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Abstract
The task of designing multifunctional nanomaterials for high-performing electrochemical energy conversion and storage devices 
has proven to be extremely challenging. Here, we report the fabrication of a reduced graphene oxide (rGO)-based ternary nano-
composite NiO@MnO2@rGO having a range of active sites for enhanced electrochemical activity. Powder-XRD, FE-SEM, 
TEM, and XPS techniques were used to analyze the prepared samples, revealing that the NiO@MnO2@rGO nanocomposite 
had smooth cubic particles and 2D rGO nanosheets, with a particle size of 70 nm. The resulting nanostructure included a 
mesoporous backbone with NiO and  MnO2 NPs enclosed between rGO layers, featuring various active sites such as Ni, Mn, and 
carbon-based species. The novel NiO@MnO2@rGO ternary nanocomposite material combines NiO,  MnO2, and rGO to achieve 
improved electrochemical performance in a cost-effective and scalable manner for supercapacitors. Notably, NiO@MnO2@rGO 
modified structure exhibited excellent conductivity due to the presence of rGO, demonstrating a high charge storage capacity 
of 536  Fg−1 at a current density of 1  Ag−1. Furthermore, the nanocomposite displayed exceptional stability, with a capacitance 
retention of approximately 93% after 3000 cycles. These remarkable properties make the NiO@MnO2@rGO nanocomposite a 
promising solution to meet future energy demands in a cost-effective manner, addressing the need for sustainable energy storage.

Keywords Ternary composites · Chemical oxidation states · Specific capacity · Cyclic stability

Introduction

Due to the drastic growth of population, and increased indus-
trial development, there are inadequate energy resources and 
enormous environmental issues. This can be overcome by an 
alternate option. Hence, this search led to the intensively devel-
oping and sensational topic, the ‘supercapacitors’ [1]. Super-
capacitors are the upraising energy storage devices. They are 
known for their low internal resistance, higher rate of energy 

storage, and delivery with very high specific capacitance. In 
addition to that, they have high power density, longer life, are 
flexible, weightless, and have very less maintenance. There are 
three major components in a supercapacitor, which are elec-
trodes, a separator, and an electrolytic solution since they work 
on the principle of electrochemical reaction. Among these com-
ponents, choosing the exquisite electrode plays a vital role in 
the performance of the supercapacitor [2]. There are three cat-
egories of supercapacitors depending on the principle of energy 
storage. The primary type of supercapacitor is Electric Double 
Layer Capacitor, which is also called an EDLC supercapaci-
tor. Here the energy is stored between the electrodes and the 
electrolytic solution called the Helmholtz double layer using 
electrostatic interaction. Generally, carbon materials are used 
as electrodes for EDLC supercapacitors [3].

The secondary type is the pseudocapacitors. Unlike EDLC, 
here charge transfers between the electrode and the electro-
lyte through the redox reaction. Active carbon, carbon fiber, 
carbon gel, and other porous carbon materials with high sur-
face areas are frequently employed as electrode materials for 
EDLCs. The basic electrode used here is metal oxides and 
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conducting polymers. The final category is the hybrid capaci-
tor. This uses both the mechanism of EDLC and pseudoca-
pacitors to achieve greater energy and power densities.

Further, the hybrid is grouped into three different kinds 
based on the electrode used; asymmetric, composite, and bat-
tery-type hybrid supercapacitor. The suitable electrode mate-
rials for supercapacitors, such as  RuO2 and  IrO2, have high 
specific capacitance values and high cycle capacities, which 
has led to an increase in interest in this area [4, 5]. It has been 
determined that the local structures of hydrous ruthenium oxide 
with disordered structures maintaining easy transport paths are 
the reason why the capacitance can reach a high value of 720 
 Fg−1. Despite these materials' exceptional performance, their 
high cost and toxicity prevent their widespread commercial 
use [6, 7]. In order to increase the rate capability of ruthenium 
oxide and lower its price, carbon materials have been added 
to it. However, because porous carbons have a lower density 
than hydrous ruthenium oxide, the resulting volume increase 
is not desired for small and light energy devices.  NiOx,  MnOx, 
 CoOx, and other alternatives have been developed recently as 
replacements for  RuO2 and  IrO2 in an effort to reduce the cost 
of electrode material while employing environmentally benign 
materials [8–10]. However, these inexpensive transition metal 
oxides exhibit smaller potential windows or poorer electro-
chemical-specific capacitance. As a result, numerous studies 
have been carried out to enhance these materials' capacitance 
performance, cycle capacity, and potential window [11].

Various materials possess notable electrochemical prop-
erties. For instance, metal–organic frameworks (MOFs) can 
be transformed into carbon materials with high surface area 
and porosity, resulting in improved electrochemical perfor-
mance.  MX2 nanosheets, such as  MoS2 and  WS2, exhibit a 
layered structure, high electrical conductivity, and excellent 
electrochemical properties, showing promise for supercapaci-
tor applications. When  MX2 nanosheets are combined with 
carbon materials like graphene or carbon nanotubes, they 
synergistically enhance the electrical conductivity and charge 
storage capacity of supercapacitor electrodes. MXenes, such 
as  Ti3C2Tx, possess high surface area, good electrical con-
ductivity, and excellent capacitance, making them suitable 
for high-performance supercapacitors [12–14]. Integrating 
 MX2 nanosheets with conducting polymers like polyaniline or 
polypyrrole enhances the charge storage capacity and cycling 
stability of supercapacitor electrodes. The combination of 
MOFs and carbon nanotubes improves electrical conductiv-
ity and pore accessibility, leading to enhanced supercapacitor 
performance. Hybrid structures of graphene and  MX2 materi-
als exhibit high electrical conductivity, large surface area, and 
efficient charge transfer, resulting in the superior performance 
of supercapacitor electrodes. Incorporating MOFs into metal 
oxide structures like  Co3O4 or NiO improves capacitive behav-
ior, stability, and ion diffusion kinetics [15]. Hybrid structures 
combining  MX2 nanosheets and graphene oxide demonstrate 

synergistic effects, leading to improved charge storage capacity 
and cycling stability in supercapacitor electrodes.

NiO@MnO2@rGO offers several advantages compared 
to other materials. The combination of NiO,  MnO2, and rGO 
creates a synergistic effect, where each component contributes 
unique properties like high specific capacitance, improved elec-
trical conductivity, and enhanced structural stability. NiO and 
 MnO2 exhibit high theoretical capacitance and pseudocapaci-
tive behavior, while rGO provides a conductive framework for 
efficient charge transfer, resulting in enhanced energy storage 
capacity [16–18]. Incorporating rGO in the NiO@MnO2 com-
posite mitigates volume changes and structural degradation dur-
ing charge–discharge cycles, leading to improved cycling stability 
and extended electrode lifespan [19, 20]. The presence of rGO 
facilitates rapid ion diffusion and electrolyte penetration, enhanc-
ing the charge–discharge rate capability [21–23]. Overall, the 
combination of NiO,  MnO2, and rGO provides a larger surface 
area, enabling more active sites for electrochemical reactions and 
promoting efficient utilization of the electrode material.

Due to its high electrochemical performance, eco-
friendliness, and inexpensive cost, nickel oxide seems to be 
a prospective electrode material for pseudocapacitors [24]. It 
is commonly known that materials with nanostructures have 
unique and fascinating properties that are better than those of 
their bulk equivalents [25]. As a result, electrode materials 
for supercapacitors with nanoscale crystalline particle sizes 
would exhibit high specific surface areas, which lead to strong 
electrochemical activities and superior capacitive performance. 
Due to its physical and chemical features, manganese oxide 
 (MnOx) has attracted a lot of attention for use in electrochemical 
supercapacitors, ion exchange, catalysis, and other fields [26]. 
For electrochemical supercapacitors in particular, manganese 
oxide is regarded as the most promising electrode material 
because of its affordability, good electrochemical reactivity, and 
environmental compatibility. Carbon-based nanomaterials such 
as carbon nano-onions, carbon nanofibers, carbon nanotubes, 
reduced graphene oxide, graphene, and nitrogen (N) modified 
graphene are now regarded as excellent electroactive electrode 
nanomaterials that provide exceptional electrochemical 
properties for electrochemical capacitors [27, 28]. Because 
of its amazing electrical, thermal, and optical properties 
and wide range of applications, reduced graphene oxide has 
drawn the most attention of any of them. To enable high 
specific capacitance (CS) and cycling stability, NiO and  MnO2 
morphologies and their composite with carbon structures/
metal are heavily optimized. Recently, successful preparation 
of nickel oxide and manganese oxide has occurred [29]. The 
hydrothermal method is one of the chemical synthesis methods 
for the synthesis of nanostructured materials that are the easiest 
to regulate when compared to electrodeposition, the sol–gel 
technique, and template synthesis [30].

The literature evidence of rGO-wrapped metal oxide and 
its electrochemical performance is stated below. Youyi et al. 
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[31] chemically reduced graphene oxide (rGO) sheets during 
hydrothermal treatment and utilized them as a platform for the 
in-situ growth of  Co3O4 nanoparticles with a size of 20 nm, 
resulting in the formation of an rGO–Co3O4 composite. In a 
two-electrode cell, the composite electrode exhibits a specific 
capacitance of 472  Fg−1 when the scan rate is 2 mV/s. As 
the scan rate is increased to 100 mV/s, the composite retains 
82.6% of its capacitance. Similarly, Wei et al. [32] put forward 
an environmentally friendly approach was utilized to prepare 
composites of reduced graphene oxide (rGO) and NiO. In this 
method, hydrogen gas was used as the reducing agent to convert 
the graphene oxide to its reduced form. The resulting NiO/rGO 
composite was employed as a hybrid capacitor electrode and 
exhibited excellent performance. At a discharge current den-
sity of 0.38  Ag−1 in a 6.0 M KOH electrolyte, the composite 
achieved a maximum specific capacitance of approximately 428 
 Fg−1. Li et al. [33] proposed a straightforward two-step synthe-
sis approach devised to fabricate a fiber electrode composed of 
nitrogen-doped reduced graphene oxide (NGC), multi-walled 
carbon nanotubes (MWCNTs), and manganese dioxide  (MnO2) 
for flexible all-solid-state supercapacitors. The NGC/MnO2-2 h 
fiber electrode demonstrated a higher specific capacitance of 
367.7  Fcm−3 at a current density of 0.5  Acm−3 and exhibited 
outstanding cycling stability.

These reported works on rGO-wrapped metal oxide com-
posites for supercapacitor electrodes lack detailed analysis of 
the long-term stability and degradation mechanisms, which 
are crucial for assessing their practical applicability. Addi-
tionally, the scalability and cost-effectiveness of the synthe-
sis methods employed in these studies need to be further 
explored to enable large-scale production and commercial 
viability of these materials [34]. In contrast to the limita-
tions mentioned in the reported works, the NiO@MnO2@
rGO nanocomposite addresses these concerns by providing 
insights into its long-term stability and degradation mecha-
nisms. Extensive investigations on the electrochemical per-
formance and structural integrity of the composite under 
various operating conditions are conducted, highlighting its 
potential for practical applicability. Furthermore, the synthe-
sis method employed for NiO@MnO2@rGO nanocompos-
ite offers scalability and cost-effectiveness, paving the way 
for large-scale production and commercial viability. The 
novelty of this material lies in its synergistic combination 
of NiO,  MnO2, and rGO, which enables enhanced specific 
capacitance, improved electrical conductivity, and superior 
structural stability, making it a promising candidate for high-
performance supercapacitor electrodes.

In this work, the NiO@MnO2 was synthesized by 
hydrothermal technique, and the electrochemical performance 
was enhanced by the incorporation of reduced graphene oxide 
(rGO) in its lattice by ultrasonication method. The NiO@
MnO2@rGO ternary nanocomposite material is a cost-
effective and promising option for supercapacitor electrodes. 

Unlike other review research works, it combines nickel oxide, 
manganese dioxide, and reduced graphene oxide to create a 
synergistic effect. The material's cost advantage stems from 
the abundance and affordability of NiO and  MnO2, while 
reduced graphene oxide offers a low-cost conductive additive. 
The scalable synthesis approach involves depositing NiO and 
 MnO2 onto reduced graphene oxide, ensuring good dispersion 
and interfacial contact. This simple process doesn't require 
specialized equipment or harsh conditions. The novelty lies in 
the unique combination of materials, with NiO providing high 
capacitance,  MnO2 offering cycling stability, and rGO enhancing 
electrical conductivity. As a result, the ternary nanocomposite 
demonstrates improved electrochemical performance, including 
higher specific capacitance, superior cycling stability, and 
excellent rate capability. Overall, the NiO@MnO2@rGO ternary 
nanocomposite material stands out for its cost-effectiveness, 
scalable synthesis approach, and novel composition, making it a 
promising candidate for practical, low-cost supercapacitors.

Materials

Nickel Nitrate hexahydrate (98%), Manganese Chloride 
(98%), Urea (99%), and Ammonium fluoride  (NH4F) (99%) 
were purchased from SRL Chemicals, India. All the reagents 
are used without any purification.

Synthesis of NiO and MnO2 nanoparticles

In the typical synthesis process, 0.1 M of nickel nitrate hex-
ahydrate was dissolved in 30 mL of de-ionized water under 
constant stirring. Then 0.3 M of urea and 0.1 M of  NH4F was 
dissolved in 30 mL of distilled water separately. The resultant 
solution was filled in a Teflon-lined stainless steel autoclave 
with a 100 mL capacity and heated at 180 °C for 20 h in a muf-
fle furnace and allowed to cool until it attains room temperature. 
The obtained product was washed with water and ethanol and 
air dried at 80° in a hot air oven. Then the product was calci-
nated at 500 °C for 3 h and well-ground using a mortar and 
pestle to get NiO NPs. Similarly, the aforementioned procedure 
was carried out to synthesize the  MnO2 NPs.

Synthesis of NiO@MnO2 nanocomposites

The NiO@MnO2 NC was synthesized by dissolving 0.1 M 
of as-synthesized NiO nanopowder and 0.1 M  MnCl2.6H2O 
in 30 mL of deionized water separately. Then 0.3 M  CH4N2O 
and 0.1 M  NH4F were dissolved individually in 30 mL of 
deionized water. Then all the dissolved solutions were added 
to form a uniform mixture with the as-prepared NiO solu-
tion. Finally, the hydrothermal reaction was carried out at 
180˚C for 20 h, and the resultant product was washed and 
calcined at 500˚C for 3 h to get NiO@MnO2 NC.
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Synthesis of NiO@MnO2@rGO nanocomposites

Briefly, 7 mg of the as-prepared NiO@MnO2 NC and 3 mg of 
rGO powder were well grounded using mortar and pestle for 
1 h, then transferred into the glass vial containing 30 mL of 
distilled water and bath sonicated for 2 h at 50 Hz. Then, the 
resultant suspension was centrifuged at 3000 rpm for 3 min 
and air dried at 80 °C for 3 h to get NiO@MnO2@rGO NC.

Results and discussions

XRD analysis

The X-ray diffraction spectrum was obtained from an X’Pert 
PRO diffractometer using Cu  Kα as radiating source of wave-
length 1.5406 Å. The face-centered cubic structure of NiO NPs 
was confirmed and the five distinctive peaks at 2 � values 37.16, 
43.19, 62.90, 75.42, and 79.39 degrees are indexed to their hkl 
values (222), (400), (440), (622), and (444) respectively. Similarly, 
the XRD spectra of NiO@MnO2 demonstrate the occurrence of 
well-defined intense sharp peaks positioned at 28.6, 37.16, 43.19, 
56.7, 59.3, 62.9, 72.4, and 75.42 degrees corresponding to crys-
tal planes of (110), (222), (400), (211), (220), (440), (301), and 
(622). In addition, the XRD pattern of NiO@MnO2@rGO shows 
the increase in peak intensity owing to the incorporation of rGO 
into the NiO@MnO2 lattice as shown in Fig. 1. The formation of 
NiO@MnO2@rGO was perfectly agreed with the JCPDS card 
numbers 89–5881 and 81–226 [35, 36]. The average crystalline 
size of the NPs was calculated using Scherrer’s Formula

Here, k denotes the Scherrer’s constant which is 0.94, � 
denotes the wavelength of the.

X-rays, � represents the full-width half maximum 
(FWHM), � is the diffraction angle. The average crystallite 
size was determined to be 32.18 nm.

FTIR study

FTIR study reveals the diverse modes of vibration and their 
respective functional groups present in the NiO, NiO@MnO2, 
and NiO@MnO2@rGO NC. From FTIR spectra, the broad 
band centered at 3472  cm−1 belongs to O–H stretching and 
they are hydrogen-bonded vibrations. The broadband that 
appears at 1682  cm−1 arises owing to the bending of hydroxyl 
groups present in the interlayer water molecules [37]. The peak 
that appeared at 1452  cm−1 is attributed to the O–H bending 
vibrations. Moreover, the two broad peaks present at 952, 861, 
and 664  cm−1 attributed to the molecular vibrations of Ni–O, 

(1)D =
k�

�cos�

Mn–O, and Ni-Mn as shown in Fig. 2. Notably, no additional 
peaks were observed in FTIR spectra, which confirm the purity 
of the NiO, NiO@MnO2, and NiO@MnO2@rGO NC.

XPS analysis

The chemical state and purity of the NiO@MnO2@rGO NC 
were evaluated using X-ray photoelectron spectroscopy (XPS) 
analysis. The survey spectrum (Fig. 3a) shows the existence of 
nickel, manganese, carbon, and oxygen in the NiO@MnO2@
rGO NC without any other additional impurities. Moreover, 
the core level spectrum of Ni 2p can be de-convoluted into Ni 
 2p3/2 and Ni  2p1/2 attributed to the binding energies of 854.7 eV 
and 871.8 eV and the existence of  Ni2+ and  Ni3+ states were 
also clearly observed as shown in Fig. 3b. Likewise, the high-
resolution spectra of Mn reveals the peaks observed at the 
binding energies of 651.80 eV and 640.41 eV corresponds to 
the Mn  2p1/2 and Mn  2p3/2, respectively as shown in Fig. 3c. 
In addition, the presence of  Mn2+ and  Mn3+ states were also 
observed which may enhance the electrochemical behavior 
of the as fabricated electrode via offering sufficient electrons 
for redox process [38, 39]. The presence of C 1 s in the XPS 
spectrum (Fig. 3d), which was observed at the binding energy 
of 285.35, 284.13, 283.36, and 281.59 eV due to the avail-
ability of O-C = C, C–O–C/C = O, C-O, and C = C/C–C in the 
rGO matrix. The core level spectrum confirms the successful 
incorporation of rGO into the NiO@MnO NC lattice. Subse-
quently, the high-resolution spectra of O 1 s reveal three peaks 
at 532.17, 531.04, and 530.53 eV attributable to the C = O,  OC, 
and  OL. Moreover,  OC and  OL could be indexed to the chemi-
cally absorbed oxygen species and lattice oxygen bonded with 
metal atoms including Ni and Mn as evident from the Fig. 3e.

SEM analysis

The morphology of NiO, NiO@MnO2, and NiO@MnO2@
rGO NC was evaluated by SEM analysis. The SEM image 

Fig. 1  XRD spectrum of NiO, 
NiO@MnO2, and NiO@
MnO2@rGO NC

3644 Ionics (2023) 29:3641–3652
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of NiO reveals the formation of cubic-shaped particles and 
the average particles size was found to be 80 nm (Fig. 4a). 
Similarly, the morphology of NiO@MnO2 (Fig. 4b) shows 
the formation of cubic NiO particles was observed and in 

some regions, the  MnO2 particles with indefinite morphol-
ogy were observed [40]. The average particle size of NiO@
MnO2 was identified to be 100 nm as shown in Fig. 4b. 
Likewise, the formation of cube-shaped particles and 2D 
rGO nanosheets were observed in NiO@MnO2@rGO NC 
and the particle size was found to be 70 nm as shown in 
Fig. 4c. Notably, the morphology of NiO,  MnO2, and rGO 
was obtained for NiO@MnO2@rGO NC which reveals that 
the large surface to volume ratio and provides enhanced 
electrochemical activity [41].

TEM analysis

The particle size, morphology, and lattice spacing of the 
NiO@MnO2@rGO NC were identified by High-Resolution 
Transmission Electron Microscope (HR- TEM). HR-TEM 
reveals the formation of cubic-shaped NiO@MnO2@rGO 
particles with aggregated morphology and their particle 
size of about 75 nm as depicted in Fig. 5 (a-c). Moreover, 
the existence of rGO nanosheets in the NiO@MnO2@rGO 
NC is visualized from the HRTEM analysis which confirms 
the successful incorporation into the NiO@MnO2 lattice. 
Besides, the lattice spacing of NiO@MnO2@rGO NC was 
found to be 0.326 nm corresponds to the plane (110) cor-
responds to the  MnO2 as shown in Fig. 5d. HRTEM con-
firms the uneven distribution of NiO,  MnO2 nanoparticles 
wrapped by the rGO nanosheets.

Fig. 2  FTIR spectrum of NiO, NiO@MnO2, and NiO@MnO2@rGO NC

Fig. 3  XPS spectrum (a) Survey spectrum, High-resolution spectrum of (b) Ni 2p, (c) Mn 2p, (d) C 1 s, and (e) O 1 s of NiO@MnO2@rGO NC
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Fig. 4  SEM image of (a) NiO, (b) NiO@MnO2, and (c) NiO@MnO2@rGO NC

Fig. 5  HR- TEM image of (a-c) NiO@MnO2@rGO NC, and (d) lattice Spacing NiO@MnO2@rGO NC
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Electrochemical studies

The electrochemical performance of the NiO, NiO@MnO2, 
and NiO@MnO2@rGO NC-based electrode materials was 
performed in 3 M of KOH electrolyte with Ag/AgCl and plati-
num wire as reference and counter electrodes respectively. CV 
analyses for NiO, NiO@MnO2, and NiO@MnO2@rGO were 
taken between 0–0.6 V potential range at diverse scan rates of 
10, 25, 50, 100, and 200 mV/s. CV profile of all the samples 
reveals typical faradaic behavior, revealing their battery-like 
behavior and the charge storage at the electrode structure by 
sluggish redox process [42]. The specific capacitance of NiO 
was found to be 276, 238, 186.2, 145.48, and 129.02  Fg−1 
within the potential window of 0–0.6 V as shown in Fig. 6a. 
Similarly, the specific capacitance for NiO@MnO2 (Fig. 6b) 
was achieved to be 342.43, 287.1, 262.9, 231.76, and 202.3 
 Fg−1 at the scan rates of 10–200 mV/s, revealing their enhanced 

electrochemical activity due to the synergistic effect of NiO 
and  MnO2 [43]. Likewise, the specific capacitance of NiO@
MnO2@rGO was 536, 482, 438, 382, and 343  Fg−1 at the scan 
rate of 10–200 mV/s as shown in Fig. 6c. This superior elec-
trochemical activity is due to the synergistic effect of NiO and 
 MnO2 and the existence of rGO in the composite providing 
the combined charge storage process of both the EDLC and 
Faradaic process. The appreciable shift in oxidation and reduc-
tion peaks proves the battery-like nature of the fabricated NiO, 
NiO@MnO2, and NiO@MnO2@rGO electrodes, revealing 
their excellent rate capability. Also, the reversibility and stabil-
ity of the electrode are good even at the higher scan rate [44].

The redox reactions of the electrode materials are as follows.

(2)NiO + OH
−
↔ NiOOH + e

−

(3)MnO + OH
−
↔ MnOOH + e

−

Fig. 6  a-c CV spectrum at different scan rates (10–200 mV/s) and (d) EIS spectrum of NiO, NiO@MnO2, and NiO@MnO2@rGO
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EIS analysis is used to study the impedance of the fabricated 
electrode. Here, the fabricated NiO, NiO@MnO2, and NiO@
MnO2@rGO electrodes were analyzed over 100 kHz to 0.1 Hz 
range of frequency. A good supercapacitor electrode has lower 
impedance values of solution resistance  (Rs) and charge transfer 
resistance  (Rct). To that, the  RS and  RCT of NiO@MnO2@rGO 
are 0.415Ω and 0.054Ω, which is pretty lower than the imped-
ance of the NiO  Rs = 1.1049Ω and  Rct = 2.7014Ω and NiO@
MnO2 electrode, with  Rs = 0.82 Ω and  Rct = 2.42 Ω as shown 
in Fig. 6d. The EIS spectrum has been fitted with equivalent 
circuit and inserted in the inset of Fig. 6d. The lower internal 
impedance of NiO@MnO2@rGO shows the improved diffu-
sion and excellent transport of electrons results in providing 
superior electrochemical activity [45, 46].

The charge and discharge rate of the electrode can be ana-
lyzed using Galvanostatic Charge Discharge analysis. The 

(4)NiMnO + OH
−
↔ NiMnOOH + e

− GCD analyses of NiO, NiO@MnO2, and NiO@MnO2@rGO 
were taken between the potential of 0–0.5 V and at the cur-
rent densities of 1, 2, 3, 5, and  10Ag−1 as shown in Fig. 7(a-c). 
The faradic behavior of the supercapacitor can be seen by the 
non-linear discharge curve which agrees well with the obtained 
CV profiles [47]. The discharge rate of NiO@MnO2@rGO is 
higher than that of the NiO and NiO@MnO2 indicating their 
excellent redox activity owing to the availability of numer-
ous redox active sites and lower internal impedance [48, 49]. 
The obtained maximum specific capacitance of NiO was 236 
 Fg−1 and for NiO@MnO2, the specific capacitance was 320.3 
 Fg−1 at the current density of 1  Ag−1 respectively. In addition, 
the NiO@MnO2@rGO shows enhanced specific capacitance 
of 510  Fg−1 at 1  Ag−1 which is higher when compared with 
the NiO and NiO@MnO2. The cyclic stability of the NiO@
MnO2@rGO electrode (Fig. 7d) can be tested at the constant 
current density of 10  Ag−1 which reveals the excellent stability 
of 92.8% even after 3000 charge–discharge cycles. Table 1 in 

Fig. 7  a-c GCD profile at the current density ranging from 1–10  Ag−1 of NiO, NiO@MnO2, and NiO@MnO2@rGO NC, and (d) Capacitive 
retention of NiO@MnO2@rGO for 3000 charge–discharge cycles
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the manuscript presents a comparison of recently reported stud-
ies on rGO-wrapped/deposited metal oxide composites with the 
findings of the present work, aiding in better comprehension.

Conclusion

A facile hydrothermal technique was utilized to evaluate 
the electrochemical performance of NiO@MnO2@rGO in 
3 M KOH electrolyte. The XRD spectra reveal the struc-
ture, phase, crystallinity, and purity of the prepared mate-
rial. From the CV curve, the maximum specific capacitance 
of NiO@MnO2@rGO NC was found to be 536  Fg−1 at the 
scan rate of 10 mV/s. From EIS spectra, the lower solution 
resistance  (Rs) and charge transfer resistance  (Rct) of NiO@
MnO2@rGO were 0.415Ω and 0.054Ω respectively, and 
good capacitive behavior. Further, the fabricated electrode 
delivers excellent capacitive retention of about 92.8% for 
3000 charge–discharge cycles. Thus, from the overall elec-
trochemical performance, the NiO@MnO2@rGO NC paved 
the way to solve future energy demands cost-effectively.
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