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Abstract
Solid polymer electrolyte (SPE) membranes were prepared using the solution-cast technique by mixing polyethylene oxide/
polyvinylidene fluoride/magnesium perchlorate (PEO/PVDF/Mg(ClO4)2) ternary system with concentrations of 10, 20, 30, 
and 40 wt. % of the ionic liquid (IL) 1-ethyl-3-methylimidazolium ethyl sulfate [EMIM][ESO4]. The SPE membrane of 
SPE:IL (60:40 wt. %) demonstrated several electrochemical properties that satisfy a potential application in rechargeable 
magnesium ion batteries (MIBs) such as good conductivity at room temperature (~ 5.4 × 10−5 S cm−1) and high Mg2+ ion 
transport number ( tMg2+ ∼ 0.34 ). The results by X-ray diffraction (XRD) revealed an amorphous structure, which favored 
the diffusion of Mg2+ ions within the SPE structure. In addition, differential thermal analysis (DTA) showed the melting 
point at ~ 329 K. Fourier transform infrared spectroscopy (FTIR) confirmed the presence of characteristic functional groups 
in SPE membrane, identified by the appearance of the absorption bands C–O–C, CH2, C–O, ClO4

−, and C–O–S–O. The 
electrochemical stability window of ~ 4.2 V was determined using linear sweep voltammetry (LSV).
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Introduction

Magnesium-based solid polymer electrolyte (SPE) mem-
branes have been studied for their potential application 
in magnesium solid state batteries [1]. A wide variety 
of magnesium salts were used, for example, MgCl2 [2], 
Mg(NO3)2 [3], Mg(CH3COO)2 [4], MgSO4 [5], Mg(ClO4)2 
[6], Mg(CF3SO3)2 or Mg(Tf)2 [7], and Mg(N(CF3SO2)2)2 or 
Mg(TFSI)2 [6], dissolved in various polymeric systems, such 
as polyethylene oxide (PEO) [2], polyvinyl acetate (PVA) 
[3], polyvinyl pyrrolidone (PVP) [5], polyethylene carbonate 
(PEC) [6], polyethylene glycol (PEG) [4], and polyallyl gly-
cidyl ether (PAGE) [8]. Likewise, there are several reports 
on SPE membranes prepared with copolymers and polymer 

blends as poly(ε-caprolactone-co-trimethylene carbonate) 
PCL-PTMC [9], biopolymers [10], the mixtures PEO-PVDF 
[11], and PEO-PVP [12].

The SPE membranes have low conductivities, therefore, 
is necessary to carry out various strategies to increase the 
ion mobility. Among the most used is gelation with solvents 
such as glymes (mono-, di-, tri-, and tetra-) [13] and carbon-
ate esters (ethylene-, propylene-, or diethylene-) [14]. On the 
other hand, the plasticizers succinonitrile ((NCCH2)2) [15] 
and recently urea ((NH2)2CO) [16] were studied as additives 
to polymer magnesium salt system. A different approach for 
nanoparticles (MgO, TiO2, Al2O3, SiO2, and B2O3) as ionic 
conductivity changing agents in SPE membranes showed 
promising results [17].

The PEO is the most studied polymer [2], but its electro-
chemical and mechanical properties are poor. However, if a 
second polymer as polyvinylidene fluoride (PVDF) [11] or 
PVP [12] is added, these properties are enhanced. Dhatarwal 
and Sengwa [18] reported a decrease in the intensity of the 
X-ray peaks as the PVDF content in the polymer mixture 
increases. Considering the effect of incorporation PVDF into 
PEO, it is desirable to have a larger amount of PEO in the 
mixture since the oxygens in the PEO chains are responsible 
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for cation solvation. Otherwise, a problem may arise because 
PVDF is immiscible in small amounts in PEO [19]. Broadly, 
the mechanical and electrochemical performance of SPE 
membranes prepared using PVDF as an additive can be 
improved [20]. It was observed in the literature [21] that 
adding 10 wt. % of PVDF to PEO and combined it with 
an electrolytic salt of either lithium, sodium, or magnesium 
provides a solid polymeric structure suitable for preparing 
SPE membranes with acceptable ionic conductivity.

In the last years, ionic liquids (ILs) have been used as 
plasticizing or gelling agents to increase conductivity in SPE 
membranes. Maheshwaran et al. [22] published a study on 
the effect of 1-ethyl-3-methyl imidazolium tetrafluoroborate 
[EMIM][BF4] incorporation within PEO/Mg(CF3SO3)2 sys-
tem, reporting a marked increase of ionic conductivity and 
Mg2+ ion transport number ∼ 0.22. Tang et al. [23] elabo-
rated an electrolytic system formed by the copolymer poly-
vinylidene fluoride-co-hexafluoropropylene PVDF-HFP and 
the salt Mg(CF3SO3)2 modified by the ionic liquid 1-ethyl-
3-methyl imidazolium trifluoromethane sulfonate [EMIM] 
[CF3SO3], which decreased the crystallinity in PVDF-HFP 
and increased the conductivity of SPE membranes. Rathika 
et al. [11] prepared solid polymer blend electrolytes by opti-
mized blend of PVA-Mg(CF3SO3)2-[EMIM][CF3SO3] sys-
tem and the maximum ionic conductivity obtained at room 
temperature was 1.2 × 10−5 S cm−1 with the blend containing 
15 wt. % salt.

While ILs are relatively expensive, Gupta et al. [24] 
presented a relatively cheap alternative variant using the 
ethyl sulfate anion (SO4CH2CH3- or ES-), which displayed 
an electrochemical window of nearly 4 V in glassy carbon 
electrodes. Also, the magnesium ion is electrochemically 
active with polyaniline/platinum cathodes when dissolved 
in the ionic liquid 1-ethyl-3-methylimidazolium ethyl sulfate 
[EMIM][ESO4] [25]. Therefore, ionic liquid [EMIM][ESO4] 
is a viable candidate as an additive in SPE membranes that 
uses magnesium salt due to their excellent properties, such 
as high thermal stability, high ionic conductivity, low vis-
cosity, wide electrochemical stability window, and protic 
nature [26–29].

The type and percentage of magnesium salt are important 
for possible technological application in the future. Salts 
with anions [CF3SO3]− and [N(CF3SO2)2]− exhibit remark-
able properties but at an unaffordable cost. Other anions 
such as NO3

− and SO4
2− show a smaller electrochemical 

window, lower conductivities, and are therefore not entirely 
desirable. Contrarily, the ClO4

− anion has a wide electro-
chemical window and consequently the Mg(ClO4)2 salt has 
been tested in polyelectrolyte systems [6].

To the best of our knowledge, there exists no previ-
ous experimental work describing the development of 
SPE membranes based on PEO/PVDF/Mg(ClO4)2-[EMIM]
[ESO4] system. Hence, the purpose of this work is to prepare 

SPE membranes  in which the Mg(ClO4)2 salt was selected 
as Mg2+ ions supplier, to understand the effect of adding 
ionic liquid [EMIM][ESO4] within the SPE-based electro-
lyte, evaluating their electrochemical performance in mag-
nesium battery application.

Experimental section

Polyethylene oxide (PEO, Sigma Aldrich Mv ~ 900,000), pol-
yvinylidene fluoride (PVDF, Sigma Aldrich Mw ~ 534,000), 
1-ethyl-3-methylimidazolium ethyl sulfate ([EMIM] [ESO4], 
Sigma Aldrich, purity ≥ 95 %), and magnesium perchlorate 
(Mg(ClO4)2, Sigma Aldrich ACS reagent) were used to pre-
pare SPE membranes. Acetone (ACE, Sigma Aldrich ACS 
reagent, purity ≥ 99.5 %) and dimethylacetamide (DMAc, 
Sigma Aldrich ReagentPlus, purity ≥ 99 %) were used as 
solvents in a 70:30 vol. % ratio, respectively. Stoichiomet-
ric amounts of PEO:PVDF (90:10 wt. %), Mg(ClO4)2, and 
[EMIM][ESO4] were added to a glass vial in 5 ml solvent 
mixture; this mixture was sonicated for 12 h at 40 °C. Sub-
sequently, the viscous mixture was cast over Teflon dishes 
and solvents were evaporated to obtain free-standing SPE 
membranes with a thickness from 200 to 300  µm. The 
SPE membranes were dried at 50 °C on a heating plate and 
then under vacuum to be stored in a dry box with an argon 
atmosphere. Table 1 lists all the mixtures prepared with the 
materials. The concentration of IL, magnesium salt, and 
polymers in SPE membranes was determined by the molar 
ratio of CH2–O–CH2 (EO)/Mg2+/IL.

Structural characterization

The structural characterization of the materials was ana-
lyzed by X-ray diffraction (XRD, D2 Phaser, Bruker) and 
Fourier transform infrared spectroscopy (FTIR, Interspec 
200-X). The thermal stability was evaluated by differential 
thermal analysis (DTA-50, Shimadzu), and the semicrystal-
line nature of the SPE membranes was evidence with optical 
microscopy studies (MV-439, National Instruments).

Coin cell assembly

CR2032 coin cells, made of SS316 for its excellent prop-
erties [30], were assembled with two configurations: 
SS||SPE||SS and Mg||SPE||Mg, to determine the total ion 
transport number and the Mg2+ ion transport number, 
respectively. The impedance of the Mg||SPE||Mg cell was 
measured immediately before and after polarization. Elec-
trochemical impedance spectroscopy (EIS) was evaluated in 
the frequency range of 1 Hz to 1 MHz by applying 10 mV 
amplitude signal. The cyclic voltammetry (CV) and linear 
sweep voltammetry (LSV) studies were performed using a 
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VMP3 potentiostat/galvanostat (Biologic Science Instru-
ments) at scan rate of 5 mV s−1. All cells were assembled 
in a dry glove box (Omni-Lab 0210, VAC) filled with argon 
and H2O < 1 ppm.

Results and discussion

X‑ray diffraction studies

Figure 1a displays the XRD pattern of raw materials, while 
Fig. 1b shows the XRD pattern of the SPE membranes com-
pared to the base membrane 16 Mg(ClO4)2–84(PEO:PVDF 
(90:10 wt. %)) or SPE:IL (100:0 wt. %).

Based on Fig. 1a, PEO presents a maximum peak inten-
sity at 23.6°, along with a second intense peak at 19.5°. Two 
lower intensity peaks can be observed at 26.6° and 27.2°, 
corresponding to diffractions from (112), (120), (131), and 

(041) planes, respectively, according to ICDD crystallo-
graphic file 00–057-1528. PVDF exhibits two main peaks 
at 18.5° and 20.0° and another minor peak at 26.7°, corre-
sponding to crystallographic planes (110), (020), and (021), 
respectively, according to crystallographic file JCPDS No. 
44–0141 [31]. The Mg(ClO4)2 shows three main peaks at 
21.5°, 23.0°, and 31.6° corresponding to (021), (121), and 
(221) planes, respectively, according to JCPDS crystallo-
graphic file No. 85–0609 [32].

From Fig. 1b, the diffractogram of the SPE membrane 
with a composition PEO:PVDF (90:10 wt. %) exhibits a 
clear decrease in the intensity counts of the main peaks (5 
times relative to PEO) located at 23.0° and 18.8°. Moreover, 
the disappearance of the main peaks associated with PVDF 
(18.5° and 20.0°) was observed, indicating that the poly-
meric chain of PVDF can plasticize PEO and significantly 
reduce its degree of crystallinity, which is helpful for the 
transport of Mg2+ ions [12]. In addition, other minor peaks 

Table 1   Raw material 
properties and SPE membranes 
showing the percentage of 
crystallization

Sample % Crystalliza-
tion by XRD

Amorphous-semicrys-
talline transition of PEO 
Tt/°C

AHt (J/g) % Relative crystal-
lization of PEO by 
DTA

PEO 53.0 67.4 172.1 100
PEO:PVDF (90:10 wt. %) 23.3 65.0 85.8 49.8
SPE:IL (100:0 wt. %) 20.8 58.6 20.7 12.0
SPE:IL (90:10 wt. %) 21.1 58.0 16.1 9.4
SPE:IL (80:20 wt. %) 15.5 59.2 19.5 11.3
SPE:IL (70:30 wt. %) 21.4 57.2 24.2 14.0
SPE:IL (60:40 wt. %) 21.9 56.4 60.2 35.0
PVDF 31.0 NA NA NA
MgClO4 57.2 NA NA NA

Fig. 1   XRD pattern of a PEO, Mg(ClO4)2, PVDF, and b SPE membranes
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were found in the diffractogram of the SPE membrane with 
composition PEO:PVDF (90:10 wt. %) located at 26.2°, 
27.0°, 33.3°, 36.1°, and 39.6°, associated with PEO.

In the SPE membrane SPE:IL (100:0 wt. %), the (021) 
and (221) planes of Mg(ClO4)2 were not observed, pos-
sibly due to its efficient incorporation into the PEO-PVDF 
(90:10 wt. %) system. As a result of this incorporation, 
there is a decrease in crystallinity as well as a reduction in 
peak intensity counts from 3000 to 1500, which contributes 
to the ionic conductivity of the SPE membranes [33].

The Mg(ClO4)2 and [EMIM][ESO4] incorporation into 
SPE  membranes produce an increase in the 10° to 40° 
“hump,” showing a decrease in crystalline nature of PEO, 
previously mentioned by number of counts, with a 10 wt. 
% PVDF addition. To quantify these observations, a formal 
analysis [34] using the percentage of crystallinity ( Xc ) was 
carried out using the area of crystalline peaks ( AC ) and the 
combined area of crystalline and amorphous peaks (without 
“hump”) and diffractogram total area ( AT ), from 10 to 40°.

Table 1 shows the crystallization percentage results 
(calculated by Origin Pro) for diffractograms shown in 
Fig. 1. These observations confirm a considerable decrease 
from 53 to 23 % in degree of crystallization when only 10 
wt. % of PVDF was added to PEO network.

The percentage of crystallinity gradually decreased with 
the addition of Mg(ClO4)2 in the SPE membranes. However, 
the crystallinity did not decrease with the incorporation of 
the ionic liquid, except in the case of the SPE membrane 
SPE:IL (80:20 wt. %), indicating a stronger plasticizing 
effect with a small proportion of PVDF in the mixture.

(1)Xc =

(

AC

AT

)

⋅ 100

A shift toward lower Bragg angles was likewise observed 
with the addition of IL at concentrations above 20 wt. %, 
indicating an effective interaction between IL and the PEO 
semicrystalline interlaminar layers, which increases the 
interlaminar spacing value. Besides, an increase in crystal-
lite size was observed, as evidenced by interlaminar spacing 
measurements, SEM studies, Fig. S1, and Table S1 in the 
supplementary information.

FTIR studies

Figure 2 displays FTIR spectra of starting materials (Fig. 2a) 
and the prepared SPE membranes (Fig. 2b). The spectra of 
PEO and PVDF were consistent with the FTIR spectra, pub-
lished elsewhere [18]; the spectrum of Mg(ClO4)2 is coinci-
dent with FTIR spectra reported by Reddy and Chu [35]; and 
the spectrum of IL [EMIM][ESO4] was similar to FTIR spec-
tra reported by Nkuna et al. [36]. The SPE membrane formed 
by the incorporation of PVDF to the PEO matrix (10:90 wt. 
%, respectively) generally displays typical PEO bands, such 
as C–O stretching at 833 cm−1 and CH2 asymmetric bend-
ing at 952 cm−1. Triplet splittings formed by symmetric and 
asymmetric stretching of C–O–C band were observed at 
1055, 1100, and 1150 cm−1 due to the effect of crystallinity 
decrease in PEO by PVDF addition. The vibrational bands 
observed in the wavenumbers 1240 and 1280 cm−1, corre-
sponding to CH2 symmetric and asymmetric torsions, the 
doublet at 1345 and 1355 cm−1, as well as 1471 cm−1, were 
assigned to CH2 bending. For relatively low percentage of 
PVDF in the base membrane (10 wt. %), fewer characteristic 
signals were observed for this compound, which were located 
at 875 cm−1, corresponding to CH2 stretching of PVDF, and 
possibly band at 750 cm−1 with assignment to CF2 bending 

Fig. 2   FTIR spectrum of a PEO, Mg(ClO4)2, PVDF, and b SPE membranes
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(both signals assigned to the PVDF α phase). The addition of 
Mg(ClO4)2 to PEO:PVDF (90:10 wt. %) system with a 16 wt. 
% to form a SPE membrane shows some characteristic weak 
bands, such as ClO4

− asymmetric bending at 624 cm−1 and 
1405 cm−1, and a small band corresponding to ClO4

− sym-
metric stretching [37]. On the other hand, the strong vibration 
of Mg(ClO4)2 at 1642 cm−1 disappears completely in all SPE 
membranes. These observations suggest the possible interac-
tion of the Mg2+ ions of salt with ether oxygen of PEO [22]. 
The absorption bands at 755, 905, 1015, 1175, 1210, and 
1570 cm−1 were assigned to C–O–S–O bending, C–O–SO3 
system, C–O–SO3 symmetric stretching, an imidazolium 
ring asymmetric stretching in-plane, C–O–SO3 asymmetric 
stretching, and C = N stretching, respectively [38]. In particu-
lar, it was observed an increase in the band at 1015 cm−1, as 
well as decrease in the band at 1150 cm−1, as the ionic liquid 
in the base membrane increases, which suggests possible 
interactions of [EMIM]+ cation with the oxygens in the PEO 
polymeric chain [39].

Thermal studies

Figure 3 shows a DTA analysis performed in SPE mem-
branes. PVDF showed a melting temperature (Tm) at 
157 °C and PEO at 65 °C; similarly, the SPE membrane 
PEO:PVDF (90:10 wt. %) showed both Tm (Fig. 3a). The 
PEO thermogram evidenced a typical semi-crystalline to 
crystalline transformation process at 67.4 °C (see Table 1). 
The addition of PVDF indicates a slight reduction in the 
transition temperature to 65 °C as a function of the highest 
percentage (90 wt. %) was constituted by PEO. The addi-
tion of Mg(ClO4)2 to PEO:PVDF (90:10 wt. %) system 
produces a slight increase in the transition at 58.6 °C and 

the addition of 10 wt. % ionic liquid produces a decrease 
with a transition temperature at 58.0 °C, which increases 
with the increment of up to 20 % of [EMIM][ESO4] with 
a value of 59.2 °C. Therefore, a higher ionic liquid addi-
tion produces reductions at the melting points, as seen in 
Fig. 3b. On the other hand, both the transition enthalpy and 
the relative percentage of crystallization (% XC,el = 100(∆
Ht,membrana)⁄(∆Ht,PEO)) show a decrease due to the PVDF 
addition (50 %, see Table 1). Additionally, both are reduced 
with the addition of 12 wt. % Mg(ClO4)2. These results, 
added to XRD analysis, where a decrease in crystallin-
ity with the addition of ionic liquid from 10 wt. % to 20 
wt. %, and an increase in crystallinity percentage with the 

Fig. 3   DTA curves of a PEO:PVDF (90:10 wt. %), PEO, PVDF, and b SPE membranes

Fig. 4   Arrhenius plot of temperature dependence ionic conductiv-
ity in SPE membranes. Lines are just guides to the eye. ACE boiling 
point is 329 K
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addition of [EMIM][ESO4]. This suggests that the addition 
of ionic liquid has a significant impact on the crystallinity 
of the mixture [40]. The largest reduction in crystallinity 
was produced by the combined addition of 10 wt. % PVDF 
to PEO and 16 wt. % Mg(ClO4)2, and moderate increases in 

crystallinity were achieved with the addition of ionic spe-
cies such as Mg2+, [ClO4]−, [EMIM]+, and [ESO4]− (see 
Figs. S2, S3, and S4 in the supplementary information for 
optical microscopy studies and density functional theory 
(DFT) studies, respectively).

Table 2   Electrical properties of 
SPE membranes

SPE membranes Log(sRT/(S cm−1) E
RT

a
/meV Log(sT=80 °C/(S 

cm−1)
E
T=80

◦

C

a
/meV

SPE:IL (100:0 wt. %)  − 5.08 351.4  − 4.43 51.1
SPE:IL (90:10 wt. %)  − 4.69 195.7  − 4.15 31.5
SPE:IL (80:20 wt. %)  − 4.56 98.4  − 4.13 36.7
SPE:IL (70:30 wt. %)  − 4.35 91.5  − 4.21 10.2
SPE:IL (60:40 wt. %)  − 4.27 48.4  − 4.15 12.0

Fig. 5   a Chronoamperometric curve at an applied voltage of 0.75 V 
and 20 mV on symmetrical cells; SS||SPE:IL (60:40 wt. %)||SS and b 
Mg||SPE:IL (60:40 wt. %)||Mg, respectively. Inset: Impedance curves 
for symmetrical cell; Mg||SPE:IL (60:40 wt. %)||Mg. c Cyclic vol-

tammograms of symmetrical cells; SS||SPE:IL (60:40 wt. %)||SS and 
Mg||SPE:IL (60:40 wt. %)||Mg. All the electrochemical measurements 
were carried out at room temperature (30 °C)
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Ionic conductivity

The temperature effect on SPE membranes with differ-
ent ionic liquid contents is shown in Fig. 4. Conductivity 
measurements were performed by intercalating SPE mem-
branes between two stainless steel (SS) separators. The 
dependence of ionic conductivity on temperature was 
recorded over a range from 30 to 100 °C. An expected 
behavior of conductivity in SPE:IL (100:0 wt. %), with 
a certain degree of amorphization, was observed. This 
behavior can be easily modeled using the VTF equation 
(Vogel-Tammann-Fulcher) [41]. The addition of ionic 
liquid [EMIM][ESO4] at 10–20 wt. % in the base mem-
brane produced a discontinuity around the thermal tran-
sition zone or from the semi-crystalline to amorphous 
state in SPE membranes. The discontinuity disappeared 
when higher amounts of [EMIM][ESO4] (30–40 wt. %) 
were added. The results confirmed the plasticizing role of 
[EMIM][ESO4] in SPE membranes, reducing the degree of 
crystallization, as noted in XRD and DTA studies. Further-
more, this effect has been widely reported in the literature 
[42]. On the other hand, a quasi-linear behavior of the log-
arithm of conductivity (log σ) versus reciprocal tempera-
ture (1/T), denoting a typical Arrhenius plot, was observed 
at temperatures below or above the transition zone. This 
behavior was modeled using the following equation:

The conduction process activation energy ( Ea ), pre-expo-
nential factor (collision frequency) ( �o ), universal gas con-
stant (R) (8.6 × 10−5 eV K−1), and absolute temperature (T) 
[22] are shown in Table 2. A constant decrease was observed 
as the ionic liquid concentration increased at room tempera-
ture. At 80 °C (a temperature above the semicrystalline-amor-
phous transition), a large decrease in activation energy was 
noted, indicating that temperature plays a major role, while 
the effects of [EMIM][ESO4] addition play a minor role.

Electrochemical properties and transport number

The total ion transport number ( tion ) was estimated by chrono-
amperometry (CA) measurements. In this method the polarization 
current was controlled as a function of time for the SPE mem-
brane SPE:IL (60:40 wt. %) intercalated between two stainless 
steel blocking electrodes, employing a symmetrical SS||SPE:IL 
(60:40 wt. %)||SS cell configuration. A 0.75 V DC was applied 
across the sample, and the t

ion
 of the SPE membrane was esti-

mated using Wagner’s method [43], with the following equation:

(2)log

(

�

�o

)

= −

Ea

RT

(3)t
ion

=

Ii − If

Ii

where Ii (~ 2 6.78 µA) is the initial current and If  (~ 0.43 µA) 
is the final steady-state current (Fig. 5a). The t

ion
 value was 

obtained as 0.98, suggesting the purely ionic nature of the 
solid polymer electrolyte system.

To determine the transport number ( t
Mg

2+ ), a symmetric cell 
(Mg||SPE:IL (60:40 wt. %)||Mg) was evaluated using a combi-
nation of impedance spectroscopy and polarization studies, as 
suggested in the literature [44–51], by applying small constant 
voltage of 20 mV for 1 h. The t

Mg
2+ value was calculated from 

Eq. (4):

where Io (~ 8.29 µA) and Is (~ 2.90 µA) are the initial and 
final steady state currents, and Ro (~ 1123 Ω) and Rs (~ 3116 
Ω) are the cell resistance before and after applying the 
polarization voltage, respectively, as seen in Fig. 5b. Using 
Eq. (4), the magnesium-ion-transport number is determined 
to be 0.34. This indicates significant Mg2+ ion transport 
number for the SPE system of this report.

Furthermore, Fig. 5c displays CV tests in symmetrical 
cells recorded at a scan rate of 5 mV s−1. No redox peaks 
were observed in the SS||SPE:IL (60:40 wt. %)||SS cell, in 
contrast to the Mg||SPE:IL (60:40 wt. %)||Mg cell, which 
exhibited reversible redox peaks. This confirms Mg2+ ions 
transfer at the electrolyte/electrode interface [52].

Finally, LSV measurement was employed using SS as 
working electrode and magnesium disc as counter electrode 
(Fig. 6), obtaining a high value of ~ 4.2 V, whose electro-
chemical stability window allowed its application in mag-
nesium ion batteries (see Fig. S5 in the supplementary infor-
mation for electrochemical performance studies).

(4)t
Mg

2+ =

Is(ΔV − RoIo)

Io(ΔV − RsIs)

Fig. 6   LSV test for the cell configuration SS||SPE:IL (60:40 wt. 
%)||Mg measured at a scan rate of 5 mV s.−1



2348	 Ionics (2023) 29:2341–2349

1 3

Conclusions

Solid polymer electrolyte (SPE) membranes based on a PEO/
PVDF/Mg(ClO4)2-[EMIM][ESO4] ternary system were charac-
terized by structural and thermal studies. XRD analysis showed 
that the SPE membranes had a semicrystalline structure, which 
promoted good Mg2+ ions diffusion. FTIR analysis showed 
coordination between the EMIM+ cations and Mg2+ ions with 
the oxygens in the PEO polymer, as well as complex formation 
inside the SPE membrane with a concentration of PEO/PVDF/
Mg(ClO4)2–40 wt. % of [EMIM][ESO4]. The DTA study con-
firmed that Tm decreased as the IL concentration increased, 
suggesting an increase in SPE membrane chain flexibility. An 
ionic conductivity of ~ 5.4 × 10−5 S cm−1 was observed for the 
SPE membrane SPE:IL (60:40 wt. %) from the Arrhenius plot, 
which also showed a total ion transport number of ~ 0.98. These 
results support a higher contribution of Mg2+ ions and a negligible 
contribution of electrons (~ 0.02) within the SPE system, as well 
as a high Mg2+ ion transport number (~ 0.34). Preliminary studies 
on rechargeable batteries with a Mg||SPE:IL (60:40 wt. %)||MoS2 
configuration showed a discharge capacity of 40 mAh g−1.
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