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Abstract
A graphene quantum dots@nano-carbon ionic liquid electrode was prepared (GQDs@nano-CILE) to detect rutin sensitively. 
The graphene quantum dots were characterized by transmission electron microscopy (TEM) and infrared spectroscopy (IR). 
The surface morphology of the modified electrode was studied by scanning electron microscope (SEM). Cyclic voltam-
metry (CV) was used to investigate the electrochemical properties and the effective surface area of the modified electrodes. 
The effects of solution pH value, accumulation potential, and time on peak current were also discussed. Compared with 
nano-carbon paste electrode (nano-CPE), the peak current of rutin on GQDs@nano-CILE increased significantly using dif-
ferential pulse voltammetry (DPV). The linear range of rutin ranging from 5 ×  10−9 to 1 ×  10−5 mol  L−1 was obtained under 
the optimized conditions. The detection limit was 2 ×  10−9 mol  L−1 (S/N = 3). The modified electrode could be used for rutin 
analysis in rutin tablets and urine samples, and the recovery was between 95.2 and 101.4%.
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Introduction

Rutin belongs to vitamin P, which is a bioactive flavonoid 
compound. Rutin can be extracted from such plants as rue 
leaf, tobacco leaf, jujube, apricot, orange peel, tomato, 
buckwheat flower, and so on. Rutin has significant medici-
nal value and plays a vital role in clinical treatment, such 
as anti-oxidation, anti-diabetes, anti-fat, neuroprotective, 
and hormone therapeutic effects [1, 2]. Furthermore, rutin 
is also the primary raw material for synthesizing troxerutin. 
Troxerutin is used as a cardiovascular and cerebrovascular 
drug, which can effectively inhibit the aggregation of plate-
lets and prevent thrombosis. Therefore, it is significant for 
analyzing rutin content in drug quality control fields.

Currently, the methods for the determination of rutin 
include high-performance liquid chromatography (HPLC) 
[3], capillary electrophoresis (CE) [4, 5], ultraviolet spec-
trophotometry (UV) [6, 7], electrochemiluminescence 
(EL) [8], and electrochemical method (EC) [9–11]. By 
contrast, electrochemical methods have some advantages 
such as fast response, high sensitivity, simple instrument, 
and easy operation. To improve the electrochemical per-
formance of the modified electrode, various materials 
with excellent properties are utilized to modify the bare 
electrode. Graphene quantum dots (GQDs) are a new type 
of graphene-based carbon nanomaterial. Compared with 
traditional semiconductor quantum dots, GQDs have 
the advantages of good biocompatibility, easy binding 
with biomolecules, and low biotoxicity [12]. At the same 
time, GQDs exhibit a large surface area and high electron 
mobility [13, 14]. They also have the properties of pho-
toluminescence (PL) by quantum confinement and edge 
effect [15], which have great application potential in the 
construction of electrochemical sensors and fluorescence 
sensors. Ionic liquids are room-temperature molten salts, 
mainly composed of organic cations and anions. The 
ionic liquids possess good electric catalytic activity, high 
ionic conductivity, stable chemical properties, and wide 
electrochemical window [16, 17]. Due to these excellent 
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performances, ionic liquids are widely used for preparing 
electrochemical sensors, exhibiting low cost, easy surface 
modification, high sensitivity and selectivity, and good 
anti-fouling ability. The graphene quantum dots-ionic 
liquid composites can improve the electrochemical per-
formance of the sensor, increasing the current response 
signal.

In this paper, a graphene quantum dots@nano-car-
bon ionic liquid electrode (GQDs@nano-CILE) was 
constructed in a simple preparation process for sensing 
rutin. The effective surface area of the sensor was dis-
cussed by scan rate study. The electrochemical behavior 
of rutin on GQDs@nano-CILE was studied by differen-
tial pulse voltammetry (DPV), and its reaction mecha-
nism was also discussed. The established method was 
successfully utilized to detect rutin in urine samples and 
rutin tablets.

Experimental

Reagents and materials

Graphite powder, paraffin oil, and rutin were obtained from 
Sinopharm Chemical Reagent Co., Ltd. Nano-graphite 
powder (sheet diameter: ~ 400 nm, thickness: < 40 nm), and 
graphene quantum dots (GQDs, 1 mg  mL−1) was purchased 
from Nanjing XFNANO Materials Tech Co., Ltd. Ionic liq-
uid (1-octylpyridine hexafluorophosphate,  OPPF6) was sup-
plied by Lanzhou Yulu Fine Chemical Co. Ltd. Rutin tablets 
were produced by Yunpeng Pharmaceutical Co., Ltd.

Rutin standard solution was prepared by dissolving a standard 
substance in ethanol solution. 0.1 M phosphate buffer (PBS) was 
used as the supporting electrolyte. All other reagents were of ana-
lytical grade and were not further purified before use. Ultrapure 
water (18.2 MΩ·cm) was used throughout the experiment.

Scheme 1  The fabrication procedure of GQDs@nano-CILE and the electrochemical process of rutin

Fig. 1  A TEM image of GQDs; 
B FTIR absorbance spectra 
of GQDs; SEM images of 
nano-CPE (C) and GQDs@
nano-CILE (D)
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Apparatus

Cyclic voltammetry (CV) and differential pulse voltamme-
try (DPV) were performed on a CHI 660E electrochemi-
cal workstation (Shanghai Chenhua Instrument Co., Ltd. 
China). The three-electrode system consists of a modified 
electrode, a Pt wire electrode, and a saturated calomel 
electrode. The magnetic agitator (IKA KMO2) was used 
in the preconcentration process. The morphology of gra-
phene quantum dots (GQDs) was obtained by transmission 
electron microscopy (HITACHI H-7650, Tokyo, Japan). 
The scanning electron micrographs (SEM) of the modified 
electrodes were obtained with a Hitachi S-3400 scanning 
electron microscope (Hitachi Ltd., Tokyo, Japan). IR spectra 
were recorded on an IRAffinity-1 Fourier transform infrared 
(FTIR) spectrophotometer (Shimadzu Co., Ltd., Japan).

Electrode preparation

Firstly, graphene quantum dots@nano-graphite powder com-
posites (GQDs@nano-C) were synthesized according to the 
following steps: 750 μL graphene quantum dots solution was 
evenly mixed with 1 g nano-graphite powder and dried under 
room temperature for later use.

The graphene quantum dots@nano-carbon ionic liquid 
electrode (GQDs@nano-CILE) was prepared according to 
the following method: First, 0.05 g GQDs@nano-C compos-
ites and 0.05 g ionic liquid  (OPPF6) were mixed uniformly in 
an agate mortar, then a certain amount of carbon paste was 
squeezed into a Teflon tube (3 mm diameter). After being 
heated with a hair drier, the prepared electrode was polished 
on the weighing paper to obtain a new electrode surface.

The traditional carbon paste electrode (CPE) was pre-
pared by mixing graphite powder with paraffin oil. By 
contrast, the nano-carbon paste electrode (nano-CPE) was 
composed of nano-graphite powder and paraffin oil. Nano-
carbon ionic liquid electrode (nano-CILE) consisted of 
nano-graphite powder and ionic liquid.

Analytical procedure

The electrochemical performance of the sensor was stud-
ied by cyclic voltammetry (CV) in 5 mM  K3[Fe(CN)6]/
K4[Fe(CN)6] and 0.1  M KCl solution. The CVs were 
recorded from − 0.2 to 0.6 V with a scan rate of 50 mV  s−1. 
The differential pulse voltammetry (DPV) was utilized to 
discuss the electrochemical behavior of rutin in 0.1 M PBS 
(pH 6.0). The DPVs were recorded in the range of 0–0.6 V 
with an accumulation time of 10 s at open circuit potential. 
The modified electrode was washed with ultrapure water 
after every measurement. Scheme 1 exhibits the fabrication 
procedure of GQDs@nano-CILE and the electrochemical 
sensing process of rutin.

Results and discussion

Surface morphology and structure characterization

The structure of GQDs was characterized using transmis-
sion electron microscopy (TEM). As shown in Fig. 1A, 
the GQDs exhibited spherical shapes, and their plane sizes 
were less than 50 nm. Fourier transform infrared spec-
troscopy was also used to investigate GQDs. Figure 1B 
exhibits the FTIR spectra of GQDs. The O–H stretch-
ing vibration absorption peak on GODs was at about 
3444.87  cm−1. The vibration absorption peaks of C = C 
appeared at 1635.64  cm−1. The results showed that hydro-
philic hydroxyl groups were attached on the surface of 
GQDs, which was beneficial to the formation of intermo-
lecular hydrogen bonds with rutin. The nano-CPE (shown 
in Fig.  1C) presented an unsmooth surface with some 
gaps. As exhibited in Fig. 1D, when ionic liquids were 
used as the binder, a uniform surface morphology could 
be observed on the GQDs@nano-CILE. The ionic liquid 
could act as bridges to connect the discontinuity between 
carbon materials.

Electrochemical characterization

Figure  2 shows CVs of different electrodes in 5  mM 
[Fe(CN)6]3−/4− and 0.1 M KCl solution. As shown in the 
figure, the relationship on the redox peak potential differ-
ence (ΔEp) of different electrodes was as follows: GQDs@
nano-CILE < nano-CILE < GQDs @ nano-CPE < nano-
CPE < CPE. Since the electron transfer rate increased 
with the decrease of ΔEp, GQDs@nano-CILE presented 
the fastest electron transfer rate. At the same time, the 
order of  the oxidation peak current  (Ipa) on different 

Fig. 2  CVs of (a) CPE; (b) nano-CPE; (c) GQDs@nano-CPE; (d) 
nano-CILE; (e) GQDs@nano-CILE in 5 mM [Fe(CN)6]3−/4− solution 
containing 0.1 M KCl
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electrodes was as follows: GQDs@nano-CILE > nano-
CILE > GQDs@nano-CPE > nano-CPE > CPE. The phe-
nomenon was due to the synergistic effect of graphene 
quantum dots and ionic liquids. The modified electrode 
exhibited improved electrochemical performance with 
good adsorbability and high conductivity.

Surface area study

Figure 3 displays CVs of the modified electrodes at differ-
ent scan rates in 5 mM [Fe(CN)6]3−/4− solution. The anode 
peak current  (Ipa) was linearly increased with the square 
root of scan rate (v 1/2), and the linear equations were I 
(μA) = 192.3132 v 1/2  (V1/2  s−1/2) + 10.7774 (r2 = 0. 9967) 
for nano-CPE; I (μA) = 231.7864 v 1/2  (V1/2  s−1/2) + 12.5002 
(r2 = 0. 9974) for GQDs@nano-CPE; I (μA) = 381.5616 v 
1/2  (V1/2   s−1/2) + 33.2187 (r2 = 0. 9987) for nano-CILE; I 
(μA) = 613.0998 v 1/2  (V1/2  s−1/2) + 8.3232 (r2 = 0. 9960) for 
GQDs@nano-CILE, respectively. For a reversible reaction, 
the relationships between anodic peak current  (Ip) and scan 
rate (ν) can be described as follows [18]:

where n is the electron transfer number (n = 1), A is the effective 
surface area of the electrode, C0 refers to the concentration of 

(1)Ip =
(

2.69 × 10
5
)

n3∕2AC
0
DR

1∕2v1∕2

Fig. 3  CVs of 5 mM 
[Fe(CN)6]3−/4− and 0.1 M KCl 
solution at various scan rates on 
A nano-CPE; B GQDs@nano-
CPE; C nano-CILE; D GQDs@
nano-CILE. The scan rates are 
25, 50, 100, 150, 200, 250, and 
300 mV s.−1, respectively (from 
inner to outer)

Fig. 4  DPVs of 10  μM rutin on different electrodes: (a) nano-CPE; 
(b) GQDs@nano-CPE; (c) nano-CILE; (d) GQDs@nano-CILE
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 K3Fe(CN)6 (5 ×  10−3 mol  L−1), and DR is diffusion coefficient 
(6.50 ×  10−6  cm2  s−1). According to the slope of Ip vs. ν1/2 rela-
tion, the effective surface areas of nano-CPE, GQDs@nano-
CPE, nano-CILE, and GQDs@nano-CILE were calculated to be 
0.052  cm2, 0.062  cm2, 0.103  cm2, and 0.165  cm2, respectively. 
The GQDs@nano-CILE exhibited the improved effective sur-
face area, suggesting the good adsorbability of the sensor.

Electrochemical behavior of rutin

Figure 4 demonstrates DPVs of 10 μM rutin on nano-CPE, 
GQDs@nano-CPE, nano-CILE, and GQDs@nano-CILE. A 
small oxidation peak (about 4.54 μA) could be observed on 
the nano-CPE (curve a). However, the peak current of rutin was 
obviously increased (about 5.823 μA) on GQDs@nano-CPE 
(curve b). Furthermore, the peak current of rutin on nano-CILE 
(curve c) significantly increased to 59.39 μA, indicating that the 
high conductive ionic liquid used as the binder could effectively 
promote the electron transfer rate of rutin. In combination with 
the excellent properties of graphene quantum dots and ionic 
liquids, the current response of rutin on GQDs@nano-CILE 
(curve d) further increased; its peak current (about 88.65 μA) 
was 19.5 times more than that on the nano-CPE. In addition, the 
oxidation peak of rutin occurred at about 0.292 V on GQDs@
nano-CILE. Compared with nano-CILE, the oxidation peak 
potential of rutin moved negatively. The results showed that 
GQDs@nano-CILE had good electrocatalytic activity to rutin.

Effect of scan rate

Figure 5A displays CVs of 10 μM rutin at different scan 
rates on GQDs@nano-CILE. The oxidation peak current 
increased with the increase of scan rate. As can be seen 
from Fig.  5B, the peak current was linearly increased 
with the square root of scan rate. The linear equation was 
I (μA) = 8.6117 v 1/2  (mV1/2  s−1/2) − 31.3310 (r2 = 0.9964), 
indicating that the electrochemical reaction of rutin on 
GQDs@nano-CILE was controlled by diffusion.

Optimization of experimental parameters

Effect of pH value

The effects of pH value on the peak potential and peak cur-
rent of rutin were investigated. Figure 6A shows DPVs of 
10 μM rutin in 0.1 M PBS with different pH values. In the 

Fig. 5  A CVs of 10 μM rutin 
with various scan rates on 
GQDs@nano-CILE. The scan 
rates from inside to outside are 
25, 50, 100, 150, 200, 250, and 
300 mV  s−1. B The relationship 
between peak current and the 
square root of scan rate

Fig. 6  A DPVs of 10 μM rutin with various pH values in 0. 1 M PBS 
(pH a–f: 4, 5, 6, 7, 8, 9); B The effects of pH values on peak current 
and peak potential of 10 μM rutin on GQDs@nano-CILE
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range of pH 4–9, the peak current of rutin first increased and 
then decreased. The maximum current was obtained at pH 
6. In addition, the peak potential of rutin gradually moved 
negatively with the increase of pH. There was a good linear 
relationship between pH and peak potential (E); the linear 
equation was E (V) =  − 0.0631pH + 0.6767. The slope of 
63.1 mV  pH−1 indicated an equal proton-electron transfer 
process was involved in the electrode reaction [19].

Effect of accumulation potential

The effects of accumulation potential and open circuit poten-
tial (OCPT) on the peak current of rutin were also studied. 
It could be seen from Fig. 7 that the peak current of rutin 
first increased and then decreased with the increase of the 
accumulation potential in the range of − 0.2 to 0.4 V. The 
maximum peak current was obtained at 0 V. However, the 

comparable peak current could be observed under OCPT. 
Therefore, OCPT was selected in the follow-up experiment.

Determination of rutin

A series of rutin standard solutions were determined by DPV 
under OCPT. As shown in Fig. 8, the oxidation peak current 
of rutin was linear with the concentration from 5 ×  10−9 to 
1 ×  10−5 mol  L−1. The linear equation was I (μA) = 7.1437C 
(μM) + 1.1844 (r2 = 0.9993), and the detection limit was 
2 ×  10−9 mol  L−1 (S/N = 3). Table 1 compares the analytical 
parameters of different modified electrodes for rutin deter-
mination. Compared with other methods [20–23], the con-
structed sensor in this work exhibited high sensitivity and 
wide linear range.

Reproducibility and selectivity

The reproducibility of GQDs@nano-CILE was estimated. 
The relative standard deviation (RSD) of 10 μM rutin for 
6 measurements was 3.23% using the same modified elec-
trode. At the same time, the RSD of 6 electrodes prepared in 
the same procedure for measuring 10 μM rutin was 4.14%. 
The results indicated that the constructed sensor had good 
reproducibility.

The influence of potential interfering substances on the 
determination of rutin was investigated. The results showed 
that 500 times of  K+,  Na+,  Ca2+,  Zn2+,  Mg2+, 200 times 
glucose, sucrose, tyrosine, uric acid, 100 times ascorbic 
acid,  Fe2+, 10 times dopamine, the same amount of querce-
tin and luteolin did not interfere with the current response 
of 10 μM rutin (peak current change <  ± 5%). This phenom-
enon may be attributed to the following reason: The GQDs 
have hydrophilic hydroxyl groups on their surface, which 
was beneficial to the formation of intermolecular hydrogen 
bonds with rutin.

Fig. 7  The effects of accumulation potential and open circuit poten-
tial on peak current of 10 μM rutin

Fig. 8  A DPVs of various con-
centrations of rutin (from bot-
tom to top are 0, 0. 005, 0. 01, 
0. 05, 0. 1, 0. 5, 1, 5, 10 μM); 
B The relationship between 
peak current and concentration 
of rutin
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Actual sample analysis

To verify the practical application ability, the proposed 
method was applied to analyze rutin tablets and urine sam-
ples. One rutin tablet (20 mg/ tablet) was finely ground 
in a mortar and dissolved in anhydrous ethanol using an 
ultrasonic cleaner. The supernatant was diluted 100 times 
with 0.1 M PBS (pH 6.0) for use. In addition, a 1 mL urine 
sample was directly diluted 100 times with 0.1 M PBS (pH 
6.0) without further pretreatment. The results are shown in 
Table 2. The recoveries were in the range of 95.2–101.4%. 
The results indicated that the GQDs@nano-CILE could be 
used to analyze actual samples.

Conclusions

In this paper, a rutin sensor based on GQDs@nano-CILE 
was constructed in a simple preparation process. A new 
electrode surface could be easily obtained by smooth-
ing the electrode on the weighing paper. The graphene 
quantum dots/ionic liquid composites could increase the 

effective surface area and the conductivity of the sen-
sor. Under optimal conditions, the modified electrode 
displayed high sensitivity to rutin. The wide linear range 
(5 ×  10−9–1 ×  10−5  mol  L−1) and low detection limit 
(2 ×  10−9 mol  L−1) were obtained. The method was suc-
cessfully utilized to detect rutin in pharmaceutical prepa-
rations and biomedical fluids. It is of great significance 
for drug quality control and pharmacokinetic studies.
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