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Abstract
Blended solid polymer electrolytes (BSPE) were prepared by mixing different molecular weight polymers PEO6 (Mw = 1 
× 106 g/mol), PEO5 (Mw = 1 × 105 g/mol), and PVDF (Mw = 5.25 × 105 g/mol) complexed with lithium salt. Conductivity 
and dielectric studies at different temperatures were carried out on these BSPE systems by varying the wt% of PEO5 and 
PVDF with respect to PEO6, keeping the wt% of lithium salt constant. The electrical characterizations of BSPE systems 
have been investigated using impedance spectroscopy in the frequency range 0.1–106 Hz. The conductivity data shows that 
inclusion of PEO5 and PVDF into the PEO6 matrix improved the overall lithium-ion dynamics in the polymer matrix. The 
composition, PEO6 (94 wt%)-PEO5 (3 wt%)/PVDF (3 wt%)-LiClO4, exhibited maximum conductivity of 6.44 × 10−4 Scm−1 
at 303 K. The DC conductivity variation with temperature of BSPE systems follows Arrhenius relation and variation of 
AC conductivities with frequency obeys Jonscher’s power law. The real and imaginary part of dielectric constant and the 
dielectric relaxation were also investigated.

Keywords  Blend polymer electrolyte · Ionic conductivity · Ion hopping rate · Ion concentration factor · Dielectric 
constant · Dielectric relaxation

Introduction

Solid polymer electrolytes have received considerable atten-
tion because of their safety, flexibility, processability, and 
electrochemical stability [1, 2]. Polymers, which have long 
–[C–H2–]– backbones and dynamic chains with high salt 
dissolving capability and ability to donate sufficient elec-
trons to form coordination with cations, are preferred over 
other amorphous systems [3–5].

In general, poly(ethylene oxide) (PEO), having both 
crystalline and amorphous phases, is highly preferred, as it 

satisfies most of the requirements of a solid polymer elec-
trolyte [6]. The highly flexible macromolecular chains in 
PEO not only help in the cation movement but also exhibit 
high mechanical and electrochemical stability [1]. However, 
PEO-based polymer electrolytes suffer from low ionic con-
ductivities at ambient temperature; hence, the amorphous 
phase of PEO needs to be enhanced to improve the ionic 
conductivity [1–5]. Numerous techniques such as incorpora-
tion of layered silicates, nanofillers, low molecular weight 
plasticizers, and blending with various kinds of polymers 
have been adopted to enhance the amorphous phase and 
hence the conductivity [7, 8].

One of the simple and cost-effective methods to improve 
conductivity is to blend two or more polymers of differ-
ent molecular weights. Polymer blend technique is a viable 
method as physical properties of the compositions can be 
controlled easily, helps to suppress the drawback of individ-
ual polymers, and enhances their useful properties [8–11]. 
However, the blending of polymer of different molecular 
weights does not change the chemical structure and chain 
of the polymer like in polymerization [12].

Various studies have reported that, when PEO-based pol-
ymer is blended with other polymers, they exhibited ionic 
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conductivity of the order of ~10−12 to ~10−5 Scm−1 at room 
temperature [5, 6, 9, 13]. It is also observed that PEO with 
poly(methylmethacrylate) (PMMA), poly(vinyl pyrrolidone) 
(PVP), poly(vinylidene fluoride) (PVDF), and poly(vinyl 
acetate) (PVAc) exhibited improved segmental motion of 
polymer, higher salt dissociation, and faster Li+ transporta-
tion and also enhanced the mechanical and thermal stability 
of polymer electrolytes [4–8].

In the present study, we report the effect of blending PEO 
of two different molecular weights with PVDF. The high 
molecular weight PEO is used as the host matrix. PVDF 
is known to have high dielectric constants, low dissipation 
factor, and good chemical, mechanical, and thermal stabil-
ity. Further PVDF also helps to reduce the crystallinity of 
PEO-based systems [13, 14]. A small amount of PEO with 
lesser molecular weight is found to help blending the PVDF 
effectively into the system.

It is reported that lithium perchlorate, LiClO4, (-less 
hygroscopic and stable at environmental conditions as com-
pared to other Li salts) promotes higher salt dissociation and 
thus provides a greater number of ions [15, 16]. Further, 
LiClO4 is highly soluble in most of the organic solvents, 
dissociates easily, and helps in reducing the crystalline phase 
of the polymer backbone. This also lowers the energy bar-
rier for segmental motion which is crucial to ion conduc-
tion [16–19]. Presence of high Li+ ion coordination with 
oxygen present in the PEO helps in Li+ ion transportation 
[1] whereas fluorine in the PVDF is unstable with Li+ ions, 
leading to poor stability and lower performance [16, 20, 21]. 
It is reported that inclusion of lesser molecular weight PEO 

is also an effective way to enhance the conductivity of PEO-
based systems [22].

Materials and methods

Preparation of blended solid polymer electrolyte

BSPE compositions were prepared by varying the PEO6 (Mw 
= 1 × 106 g/mol), PEO5 (Mw = 1 × 105 g/mol), and PVDF 
(Mw = 5.25 × 105 g/mol) keeping the lithium salt concentra-
tion constant (20 wt%). The PEO6 dissolved in acetonitrile 
(ACN) was blended with PEO5 and PVDF mix (which were 
dissolved separately in ACN and N-methyl-2-pyrrolidone 
(NMP), respectively). The solutions were mixed and stirred 
for about 12 h to attain homogeneity. To this homogenous 
solution, desired amount of lithium perchlorate (LiClO4) salt 
was dispersed. To ensure the even dispersion, the solution 
was latter sonicated using a digital ultrasonicator, followed 
by constant stirring for about 24 h. The obtained viscous 
solution was casted on a Petri dish and then transferred to 
hot air oven, maintained at 30 °C, for 24 h in order to evapo-
rate solvents slowly, thus resulting in a free-standing and 
flexible polymer film (Fig. 1a–c). Figure 1d shows the SEM 
image of optimal composition P3 which illustrates the film 
consistency. The dried samples were stored in glove box for 
further testing. The following compositions of blend systems 
were prepared using the above technique:

1.	 PEO:Li – 100 wt% PEO6

Fig. 1   Blended solid polymer 
electrolyte sample a free stand-
ing film, b flexibility of film, c 
rollability of film, and d SEM 
image of composition P3 at 
×10000 magnification

a) b)

c) d)
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2.	 P1 – 98 wt% PEO6 + 1 wt% PEO5 + 1 wt% PVDF
3.	 P2 – 96 wt% PEO6 + 2 wt% PEO5 + 2 wt% PVDF
4.	 P3 – 94 wt% PEO6 + 3 wt% PEO5 + 3 wt% PVDF
5.	 P4 – 92 wt% PEO6 + 4 wt% PEO5 + 4 wt% PVDF
6.	 P5 – 90 wt% PEO6 + 5 wt% PEO5 + 5 wt% PVDF

Characterization

X-ray diffraction (XRD) studies were carried using Cu-Kα 
radiation of wavelength 1.5406 Å using SmartLab X-Ray 
Diffractometer, in the range 10° to 40° at a scanning rate of 
0.02° s−1 in order to analyze the crystallinity of prepared 
samples [4, 9]. The interactions between the polymers and 
salt were analyzed with Perkin Elmer Fourier Transform 
Infrared (FTIR) spectrometer in the wave number range 650 
to 4000 cm−1 with resolution of 1 cm−1 [23]. Thermal analy-
sis of pure PEO, PVDF, and BSPE systems have been per-
formed, in order to see the change in the phase transition 
temperatures and enthalpy of melting, using Shimadzu DSC-
60 Differential Scanning Calorimetry (DSC) in the range of 
30 to 100 °C with heating rate of 10 °C min−1 under inert 
(N2) atmosphere [2, 4]. The relative percentage of crystal-
linity (χc) in the BSPE systems were estimated using the 
relation χ

c
=

ΔH
m

ΔH
0

× 100% where ΔHm is the enthalpy of 
melting of various composition and ΔH0 is the enthalpy of 
melting of PEO6 [24, 25].

The electrical characterization of the BSPE systems were 
carried out on Keithley source meter 2400 and CHI608D 
electrochemical workstation. The ion transport numbers of 
the BSPE systems were evaluated using Wagner’s polariza-
tion technique [26, 27], and it was found to be between 0.90 
and 0.97. This implies that the charge transport in these sys-
tem is mainly due to the movement of ions [28]. An equiva-
lent circuit model for the compositions was modelled using 
Electrochemical Impedance Spectroscopy (EIS) spectrum 
analyzer software (open source).

Results and discussion

XRD analysis

Figure 2 shows XRD spectra of BSPE systems. All the 
XRD patterns show two prominent Bragg peaks around 
2θ ~ 19.14° and 23.24° with a diffused background. This 
indicates the semi-crystalline phase of PEO polymer from 
(120) and (112) plane, respectively [29]. The low intense 
peaks at 2θ ~ 26.17°, 27.86°, 36.19°, and 39.72° corre-
spond to α phase of PVDF [13, 14]. The β phase of PVDF 
was not observed in the blend systems due to the relatively 

low wt% of PVDF. The change in peak intensities and shift 
of these peaks reveals the interaction of PEO5 and PVDF 
polymers in the modification of ordered arrangement of 
PEO6 polymer [29]. It is observed that with addition of 
PEO5 and PVDF polymers, the width of the prominent 
peaks were increasing with reduction in intensities. The 
composition P3 achieved maximum broadening and less 
intensity compared to the other compositions. No signifi-
cant peaks corresponding to LiClO4 were observed, which 
implies the absence of excess salt in the blended system [6, 
30]. The crystallite size (Scherrer length) and d-spacing 
of various compositions were estimated using Scherrer 
equation [31], and the values are tabulated in Table 1. It 
is observed that, with the increase in the wt% of PEO5 
and PVDF, the d-spacing and crystallite size decrease up 
to composition P3. The reduction in crystallite size indi-
cates the enhancement of amorphous phase in the BSPE 
systems. Further addition of higher wt% of PEO5 and 
PVDF resulted in increase of d-spacing and crystallite 
sizes (Table 1).

Fig. 2   XRD patterns of the BSPE systems

Table 1   d-spacing and crystallite sizes of the BSPE systems

Composition Peak 1 @ 19° Peak 2 @ 23°
d-spacing (Å) Scherrer 

length 
(nm)

d-spacing (Å) Scherrer 
length 
(nm)

P1 4.64 64.76 3.83 12.11
P2 4.63 60.14 3.82 11.77
P3 4.56 49.54 3.78 11.77
P4 4.64 60.13 3.82 12.11
P5 4.67 70.14 3.85 12.28
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Different scanning calorimetry analysis

Figure 3 shows the DSC thermograms of pure PEO, PVDF, and 
BSPE systems. The thermal parameters, i.e., melting tempera-
ture (Tm), enthalpy of melting (ΔHm), and percentage of crystal-
linity (χc) of polymers, obtained from the DSC measurements, 
are tabulated in Table 2. The sharp endothermic peak at 70.43 
°C corresponds to the melting temperature (Tm) of pure PEO6. 
On the addition of PEO5 and PVDF, the melting peak gets 
broaden and shifts towards the lower temperature, with the com-
position P3 exhibiting the lowest melting temperature (Table 2). 
However, it was observed that the further addition of PEO5 and 
PVDF polymers increased the melting temperature shown in 
Table 2. Also, the composition P3 exhibited least percentage 
crystallinity among all the prepared samples. The lower percent-
age of crystallinity and melting temperature for composition P3 
indicate an improvement in the amorphous phase of the poly-
mer, which is also confirmed by XRD results. The enhancement 
in amorphous phase is associated with highly flexible polymer 
chains, leading to improved ion mobility [25, 32–34].

FTIR analysis

The FTIR spectra of pure PEO and BSPE systems are shown 
in Fig. 4a, b. From the figure, it is observed that various com-
position of polymer blends exhibited significant change in the 
peak positions, vibrational band intensities, band widths, and 
even emergence of new peaks. In all the compositions, the peak 
observed at 1640 cm−1 represents vibration band of LiClO4, and 
the peaks at 652 cm−1 and 1093 cm−1 represent internal vibra-
tion mode and antisymmetric stretching mode of ClO4

− [35, 
36]. The peaks observed at 839 cm−1, 1282 cm−1, and 1341 
cm−1 show CH2 rocking, twisting, and wagging of PEO chain, 
respectively [37]. Peaks at 944 cm−1, 1306 cm−1, and 1504 cm−1 

confirm the presence of PVDF in the polymer blend systems. 
The peaks at 944 cm−1 and 1306 cm−1 represent C=C bend-
ing and CF stretching of PVDF, respectively [13, 14]. The band 
appearing around 3472 cm−1 represents OH stretching, and it 
is seen that peak broadens with increase in PVDF concentra-
tion [38]. The PEO exhibits characteristic triplet peaks at 1060 
cm−1, 1093 cm−1, and 1144 cm−1 [32]. The triplet peaks broaden 
whereas the peaks at 1060 cm−1 and 1144 cm−1 vanish as PVDF 
concentration increased. The new peak at 1504 cm−1 indicates 
the deformation of CH2, and the other characteristic peaks were 
also shifted for different compositions [23]. These changes 
imply polymer-polymer interaction and polymer salt interac-
tions, which is also confirmed by the XRD and DSC results [32].

Figure 5 shows the FTIR spectra of composition P3 in the 
range of 1600 cm−1 to 1680 cm−1 that corresponds to LiClO4 
vibration. The spectra were deconvoluted to investigate the free 
ions and ion pair concentrations. The deconvolution clearly 
reveals the presence of two peaks at 1648 cm−1 and 1668 cm−1 
(Fig. 5). The first peak is generally attributed to the presence of 
free ions and second peak to ion pairs [39, 40]. The fraction of 
free ions and ion pairs was calculated from area under the curve 
[36, 40–42]. The fraction of free ions for the optimal composi-
tion P3 was found to be 16% higher than the sample PEO:Li.

a b

Fig. 3   a DSC plots for pure PEO, pure PVDF, and BSPE systems and b DSC plot of optimal composition P3

Table 2   Melting temperature, enthalpy of melting, and % crystallinity 
of pure PEO and BSPE systems

Composition Tm (°C) ΔHm (J/g) χc (%)
PEO 70.44 64.06 100
P1 53.07 37.00 57.75
P2 50.42 33.80 52.76
P3 50.21 23.89 37.29
P4 56.58 35.60 55.57
P5 57.89 40.35 62.98
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Impedance spectroscopic studies

Figure 6a shows the Nyquist plots for BSPE systems at 303 
K. The plot consists of two distinct features, i.e., an incom-
plete semicircle and an inclined straight line. The intercept 
of the high frequency semicircle on the real axis (Z′) repre-
sents bulk resistance (Rb), and the low frequency-inclined 
straight line shows the electrode polarization [19, 39, 40]. 
It was observed that among all the prepared samples, the 
composition P3 (96 wt% PEO6 + 3 wt% PEO5 + 3 wt% 
PVDF) exhibited lowest bulk resistance value at ambient 
temperature.

Figure 6b shows the impedance plots of the optimal 
composition (P3) at different temperatures. With increase 
in temperature, the intercept shifted towards lower side 
of the real Z axis, i.e., the bulk resistance of the system 

a b
Fig. 4   FTIR spectra for pure PEO and BSPE system ranges a 650 cm−1 to 2000 cm−1 and b 2000 cm−1 to 4000 cm−1

Fig. 5   FTIR-deconvoluted spectra of optimal composition P3 in the 
range of 1600 cm−1 to 1680 cm−1

a b

Fig. 6   Impedance plots of a BSPE systems at 303 K and b optimal composition P3 at different temperatures
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decreases with increase in temperature [19]. Increase in 
temperature improves the chain flexibility and segmental 
motion of the amorphous phase which in turn decreases 
the bulk resistance of the system [6, 7].

Using EIS spectrum analyzer, the Nyquist plots of the 
BSPE systems and optimal composition (P3) were ana-
lyzed. All the data were fit to an electrical equivalent cir-
cuit (inset of Fig. 6a, b) that consists of parallel R1–CPE-1 
(constant phase element) with an additional double layer 
capacitance CPE-2 in series, associated with electrode-
electrolyte interface. The experimental data (open circles) 
coincide well with fit data (straight line) as seen in Fig. 6a, 
b. The bulk resistance and CPE-2 values of all the BSPE 
systems, from the fit parameters, are found to be in the 
range of 186 to 1116 Ω and 0.135 to 43 μF, respectively, 
at 303 K. The optimal composition P3 exhibited the lowest 
bulk resistance of 186 Ω and maximum CPE-2 of 43 μF, 
which is attributed to larger salt dissociation, greater ion 
mobility, and high charge accumulation at the electrode-
electrolyte interfaces [41, 42].

Frequency‑dependent ionic conductivity

The frequency dependence of real part of conductivity, for 
PEO:Li and BSPE systems at 303 K, is shown in Fig. 7. 
It is seen that the variation of conductivity at low fre-
quency region is independent of frequency whereas in the 
high frequency region, conductivity rises as the frequency 
increases, following the Jonscher’s power law [43, 44].

The pre-exponential factor A, power law exponent n, 
DC conductivity σdc, and the ion hopping rate ωH values 
were estimated using Jonscher’s power law, and the values 
are tabulated in Table 3 [44–46]. It is observed that the DC 
conductivity, σdc, and ion hopping rate, ωH, increased till 
3 wt% PEO (Low Mw) + 3 wt% PVDF (optimal compo-
sition P3) which is comparable to similar blend systems 
reported with different salt compositions [1, 47–49]. In 
further addition of PEO5 and PVDF, the ionic conductivity 
and ion hopping rate were found to be decreasing for the 
prepared BSPE systems.

Using Barton-Nakajima-Namikawa (BNN) relation, 
mobile ion concentration factor K was also estimated for 
PEO:Li and BSPE systems and is shown in Table 3 [44, 
46]. The K factor was increased by two order magnitude 
for the optimal composition (P3) when compared with 
PEO:Li composition.

From the table, it is seen that σdc, ωH, and K values 
increased with the addition of PEO5 and PVDF. The 
enhancement observed in all these parameters could be 
attributed to the creation of free volume or voids due to 
large number of chain ends and entanglement of PEO5 and 
PVDF. This in turn enhances the ion hopping conduction 
within the blend polymer chain dynamics [50, 51]. Apart 
from this, PEO5 and PVDF polymers can also improve 
the salt dissociation and create flexible pathway within 
the blend system, thus facilitating better ion mobility [6]. 
However, at higher concentration of PEO5 and PVDF, all 
these parameters were found to be decreasing. This is due 
to the increased viscosity of the blend systems, which hin-
dered the ionic mobility and segmental motion [7, 16, 20].

Fig. 7   Frequency-dependent conductivity of PEO:Li and BSPE sys-
tems at 303 K

Table 3   Jonscher’s power law 
fitting and transport parameters, 
A, n, σdc, ωH, and K for PEO:Li 
and BSPE systems at 303 K

Composition σdc (Scm−1) A n ωH (s−1) Concentration 
factor K (Scm−1 
K s)

PEO:Li 2.03 × 10−6 1.53 × 10−12 0.74 1.88 × 108 3.27 × 10−12

P1 5.22 × 10−5 2.20 × 10−09 0.50 5.63 × 108 2.81 × 10−11

P2 6.37 × 10−5 8.90 × 10−11 0.67 6.37 × 108 3.03 × 10−11

P3 6.44 × 10−4 7.23 × 10−11 0.78 8.13 × 108 2.4 × 10−10

P4 8.77 × 10−5 2.1 × 10−12 0.91 2.37 × 108 1.12 × 10−10

P5 5.37 × 10−5 3.1 × 10−11 0.77 1.27 × 108 1.29 × 10−10
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Temperature‑dependent ionic conductivity

The variation of log σdc as a function of temperature is 
plotted and shown in Fig. 8a. All the compositions exhib-
ited linear behavior obeying Arrhenius relation [52–55]. 
It is seen that the conductivity of PEO:Li and BSPE 
systems increased with increase in temperature. As per 
the Arrhenius theory, polymer matrix expands on heat-
ing creating free volume for ionic movement and allows 
ions to move easily from one site to another. This in turn 
enhances the segmental motion of polymer and eases the 
translational ionic movement which can cause increased 
ionic conductivity [8, 56].

Using the Arrhenius plot, activation energy for PEO:Li 
and BSPE systems was evaluated and found to be between 
0.491 and 0.198 eV (Fig. 8b). The optimal composition 
(P3) exhibited the least activation energy (0.198 eV). This 
clearly shows that the addition of PEO5 and PVDF poly-
mers helps the ions to overcome the energy barrier easily 
and thus enhancing the ionic conductivity [8].

Dielectric studies

The variation in dielectric constant and dielectric loss as a 
function of frequency for PEO:Li and BSPE systems at 303 
K and 323 K are shown in Fig. 9a, b. It is observed that all 

a b

Fig. 8   a Temperature-dependent ionic conductivity of PEO:Li and BSPE systems and b variation of activation energy of PEO:Li and BSPE sys-
tems

a b

Fig. 9   Variation of a dielectric constant and b dielectric loss with frequency for PEO:Li and BSPE systems at 323 K
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the compositions exhibited the similar dielectric behavior 
with respect to frequency. The higher value of dielectric con-
stant and dielectric loss at low frequency is due to electrode 
polarization. At low frequencies, the dipoles have sufficient 
time to align themselves with respect to applied electric 
field. But as the frequency increases, the dipoles will not 
have sufficient time to align themselves along the field direc-
tion; hence, the value of dielectric constant reduces [37, 39]. 
It is also observed that with increase in temperature, dielec-
tric constant and dielectric loss increase, since at higher 
temperature, free volume of the material increases which 
improves the structural dynamic of the polymer, polariza-
tion, and ion migration [37].

It is found that the optimal composition P3 exhibited the 
higher value of dielectric constant and dielectric loss due to 
higher dissociation of salt [42]. The variation in dielectric 
constant value in different composition confirms the effect 
of polymer blending which is also evident by DSC, XRD, 
and FTIR data.

Figure 9b shows the total dielectric loss ε ′ ′total, which 
generally consists of two parts, i.e., the bulk conductivity 
and the true dielectric loss. The peak appearing in the imagi-
nary part of the dielectric loss spectra is due to the energy 
absorbed by the permanent dipoles in the samples. For poly-
mer electrolyte with significant conductivity, the dielectric 
relaxation peaks may be hidden by the relaxation process of 
dipoles, originating from the polarization of mobile charge 
carrier present in the sample. So, in order to observe the true 
dielectric relaxation process, the observed ε ′ ′total should be 
corrected by removing conductivity part using the relation 
ε ′ ′corr = ε ′ ′total − σ0/ε0ω [57]. The obtained values of dielec-
tric relaxation ε″corr and the total dielectric loss ε″total are 
plotted as a function of frequency for PEO:Li, and BSPE 
systems at 303 K and 323 K are shown in Fig. 10a, b. The 
ε″corr peaks shifted towards lower frequency side of the 
spectra on addition of PEO5 and PVDF polymers up to 3 
wt% PEO5 + 3 wt% PVDF (optimal composition P3). There-
after that, the peaks shifted towards the higher frequency 

side of the spectra on increasing the concentration of PEO5 
and PVDF. This spectra (Fig. 10) attribute to heterogenous 
segmental mobility due to PEO5 and PVDF [57–59]. This 
heterogenous mobility is induced due to the high and low 
mobile components, different chain ends, and loop length of 
the polymers [58–60].

Conclusion

Novel blend solid polymer electrolyte (BSPE) systems were 
prepared by adding PEO5 and PVDF into PEO6 polymer 
matrix. The addition of PEO5 and PVDF polymers enhanced 
the amorphous phase and structural dynamics of PEO6 by cre-
ating extra free voids for lithium-ion mobility. The XRD and 
DSC results revealed that the presence of PEO5 and PVDF 
polymers resulted in the reduction of crystalline nature of the 
samples at lower temperature (up to 303 K). FTIR data showed 
various changes in peak position, vibrational intensity, band 
width, and emergence and disappearance of peaks which con-
firmed the polymer-polymer and polymer-salt interactions. The 
ion transport numbers (> 0.9) indicate that the charge trans-
port in these BSPE systems is mainly due to the movement 
of ions. The impedance data is analyzed using the equivalent 
electrical circuit which fits well with the experimental data. 
The optimal composition P3 (94 wt% PEO6 + 3 wt% PEO5 + 3 
wt% PVDF with LiClO4) exhibited lower crystallinity, melting 
temperature, and activation energy, with better hopping rate, 
ion concentration factor. These parameter lead to higher ionic 
conductivity value of 6.44 × 10−4 Scm−1 at 303 K which is 
one order higher than the similar systems reported elsewhere. 
The ionic conductivity studies on these BSPE systems obeyed 
the Arrhenius relationship and Jonscher’s power law. Thus, the 
addition of PEO5 and PVDF polymers to PEO6 enhance the 
ionic conductivity of the BSPE systems, and such systems can 
be promising lithium conducting electrolytes for energy stor-
age devices and other applications. However, there are several 
concerns and challenges related to BSPEs like, compatibility 

Fig. 10   Frequency-dependent 
ε″total and ε″corr of PEO:Li and 
BSPE systems at a 303 K and 
b 323 K
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and interfacial interaction between the polymers in the blend, 
achieving well controlled and uniform distribution of differ-
ence polymer components within the blend, coupled with, 
variation in molecular weight and chemical structure that 
can impact the overall stability and performance of the blend 
polymer electrolyte systems. Despite these critical opinions, 
studies have reported promising results which overcomes the 
limitations and harness the potential benefits of these complex 
BSPE systems.
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