₄$ nanoparticles and graphene nanosheets, thus $NiCo₂S₄$ nanoparticles are tightly anchored on the graphene nanosheets and enhance the electrochemical kinetics; (iv) the lamellar structure of graphene nanosheets provides preservation to the $NiCo₂S₄$ nanoparticles during the charge/discharge process and buffers the volume variations of $NiCo₂S₄$ nanoparticles. At the same time, the $NiCo₂S₄$ nanoparticles can also reduce the accumulation of graphene. Thus, the cycling stability and reversibility of the material are improved, and the utilization rate of the device is enhanced.

Conclusions

In conclusion, we used a one-step hydrothermal method to construct C-S-C covalent bonds, and $NiCo₂S₄$ nanoparticles were successfully anchored on graphene nanosheets. The synergistic effect between the two reduces the buildup of $NiCo₂S₄$ nanoparticles and graphene nanosheets, and buffers the volume variations of $NiCo₂S₄$ nanoparticles. As a supercapacitor electrode, the $NiCo₂S₄@graphene$ electrode has a high specific capacitance of 918.0 C g^{-1} at a current density of 1 A g^{-1} and impressive cycling stability (capacitance maintained at 90.4% after 5000 cycles). The asymmetric supercapacitor prepared based on $NiCo₂S₄@graphene$ // GR electrode has a high energy density of 49.8 Wh kg⁻¹ at the power density of 845.3 Wh kg−1, with excellent cycling stability (92.0% capacitance retention after 1000 cycles).

Supplementary Information The online version contains supplementary material available at<https://doi.org/10.1007/s11581-023-05206-5>.

Author contributions Xiaojun Xu: investigation, methodology, experiments, date analysis, and writing-original draft preparation.

Huizhong Xu: methodology and date analysis.

Qiannan Zhou: methodology and date analysis.

Weifeng Liu: methodology and date analysis.

Jie Gao: investigation and writing-reviewing.

Ziqiushui Zhuang: investigation and writing-reviewing.

Xin Zhou: investigation and writing-reviewing.

Wei Li: conceptualization, methodology, funding acquisition, project administration, review, and editing.

Funding This work was supported by the fnancial support from the Shandong Natural Science Foundation (ZR202205130001) and the Shandong Science and Technology Plan Project (2021TSGC1152) of China.

Data availability Data will be made available on request.

Declarations

Ethical approval Not applicable.

Competing interests The authors declare no competing interests.

References

- 1. Shao Y (2022) Design and mechanisms of asymmetric supercapacitors. Chem Rev 118:9233–9280. [https://doi.org/10.1021/acs.](https://doi.org/10.1021/acs.chemrev.8b00252) [chemrev.8b00252](https://doi.org/10.1021/acs.chemrev.8b00252)
- 2. Liu X, Liu CF, Xu S, Cheng T, Wang S, Lai WY, Huang W (2022) Porous organic polymers for high-performance supercapacitors. Chem Soc Rev 51:3181–3225. [https://doi.org/10.1039/D2CS0](https://doi.org/10.1039/D2CS00065B) [0065B](https://doi.org/10.1039/D2CS00065B)
- 3. Wang C, Liu T, Yang X, Ge S, Stanley N, Rountree E, Leng Y, McCarthy B (2022) Fast charging of energy-dense lithiumion batteries. Nature 611:485–490. [https://doi.org/10.1038/](https://doi.org/10.1038/S41586-022-05281-0) [S41586-022-05281-0](https://doi.org/10.1038/S41586-022-05281-0)
- 4. Gent WE, Busse GM, House KZ (2022) The predicted persistence of cobalt in lithium-ion batteries. Nat Energy 7:1132–1143. <https://doi.org/10.1038/S41560-022-01129-Z>
- 5. Baumann M, Häringer M, Schmidt M, Schneider L, Peters J, Bauer W, Binder J, Eil M (2022) Prospective sustainability screening of sodium-ion battery cathode materials. Adv Energy Mater 12:202202636. <https://doi.org/10.1002/AENM.202202636>
- 6. Zhao Y, Liu Q, Zhao X, Mu D, Tan G, Li L, Chen R, Wu F (2022) Structure evolution of layered transition metal oxide cathode materials for Na-ion batteries: issues, mechanism and strategies. Mater Today 62:271–295. [https://doi.org/10.1016/J.MATTOD.](https://doi.org/10.1016/J.MATTOD.2022.11.024) [2022.11.024](https://doi.org/10.1016/J.MATTOD.2022.11.024)
- 7. Giulia P (2022) Sustainable fexible supercapacitors. Nat Rev Mater 7:844.<https://doi.org/10.1038/S41578-022-00508-Y>
- 8. Huang L, Yao X, Yuan L, Yao B, Gao X, Wan J, Zhou P, Xu M, Wu J, Yu H, Hu Z, Li T, Li Y, Zhou J (2018) 4-Butylbenzenesulfonate modifed polypyrrole paper for supercapacitor with exceptional cycling stability. Energy Stor Mater 12:191–196. [https://](https://doi.org/10.1016/j.ensm.2017.12.016) doi.org/10.1016/j.ensm.2017.12.016
- 9. Liu X, Chen S, Xiong Z, Li K, Zhang Y (2022) Tungsten oxidebased nanomaterials for supercapacitors: mechanism, fabrication, characterization, multifunctionality, and electrochemical performance. Prog Mater Sci 130:100978. [https://doi.org/10.1016/J.](https://doi.org/10.1016/J.PMATSCI.2022.100978) [PMATSCI.2022.100978](https://doi.org/10.1016/J.PMATSCI.2022.100978)
- 10. Zhu Q, Zhao D, Cheng M, Zhou J, Owusu K, Mai L, Yu Y (2019) A New view of supercapacitors: integrated supercapacitors. Adv Energy Mater 9(36):1901081.<https://doi.org/10.1002/aenm.201901081>
- 11. Augustyn V, Simon P, Dunn B (2014) Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energ Environ Sci 7:1597–1614.<https://doi.org/10.1039/c3ee44164d>
- 12. Zhou Y, Qi H, Yang J, Bo Z, Huang F, Islam M, Lu X, Dai L, Amal R, Wang C, Han Z (2021) Two-birds-one-stone: multifunctional supercapacitors beyond traditional energy storage. Energ Environ Sci 14:1854–1896.<https://doi.org/10.1039/D0EE03167D>
- 13. Zhang C (2016) Supercapacitors: performance doping. Nat Energy 350:1508–1513.<https://doi.org/10.1038/nenergy.2016.6>
- 14. Xu T, Li Z, Wang D, Zhang M, Ai L, Chen Z, Zhang J, Zhang X, Shen L (2022) A fast proton-induced pseudocapacitive supercapacitor with high energy and power density. Adv Funct Mater 32:2107720. <https://doi.org/10.1002/ADFM.202107720>
- 15. Shao Y, El-Kady M, Sun J, Li Y, Zhang Q, Zhu M, Wang H, Dunn B, Kaner R (2018) Design and mechanisms of asymmetric supercapacitors. Chem Rev 118:9233-9280. [https://doi.org/10.](https://doi.org/10.1021/acs.chemrev.8b00252) [1021/acs.chemrev.8b00252](https://doi.org/10.1021/acs.chemrev.8b00252)
- 16. Gonçalves J, Silva M, Toma H, Angnes L, Martins P, Araki K (2020) Trimetallic oxides/hydroxides as hybrid supercapacitor electrode materials: a review. J Mater Chem A 8:10534–10570. <https://doi.org/10.1039/d0ta02939d>
- 17. Mariappan V, Krishnamoorthy K, Manoharan S, Pazhamalai P, Kim S (2021) Electrospun polymer-derived carbyne supercapacitor for alternating current line filtering. Small 17:2102971,<https://doi.org/10.1002/smll.202102971>
- 18. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797– 828. <https://doi.org/10.1039/c1cs15060j>
- 19. Poudel M, Kim A, Lohani P, Yoo D, Kim H (2023) Assembling zinc cobalt hydroxide/ternary sulfdes heterostructure and iron oxide nanorods on three-dimensional hollow porous carbon nanofber as high energy density hybrid supercapacitor. J Energy Storage 60:106713. [https://doi.org/10.1016/j.est.2023.](https://doi.org/10.1016/j.est.2023.106713) [106713](https://doi.org/10.1016/j.est.2023.106713)
- 20. Poudel M, Lohani P, Acharya D, Kandel D, Kim A, Yoo D (2023) MOF derived hierarchical ZnNiCo-LDH on vapor solid phase grown Cu_xO nanowire array as high energy density asymmetric supercapacitors. J Energy Storage 72:108220. [https://doi.org/10.](https://doi.org/10.1016/j.est.2023.108220) [1016/j.est.2023.108220](https://doi.org/10.1016/j.est.2023.108220)
- 21. Poudel M, Kim A, Ramakrishan S, Logeshwaran N, Ramasamy S, Kim H, Yoo D (2022) Integrating the essence of metal organic framework-derived ZnCoTe-N-C/MoS₂ cathode and ZnCo-NPS-N-CNT as anode for high-energy density hybrid supercapacitors. Compos Part B Eng 247:110339. [https://doi.org/10.1016/j.compo](https://doi.org/10.1016/j.compositesb.2022.110339) [sitesb.2022.110339](https://doi.org/10.1016/j.compositesb.2022.110339)
- 22. Moosavifard SE, Mohammadi A, Darzi ME, Kariman A, Abdi MM, Karimi G (2021) A facile strategy to synthesis graphenewrapped nanoporous copper-cobalt-selenide hollow spheres as an efficient electrode for hybrid supercapacitors. Chem Eng J 415:128662.<https://doi.org/10.1016/J.CEJ.2021.128662>
- 23. Gao Y, Zhao L (2022) Review on recent advances in nanostructured transition-metal-sulfide-based electrode materials for cathode materials of asymmetric supercapacitors. Chem Eng J 430:132745.<https://doi.org/10.1016/J.CEJ.2021.132745>
- 24. Chen H, Ma X, Shen P (2019) NiCo₂S₄ nanocores in-situ encapsulated in graphene sheets as anode materials for lithium-ion batteries. Chem Eng J 364:167–176. [https://doi.org/10.1016/j.cej.2019.](https://doi.org/10.1016/j.cej.2019.01.119) [01.119](https://doi.org/10.1016/j.cej.2019.01.119)
- 25. Chen W, Wei T, Mo L, Wu S, Li Z, Chen S, Zhang X, Hu L, Chen W (2020) \cos_2 nanosheets on carbon cloth for flexible all-solidstate supercapacitors. Chem Eng J 400:125856. [https://doi.org/10.](https://doi.org/10.1016/j.cej.2020.125856) [1016/j.cej.2020.125856](https://doi.org/10.1016/j.cej.2020.125856)
- 26. Yu X, Yu L, Wu H, Lou X (2015) Formation of nickel sulfde nanoframes from metal-organic frameworks with enhanced pseudocapacitive and electrocatalytic properties. Angew Chem 127:5421–5425.<https://doi.org/10.1002/ange.201500267>
- 27. Sun R, Liu S, Wei Q, Sheng J, Zhu S, An Q, Mai L (2017) Mesoporous N i S ₂ nanospheres anode with pseudocapacitance for high-rate and long-life sodium-ion battery. Small 13:1701744. <https://doi.org/10.1002/smll.201701744>
- 28. Pazhamalai P, Krishnamoorthy K, Manoharan S, Mariappan V, Kim S (2022) Monolithic integration of $MoS₂$ quantum sheets on solid electrolyte for self-charging supercapacitor power cell

governed by piezo-ionic effect. Sustain Mater Technol 33:e00459. <https://doi.org/10.1016/J.SUSMAT.2022.E00459>

- 29. Zeng Q, Tian S, Liu G, Yang H, Sun X, Wang D, Huang J, Yan D, Peng S (2022) Sulfur-bridged bonds boost the conversion reaction of the fexible self-supporting MnS@MXene@CNF anode for high-rate and long-life lithium-ion batteries. ACS Appl Mater Interfaces 14:6958–6966. [https://doi.org/10.1021/](https://doi.org/10.1021/ACSAMI.1C24417) [ACSAMI.1C24417](https://doi.org/10.1021/ACSAMI.1C24417)
- 30. Wen Y, Peng S, Wang Z, Hao J, Qin T, Lu S, Zhang J, He D, Fan X, Cao G (2017) Facile synthesis of ultrathin NiCo₂S₄ nano-petals inspired by blooming buds for high-performance supercapacitors. J Mater Chem A 5:7144–7152. [https://doi.org/](https://doi.org/10.1039/c7ta01326d) [10.1039/c7ta01326d](https://doi.org/10.1039/c7ta01326d)
- 31. Zhang L, Zuo L, Fan W, Liu T (2016) $NiCo₂S₄$ nanosheets grown on 3D networks of nitrogen-doped graphene/carbon nanotubes: advanced anode materials for lithium-ion batteries. ChemElectroChem 3:1384–1391. [https://doi.org/10.1002/celc.](https://doi.org/10.1002/celc.201600183) [201600183](https://doi.org/10.1002/celc.201600183)
- 32. Sun T, Huang C, Shu H, Luo L, Liang Q, Chen M, Su J, Wang X (2020) Porous $NiCo₂S₄$ nanoneedle arrays with highly efficient electrocatalysis anchored on carbon cloths as self-supported hosts for high-loading Li-S batteries. ACS Appl Mater Interfaces 12:57975–57986.<https://doi.org/10.1021/ACSAMI.0C20519>
- 33. Liu Y, Li Z, Yao L, Chen S, Zhang P, Deng L (2019) Confned growth of $NiCo₂S₄$ nanosheets on carbon nanosheets derived from eggplant with enhanced performance for asymmetric supercapacitors. Chem Eng J 366:550–559. [https://doi.org/10.1016/j.cej.2019.](https://doi.org/10.1016/j.cej.2019.02.125) [02.125](https://doi.org/10.1016/j.cej.2019.02.125)
- 34. Ning X, Li F, Zhou Y, Miao Y, Wei C, Liu T (2017) Confned growth of uniformly dispersed NiCo_2S_4 nanoparticles on nitrogendoped carbon nanofbers for high-performance asymmetric supercapacitors. Chem Eng J 328:599–608. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.cej.2017.07.062) [cej.2017.07.062](https://doi.org/10.1016/j.cej.2017.07.062)
- 35. Lu W, Yang M, Jiang X, Yu Y, Liu X, Xing Y (2020) Templateassisted synthesis of hierarchically hollow $C/NiCo₂S₄$ nanospheres electrode for high performance supercapacitors. Chem Eng J 382:122943.<https://doi.org/10.1016/j.cej.2019.122943>
- 36. Ma X, Guo Q, Zhang J, Su Z, Zhou S, Wei L, Li S, Yue F, Wågberg T, Hu G (2022) [CH3NH₃][M(HCOO)₃]-based 2D porous $NiCo₂S₄$ nanosheets for high-performance supercapacitors with high power densities. Chem Eng J 437:135337. [https://doi.org/](https://doi.org/10.1016/j.cej.2022.135337) [10.1016/j.cej.2022.135337](https://doi.org/10.1016/j.cej.2022.135337)
- 37. Xiang G, Meng Y, Qu G, Yin J, Teng B, Wei Q, Xu X (2020) Dualfunctional $NiCo₂S₄$ polyhedral architecture with superior electrochemical performance for supercapacitors and lithium-ion batteries. Sci Bull 65:443–451. <https://doi.org/10.1016/j.scib.2020.01.004>
- 38. Zheng Y, Wang X, Zhao W, Cao X, Liu J (2018) Phytic acidassisted synthesis of ultrafine $NiCo₂S₄$ nanoparticles immobilized on reduced graphene oxide as high-performance electrode for hybrid supercapacitors. Chem Eng J 333:603–612. [https://doi.](https://doi.org/10.1016/j.cej.2017.10.008) [org/10.1016/j.cej.2017.10.008](https://doi.org/10.1016/j.cej.2017.10.008)
- 39. Guo B, Yang T, Du W, Ma Q, Zhang L, Bao S, Li X, Chen Y, Xu M (2019) Double-walled N-doped carbon@NiCo₂S₄ hollow capsules as SeS_2 hosts for advanced Li-Se S_2 batteries. J Mater Chem A 7:12276–12282 <https://doi.org/10.1039/C9TA02695A>
- 40. Zhang Y, Zhang Y, Zhang Y, Si H, Sun L (2019) Bimetallic $NiCo₂S₄$ Nanoneedles anchored on mesocarbon microbeads as advanced electrodes for asymmetric supercapacitors. NanoMicro Lett 11:229–243.<https://doi.org/10.1007/s40820-019-0265-1>
- 41. Yu F, Chang Z, Yuan X, Wang F, Zhu Y, Fu L, Chen Y, Wang H, Wu Y, Li W (2018) Ultrathin NiCo₂S₄@graphene with a coreshell structure as a high performance positive electrode for hybrid supercapacitors. J Mater Chem A 6:5856-5861. [https://doi.org/10.](https://doi.org/10.1039/c8ta00835c) [1039/c8ta00835c](https://doi.org/10.1039/c8ta00835c)
- 42. Cui Y, Zhang J, Jin C, Liu Y, Luo W, Zheng W (2019) Ionic liquid-controlled growth of $NiCo₂S₄$ 3D hierarchical hollow

nanoarrow arrays on Ni foam for superior performance binder free hybrid supercapacitors. Small 15:1804318. [https://doi.org/](https://doi.org/10.1002/smll.201804318) [10.1002/smll.201804318](https://doi.org/10.1002/smll.201804318)

- 43. Li B, Song C, Rong J, Zhao J, Wang H, Yang P, Ye K, Cheng K, Zhu K, Yan J, Cao D, Wang G (2020) A new catalyst for urea oxidation: $NiCo₂S₄$ nanowires modified 3D carbon sponge. J Energy Chem 50:195–205.<https://doi.org/10.1016/j.jechem.2019.12.018>
- 44. Mariappan V, Krishnamoorthy K, Pazhamalai P, Natarajan S, Sahoo S, Nardekar S, Kim S (2020) Antimonene dendritic nanostructures: dual-functional material for high-performance energy storage and harvesting devices. Nano Energy 77:105248. [https://](https://doi.org/10.1016/j.nanoen.2020.105248) doi.org/10.1016/j.nanoen.2020.105248
- 45. Tian J, Cui N, Chen P, Guo K, Chen X (2021) High-performance wearable supercapacitors based on PANI/N-CNT@CNT fber with a designed hierarchical core-sheath structure. J Mater Chem A 9:20635–20644, <https://doi.org/10.1039/d1ta03663g>
- 46. Lang J, Zhang X, Liu B, Wang R, Chen J, Yan X (2018) The roles of graphene in advanced Li-ion hybrid supercapacitors. J Energy Chem 27:43–56. [https://doi.org/10.1016/j.jechem.](https://doi.org/10.1016/j.jechem.2017.11.020) [2017.11.020](https://doi.org/10.1016/j.jechem.2017.11.020)
- 47. Lu P, Jiang X, Guo W, Wang L, Zhang T, Boyjoo Y, Si W, Hou F, Liu J, Dou S, Liang J (2021) A Ni-Co sulfde nanosheet/carbon nanotube hybrid flm for high-energy and high-power fexible supercapacitors. Carbon 178:355–362. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.carbon.2021.02.103) [carbon.2021.02.103](https://doi.org/10.1016/j.carbon.2021.02.103)
- 48. El-Kady M, Shao Y, Kaner R (2016) Graphene for batteries, supercapacitors and beyond. Nat Rev Mater 1:16033. [https://doi.](https://doi.org/10.1038/natrevmats.2016.33) [org/10.1038/natrevmats.2016.33](https://doi.org/10.1038/natrevmats.2016.33)
- 49. Sun Z, Wei C, Tian M, Jiang Y, Rummeli M, Yang R (2022) Plasma surface engineering of $NiCo₂S₄@rGO$ electrocatalysts enables high-performance Li-O₂ batteries. ACS Appl Mater Interfaces 14:36753–36762.<https://doi.org/10.1021/ACSAMI.2C10635>
- 50. Wang P, Zhang Y, Yin Y, Fan L, Zhang N, Sun K (2018) In situ synthesis of $CuCo₂S₄@N/S$ -doped graphene composites with pseudocapacitive properties for high-performance lithium-ion batteries. ACS Appl Mater Interfaces 10:11708–11714. [https://](https://doi.org/10.1021/acsami.8b00632) doi.org/10.1021/acsami.8b00632
- 51. Brousse T, Blanger D, Long J (2015) To be or not to be pseudocapacitive. J Electrochem Soc 162:A5185–A5189. [https://doi.org/](https://doi.org/10.1149/2.0201505jes) [10.1149/2.0201505jes](https://doi.org/10.1149/2.0201505jes)
- 52. Laheäär A, Przygocki P, Abbas Q, Béguin F (2015) Appropriate methods for evaluating the efficiency and capacitive behavior of diferent types of supercapacitors. Electrochem Commun 60:21– 25.<https://doi.org/10.1016/j.elecom.2015.07.022>
- 53. Mariappan V, Krishnamoorthy K, Pazhamalai P, Sahoo S, Kesavan D, Kim S (2019) Two dimensional famatinite sheets decorated on reduced graphene oxide: a novel electrode for high performance supercapacitors. J Power Sources 433:126648. [https://doi.](https://doi.org/10.1016/j.jpowsour.2019.05.056) [org/10.1016/j.jpowsour.2019.05.056](https://doi.org/10.1016/j.jpowsour.2019.05.056)
- 54. Choudhary N, Li C, Moore J, Nagaiah N, Zhai L, Jung Y, Thomas J (2017) Asymmetric supercapacitor electrodes and devices. Adv Mater 29:1605336. [https://doi.org/10.1002/](https://doi.org/10.1002/adma.201605336) [adma.201605336](https://doi.org/10.1002/adma.201605336)
- 55. Dong S, Hu P, Li X, Hong C, Zhang X, Han J (2020) NiCo₂S₄ nanosheets on 3D wood-derived carbon for microwave absorption. Chem Eng J 398:125588. [https://doi.org/10.1016/j.cej.2020.](https://doi.org/10.1016/j.cej.2020.125588) [125588](https://doi.org/10.1016/j.cej.2020.125588)
- 56. Liang X, Nie K, Ding X, Dang L, Sun J, Shi F, Xu H, Jiang R, He X, Liu Z, Lei Z (2018) Highly compressible carbon sponge supercapacitor electrode with enhanced performance by growing nickel-cobalt sulfde nanosheets. ACS Appl Mater Interfaces 10:10087–10095. <https://doi.org/10.1021/acsami.7b19043>
- 57. Wang F, Wu X, Yuan X, Liu Z, Zhang Y, Fu L, Zhu Y, Zhou Q, Wu Y, Huang W (2017) Latest advances in supercapacitors: from new electrode materials to novel device designs. Chem Soc Rev 46:6816–6854.<https://doi.org/10.1039/c7cs00205j>
- 58. Zhu T, Wang J, Ho G (2015) Self-supported yolk-shell nanocolloids towards high capacitance and excellent cycling performance. Nano Energy 18:273–282. [https://doi.org/10.1016/j.nanoen.2015.](https://doi.org/10.1016/j.nanoen.2015.10.035) [10.035](https://doi.org/10.1016/j.nanoen.2015.10.035)
- 59. Shi J, Li X, He G, Zhang L, Li M (2015) Electrodeposition of high-capacitance 3D CoS/graphene nanosheets on nickel foam for high-performance aqueous asymmetric supercapacitors. J Mater Chem A 3:20619–20626.<https://doi.org/10.1039/c5ta04464b>

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.