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Abstract
The LiMg

2
Fe

3
O

7
 compounds were prepared by via the citrate process and sintered at two different temperatures to study their 

effect on structural, morphological, optical, and electric properties. The X-ray diffraction analysis revealed that both samples 
crystallized in a cubic spinel structure belonging to space group Fd3m . Increasing the sintering temperature led to an increase 
in the grain size as characterized by SEM. The UV–visible spectroscopy revealed that the band gap is 2.5eV and 2.35eV for 
Mg700 and Mg1100 , respectively, which confirm that these compounds are potential candidates for optoelectronics. The 
electrical resistance was found to decrease with the increase in the sintering temperature, consequently leading to a rise in 
conductivity.

Keywords  Spinel · Sintering temperature · Band gap · Resistance · Conductivity

Introduction

Ferrite spinels with the chemical formula MFe
2
O

4
 , where M is 

a divalent metal cation, have attracted the interest of researchers 
in recent years thanks to their good biocompatibility and low 
toxicity [1, 2]. These materials are widely used as magnetic 
materials [3–5], adsorbents [6], contrast agents in magnetic 
resonance imaging (MRI) [7], biosensor systems [8, 9], optics 
[10], electronics [11], catalysts and photocatalysts [12–14], 
cancer treatment [15], drug delivery [16], antimicrobial 
systems [17], and so on. A variety of chemical methods 
can be used to obtain spinel magnetic nanoparticles: 
sol–gel synthesis, synthesis in microemulsions, coprecipitation 
method, hydrothermal method, sonochemical methods [10, 

18–20]. Several factors, such as the synthesis method, the 
substitution process, and the sintering temperature, can 
significantly modify the electrical and dielectric behavior of 
spinel materials [21]. Bouokkeze et al. have investigated the 
effect of sintering temperature on structural, optical, elastic, 
and electrical properties of spinel LiZn

2
Fe

3
O

8
 . A reduction 

in the band gap and the energy activation by increasing the 
sintering temperature were noted and attributed to the increase 
in the grain size [22]. Nevertheless, Benali et al. proved that 
the microstructure, dielectric relaxation, and conduction 
mechanism of La

0.8
Ba

0.1
Ce

0.1
FeO

3
 oxide show a dependence 

on heat treatment. Actually, the electrical resistance and the 
activation energies decrease with the increase in the sintering 
temperature, leading to the rise in conductivity [23]. It is 
essential to compare the structure and physical properties of 
ferrites at the micron and nanoscale ranges, and because of 
the influence of structural and magnetic disorders at the grain 
interfaces, samples with lower grain sizes may have richer 
electrical and magnetic features [24–27]. Massoudi et al. 
have suggested that the size of particles has a pronounced 
effect on physical properties in Ni

0.6
Zn

0.4
Al

0.5
Fe

1.5
O

4
 ferrite 

nanoparticles (NPs). Their results have revealed that the 
electrical resistivity of the Ni–Zn-Al nano-ferrites decreases 
with the increase in particle size [24]. Li ferrite (Li

0.5
Fe

2.5
O

4
) 

belongs to the spinel ferrites family, which is well-known for 
its use in magnetic, magnetooptical, nano-biomedical, nano-
photocatalysts, and magnetodielectric devices due to low 
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dielectric loss, high saturation magnetization, square hysteresis 
loop, low cost and environment friendliness, and non-toxicity 
[26–28]. The introduction of metals transition ions leads to 
the significant variations of physical properties depending 
on the method of synthesis and doping concentration [29]. 
Shirsath et al. have reported the decrease in permeability and 
decrease in saturation magnetization with Co+2 substitution in 
Li

0.5
Fe

2.5
O

4
 [30]. Oxygen vacancy is one of the primordial 

factors that can improve the oxide material properties especially 
magnetic properties [30, 31], photocatalytic [32], and gas 
sensor applications [33]. However, most of the studies carried 
out on spinel ferrite materials focus on the stoichiometry 
oxygen materials (AB

2
O

4
) . For this reason, in our research 

work, we have decided to substitute a portion of iron ions with 
a monovalent ion (Li) in order to create oxygen deficiency 
with an automatic manner (Li

0.5
MgFe

1.5
O

3.5
) . The obtained 

findings suggested that sintering temperature could effectively 
control the electric and optical properties of Li-Mg ferrite 
(grain size effect). To the best of our knowledge, these analyses 
of the spinel LiMg

2
Fe

3
O

7
 at various particle sizes have not 

been performed before. The combination of conductivity and 
impedance formalism explains the transport properties in 
detail. The present research focuses mainly on how sintering 
temperature affects the structural, morphological, optical, and 
electric properties of single-phase Li-Mg ferrite spinel. So far, 
the electric property that has been under-examined requires 
further research. Thus, the current work aims to investigate 
the electric properties with the aim of providing researchers 
with a comprehensive view of the Li-Mg spinel ferrite oxide 
behavior, which may be useful in a variety of applications such 
as uncooled infrared bolometric, optoelectronics, photovoltaics, 
and gas sensor applications.

In this context, the present research work undertook 
an investigation of the effect of sintering process on the 
structural, morphological, optical, and electrical properties 
of the ferrite material LiMg

2
Fe

3
O

7
 synthesized by the citrate 

process. From the impedance spectroscopy measurements, 
we discussed the evolution of the electrical properties of this 
material under the variation of the sintering temperature by 
referring to the analysis of the optical properties. Thus, the 
examination of ac-conductivity is used to understand the 
evolution of the electrical behavior and conduction process 
of the prepared material with the variation of frequency and 
temperature.

Experimental

Material synthesis

All the chemical reactants in this work were purchased 
from Sigma-Aldrich and used without further purification. 
The nitrates Mg(NO

3
)
2
.6H

2
O , Fe(NO

3
)
3
.9H

2
O , and LiNO

3
 

of purity (99.99%) were used as precursors to synthesize  
LiMg

2
Fe

3
O

7
 powder using the citrate process [34]. All quan-

tities were dissolved in 100 ml of distilled water. Then we 
mixed this solution with citric acid (C

6
H

8
O

7
) with a 1:1.5 

molar ratio of the metal cation (Fe + Mg + Li). The result-
ing mixed solution was magnetically stirred under magnetic 
stirring at 80 °C until the formation of a viscous gel. The 
resulting gel was heated on a hot plate at 300 °C to obtain 
a dark powder. Finally, the burnt ferrite powders were pel-
letized and sintered separately at 700 °C and 1100 °C for 6 h 
in an electric furnace to obtain two samples of LiMg

2
Fe

3
O

7
 

with different particle sizes.
The phase purity and crystal structure of these ferrites 

were determined by X-ray diffraction (XRD) at room tem-
perature using a Bruker D8 Advance diffractometer with 
CuK� radiation (λ=1.5406 Å). The acquisition was in the 
2� range of 10–100° with a step of 0.02° and acquisition 
time for each step of 1 s. The characterization of the sur-
face morphology and the chemical compositions of the 
synthesized samples were studied using a Merlin scanning 
electron microscope (SEM) Hitachi S3500 Microanalysis 
EDS, Kevex (132 keV) equipped with a microanalyzer at 
energy dispersive X-rays (EDX). Absorption spectra were 
obtained at room temperature using a Shimadzu UV-3101PC 
scanning spectrophotometer. The electrical characterization 
was carried out by impedance spectroscopy using an Agilent 
4294A impedance analyzer.

Results and discussion

Structural properties

Figure 1a–b show the X-ray diffraction of the LiMg
2
Fe

3
O

7
 

samples annealed at 700 °C and 1100 °C. The reflections 
of the atomic planes (111), (220), (311), (222), (400), 
(331), (422), (511), (440), and (442) are identified. As the 
sintering temperature increases, the peak width decreases 
due to an increase in crystallite size. Rietveld refinement 
by FULLPROF software [35] confirms the formation of a 
cubic spinel structure with the Fd3m space group, without 
any additional peaks of a secondary phase. The refine-
ment parameters for the two prepared samples are listed in 
Table 1. We observed a low-quality value of �2 suggesting 
that the sample refinement is efficient and that the samples 
are of good quality. The quantitative analysis proves that 
the chemical compositions of Mg700 and Mg1100 sam-
ples are [Li0.487Fe0.382Mg0.131]A[Fe1.115Mg0.885]BO3.505 and 
[Li0.487Fe0.362Mg0.151]A[Fe1.13Mg0.870]BO3.5, respectively.

In our present work, the lattice parameters (a) and (V) 
increase with the increase of the sintering temperature. This 
is similar with other ferrite systems in the literature which 
show that the lattice parameters increase as a function of the 
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sintering temperature [36–40]. It can be seen from Table 1 
that the value of the length of site A (LA−A) is greater than 
that of site B (LB−B) , which leads to the fact that the elec-
tron jump between ions A and B is less probable than that 
between sites A and B. The X-ray density �

X−ray deduced 
from X-ray diffraction decreases as the sintering temperature 
increases, going from 3.97 g·m−3 for Mg700 to 3.94 g·m−3 
for Mg1100.

The size of the crystallites calculated by the Scherrer 
method is 45 and 63nm for Mg700 and Mg700 , respectively. 
Equation (5) in the supplementary part calculates crystallite 

size by Williamson–Hall (DWH) method, which gives a linear 
relationship between �cos� and 4�sin� as shown in Fig. 1b. 
The ordinate at the origin of the line gives the size of the 
crystallites DWH while the slope gives the induced strain 
� . The calculations carried out in this section are based on 
the model of Williamson–Hall which takes account of the 
possible stresses in the material and that of Scherrer which 
neglects some constrains [41]. The lattice microstrain of 
each sample obtained using the Williamson–Hall method 
has a positive value, indicating lattice expansion. This 
observed difference between the calculated crystallites size 
using both methods is linked to the strain effect which is not 
taken in account in Scherrer method (Table 2).

As shown in Table 1, increasing the size of the crystallites 
decreases the porosity (P) , which has the effect of increas-
ing the bulk density (�exp) , revealing that the temperature 
of annealing increases the disorder of the spinel ferrite sys-
tem. We can conclude that the specific surface decreased 
from 27.08 to 11.41m2g−1 with the increase in particle size. 
However, the high surface area value of LiMg

2
Fe

3
O

7
 nano-

particles suggests that Mg700 nanoparticles could be used 
as sensors to detect gases [42]. (Equations used for different 
calculations are given in the supplementary part.)

Morphology

Scanning electron microscopy (SEM) was used to obtain 
an accurate estimation of the microstructure and morphol-
ogy of the nanocrystals. Figure 2a–b show SEM images of 
two samples, Mg700 and Mg1100 . Both samples exhibited 
agglomeration, which could be attributed to electrostatic 
effects as well as an artifact of the drying of aqueous sus-
pensions and the magnetic interaction between nanoparti-
cles, revealing the formation of nearly spherical particles 
and evenly distributed nanoparticles. Large particle size is 
observed at a higher sintering temperature Mg1100.

The observed skewed distribution can be described using 
a Lorentz distribution function, as shown in Fig. 2a–b. Based 
on SEM images and using ImageJ software [43], the average 
grain size was found to be around 100 and 385 nm for the two 
samples Mg700 and Mg1100 , respectively. As the sintering 
temperature increases, the size of the grains increases, which 
is caused by the coalescence of the crystallites when the 
temperature increases.

Figure 3a–b illustrate elemental analysis of Mg700 and 
Mg1100 samples at room temperature using EDX. The spec-
trum confirms the presence of all Fe , Mg , and O elements in 
both synthesized samples, indicating that no integrated ele-
ment was lost and no contaminant element was introduced 
during sintering. The outcome (EDX) predicted the required 
constituent proportion as well as the chemical purity of the 
samples, indicating a homogeneous chemical composition. 
The atomic and weight percentage of individual elements for 

Fig. 1   a–b Refined XRD patterns of the two samples, Mg700 and 
Mg1100, c Williamson–Hall plots of Mg700 and Mg1100
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both the samples [ Mg700 , Mg1100 ] are also shown in the 
inset table. The obtained results confirm the stoichiometric 
amounts of the elements in the prepared compound close 
to the target chemistry. We have to notice that the small 
atomic number (Z) of the element lithium, which is lower 
than the sensitivity of EDX, is the cause of its invisibility in 
the spectrum [44].

Optical study

UV–visible spectroscopy was used to study the optical 
properties of the two synthesized samples. Figure 4a shows 

the absorption spectra of two samples for the UV/visible/IR 
range. The absorption edges were found to be in the visible 
region, demonstrating its suitability for visible light. The 
electronic transition from the valence band to the conduction 
band can be used to explain the strong absorption (O

2pFe3d) . 
In other words, the electronic excitation from the O

2p level 
(valence band) to the Fe

3d level (conduction band) absorbed 
a significant amount of visible light [45].

The band gap energies are calculated by the following 
Tauc relation [5, 46]:

where � is the absorption coefficient, A is a constant reflec-
tion of the amorphous solid structure’s disorder degree, Eg 
is the gap energy, h� is the energy of the incident photon 
expressed in (eV), and the value of n denotes the nature of 
transition (equal 2 or 1∕2 according to the electronic transi-
tions are respectively direct or indirect).

As in the literature, Li
0.5
Fe

2.5
O

4
 , LiMg

0.5
Fe

2.5
O

4
 , and 

LiNi
0.5
Fe

2.5
O

4
 [29, 47] have direct gap, the synthesized 

compound has also a direct gap. Besides, the band gap 
value approximately corresponds to the wavelength (around 
500 nm) of the inflexion point in absorbance spectrum. This 
means that the band gap is around 2.48 eV.

(1)(�hv) = A[hv − Eg]
n

Table 1   Structural parameters 
of the two samples Mg700 and 
Mg1100

Parameters Mg700 Mg1100

a(Å) 8.3750 8.3777
V(Å3) 587.4257 587.9877
�2 4.892 4.443
Rp(%) 36.9 37.1
Rwp(%) 21.1 22.2
Cations distribution [Li0.487Fe0.382Mg0.131]A 

[Fe1.115Mg0.885]BO3.505

[Li0.487Fe0

.362Mg0.151]A 
[Fe1.13Mg0.870]BO3.46

Re(%) 9.54 10.5
aexp (Å) 8.3752 8.3778
LA-A (Å) 3.626 3.627
LB-B (Å) 2.961 2.962
LA-B (Å) 3.472 3.473
DDS(nm) 53 72
�A−O−B(

◦) 124.8539 124.8718
�B−O−B(

◦) 90.5790 90.5514
Tetrahedral bond length (dAE) 2.08325 2.0844
Octahedral bond length (dBE) 1.083152 1.8314
DWH(nm) 61 162
� 5.68.10−4 4.1.10−3

�X−ray(g.cm
−3) 3.97 3.96

�exp(g.cm
−3) 3.17 3.25

P(%) 20.151 17.929
S(m2g−1) 27.08 11.41

Table 2   The experimental proportions of the constituents obtained by 
EDS and the theoretical ones of the two samples Mg700 and Mg1100

Mg700
%Atomic

Mg1100
%Atomic

Theoretical 
values

Experimental 
values (EDX)

Theoretical 
values

Experimental 
values (EDX)

C
Li
Mg
Fe
O

-
7.69
15.38
23.08
53.85

4.48
-
14.90
24.19
56.43

-
7.69
15.38
23.08
53.85

4.08
-
13.72
27.53
54.67
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The band gap energies (Eg) are calculated by plotting 
[�h�]2 with the photon energy [h�] as shown in Fig. 4b–c. 
However, the energy (Eg) values are 2.5 and 2.35eVMg700 
and Mg1100 , respectively. This confirms that the com-
pound is direct transition type and indicates that the band 
gap (Eg) decreased with the increase in the particle size. In 
this work, the reduction of band gap is probably attributed 
to the composition and crystal structure of the obtained 
products. Taking into consideration the Mott and Davis 
model [48, 49], the disorder degree and the defects created 
by unsaturated and dangling bonds expand the width of the 
localized states. These latter, situated near the band gap 
edge, lead to a decrease of the band gap. These band gap 
energy values indicate that the two ferrite samples can be 

applied in several technological fields such as photovolta-
ics, optoelectronics, and gas sensors [50].

The refractive index (n
0
) of semiconductor materials is 

essential in determining the optical and electrical properties 
of the crystal. Understanding n

0
 n is essential in the design 

of heterostructure lasers in optoelectronic devices and solar 
cell applications [51]. Using Moss’ empirical relationship 
[52], the refractive index (n

0
) of ferrite nanostructures can 

be calculated from the value of Eg:

Additionally, we used Eq. (3) to calculate the high-fre-
quency dielectric constant �� with the refractive index [53]:

(2)Egn0
4
= 104 eV

Fig. 2   a SEM morphology, 
grain sizes histogram of Mg700, 
b SEM morphology, grain sizes 
histogram of the Mg1100

Fig. 3   a–b EDX spectrum of 
the two samples Mg700 and 
Mg1100

607Ionics (2023) 29:603–615
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The values of refractive index (n
0
) and high-frequency 

dielectric constant (��) of the two samples are 2.54, 6.44, 
2.57, and 6.65, respectively. Obviously, the refractive indi-
ces (n

0
) and (��) increased with the increase in the sintering 

(3)�� = n
0

2

temperature. The results can be discussed in terms of lack 
of oxygen with higher sintering temperatures [24].

Complex impedance spectroscopy

Real part of impedance

Figure 5a–b represent the variation of the real part of the 
impedance (Z

�

) with frequency at different temperatures 
of the two compounds Mg700 and Mg1100 . These plots 
show that the values of Z′ are higher in the low frequency 
range. It was also found that Z′ , whose value decreases 
with the increase in temperature, is temperature-depend-
ent, indicating an increase in conductivity [54]. At high 
frequencies, the Z′ values become almost frequency-inde-
pendent with a merging of all Z′ curves. In addition, it is 
important to mention that Z′ decreases with the increase 
in temperature, which can be accredited to the decrease 
in the density of charge carriers and the increase in their 
mobility, proving a reduction in the localized character 
of charge carriers [55, 56]. It is important to note that 
the value of the real part of the impedance decreases 
with the increase in the sintering temperature from 700 

Fig. 4   a Absorbance versus wavelength of Mg700 and Mg1100 sam-
ples. b–c The variation of (�h�)2 versus (h�) of the two compounds 
Mg700 and Mg1100

Fig. 5   Real part Z' as a function of frequency at different tempera-
tures of the two compounds Mg700 (a) and Mg1100 (b)

608 Ionics (2023) 29:603–615
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to 1100 °C, which highlights a decrease of the electrical 
resistance, and thus an improvement of conductivity.

Imaginary part of impedance

Figure 6a–b show the variation of the imaginary part Z'' 
of the complex impedance as a function of frequency, 
at several temperatures for the compounds Mg700 and 
Mg1100 , respectively. The Z'' spectra of the two com-
pounds are characterized by the appearance of a single 
peak that shifts towards high frequencies, substantiat-
ing the presence of a relaxation phenomenon in the syn-
thesized samples. As a result, an increase in relaxation 
time and mobility of charge carriers for the jump can be 
noted, leading to the reduction in the strength of the bulk 
material [57, 58]. The temperature dependence of the 
relaxation frequency for each compound was plotted, to 
calculate the activation energy, according to Arrhenius’ 
law expressed as follows [59]:

where f
0
 is the pre-exponential term, Ea is the activation 

energy, and KB is the Boltzmann constant.
The logarithmic variation of fmax is plotted against 

1000/T in Fig. 6c. The obtained values of activation energy 
were found to be around 0.321eV  for Mg700 and 0.318eV  
for Mg1100 . It can be concluded that increasing the sinter-
ing temperature decreases the activation energy as in the 
literature [60].

Equivalent circuit

Figure 7a–b illustrate the variation of Z'' as a function of Z' 
at different temperatures for the two studied compounds. 
This figure shows a single semicircle corresponding to the 
grain response, whose diameter decreases with temperature, 
indicating a thermally activated conduction mechanism [61]. 
The experimental data of the Nyquist diagram (Z'' as func-
tion of Z'') were fitted by the Z-view software. The best fits 
are obtained by the equivalent circuit combining a grain 
resistance (Rg) and a fractal capacitance (CPE) . A similar 
behavior is observed in spinel compounds reported in the 
literature [4, 62, 63]. The parameters obtained are therefore 
summarized in Table 3.

The impedance is calculated as follows [64]:

where j =
√

−1 , Q is a proportional factor indicates the value of 
the capacitance, � is an empirical exponent with values between 

(4)f = f
0
exp

(

Ea

KBT

)

(5)ZCPE =
1

Q(j�)�

0 and 1 indicating the change of the compressed semicircle from 
an ideal semicircle, and � is the angular frequency.

Figure 8a shows the variation of grain strength as a 
function of the temperature of the two samples sintered at 
700 and 1100 °C, respectively. It can be clearly seen that 
the grain resistance values decrease with the increasing 
temperature of the two compounds, which is due to the 
increase in the mobility of charge carriers or the decrease 
in the average energy of the barriers of potential [65, 66].

Fig. 6   Plots of the imaginary part of the impedance (Z'') versus fre-
quency at different temperatures of the Mg700 (a) and Mg1100 sam-
ples (b), c variation of ln(fmax) versus 1000/T

609Ionics (2023) 29:603–615
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The logarithmic variation of the grain strengths (Rg) of 
the prepared compounds Mg700 and Mg1100 , respectively, 
can be plotted as a function of 1000∕T  (Fig. 8b) and appears 
to follow the Arrhenius relation (Eq. 6):

where R
0
 is the resistance of the grains, Ea is the activation 

energy, and KB is the Boltzmann constant.
As the sintering temperature increases, the values of the 

activation energies related to the grains decrease, which is 

(6)Rg = R
0
exp

(

Ea

KBT

)

similar to the results obtained for the conductivity and the 
modulus.

Electrical conductivity

Figure 9a–b show the spectra of conductivity (ac) as a 
function of frequency at several temperatures, for the 
LiMg

2
Fe

3
O

7
 compounds sintered at 700 and 1100  °C. 

Conductivity spectra are composed of two distinct fre-
quency regions. At low frequencies in which conduc-
tivity behaves almost constantly, it is practically inde-
pendent of frequency. This region is associated with the 
long-range translational motion of charge carriers [67]. 
In the second frequency region, the electrical conductiv-
ity increases with the increase in frequency following 
Jonscher’s power law [54, 68]:

where �ac is the direct current conductivity, � is the angular 
frequency, s is an exponent depending on the temperature 
that presents the degree of interaction between mobile ions 
and the lattices around them [57], and A is a constant per-
taining to the strength of polarizability.

Figure 9c and d show an example of fitting the �aC data 
to T = 380 K for the two compounds Mg700 and Mg1100 
which proves a good agreement between the theoretical and 
experimental data.

Also, the temperature dependence of the exponent s for 
the Mg700 and Mg1100 samples is shown in Fig. 10a–b. 
The Mg700 compound shows a conduction process polaron 
tunneling model (OLPT), and Mg1100 exhibits s values, 
which increase with increasing temperature, confirming the 
conduction process non-overlapping small polaron tunneling 
model (NSPT).

Figure 11a–b show the continuous variation of conductiv-
ity with temperature (a), and the plot of ln(�dc.T) as a func-
tion of 1000∕T  (b). Figure 11a shows the continuous varia-
tion of conductivity with temperature. This figure shows that 
the conductivity of samples annealed at 700 and 1100 °C 
increases steadily with temperature, indicating the character-
istics of semiconductors. This could be because increasing 
the sintering temperature improves the compactness of the 
specimens [27, 69].

To determine the activation energy of our samples, we 
used the model of small polaron hopping (SPH) at high 
temperature expressed by the following expression [70, 71]:

where �
0
 is a pre-exponential factor, Ea is the activation 

energy, and KB is the Boltzmann constant.

(7)�ac(�) = �dc + A�s

(8)�dCT = �
0
exp

(

−
Ea

KBT

)

Fig. 7   Nyquist plots of Mg700 (a) and Mg1100 (b), c example 
of adjustment of the equivalent circuit for the two compounds at 
T = 380 K
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From Fig. 11b, the activation energies determined are 
Ea = 0.352eV  for Mg700 and Ea = 0.347eV  for Mg1100 , 
respectively. It has been found that as the sintering tem-
perature increases, the activation energy decreases, and 
the conductivity increases. These findings are in good 
agreement with the decrease of the grain resistance 
proved by the equivalent circuit simulation. As already 
noted, the electrical conductivity enhancement is due not 
only to the increase of the density of charge carriers but 
also to the decrease of the porosity in the structure after 
the increase in the sintering temperature [69]. Moreo-
ver, we detected the same value of the activation ener-
gies with those extracted from the impedance, electrical 
modulus, and grain resistance data.

In the literature, numerous investigations have shown 
that the grain boundaries of nanostructured materials 
play an important role in their transport and dielectric 
properties [27, 72, 73]. From the SEM results, the micro-
structure of the prepared structure is formed by conduc-
tive grains separated by resistive grain boundaries. Such 
behavior will undoubtedly affect the conductivity and 
dielectric properties of the studied system. In the pre-
sent work, the annealing temperature increase induces 
changes in various parameters like the intra-grain dis-
tance, the number, and the size of the grains. Accord-
ingly, the annealing temperature increase is accompanied 
by an increase in the grain size and a decrease in the 
number of grains, which enhances the electrical conduc-
tivity of the studied system.

Table 3   The electrical 
parameters of the Mg700 and 
Mg1100 samples extracted 
by using an equivalent circuit 
adjustment

T(K) Rg ( kΩ) CPE1 ( × 10−11 Ω−1s�) �

Mg700 Mg1100 Mg700 Mg1100 Mg700 Mg1100

300 446 135 9.431 6.886 0.951 0.967
310 101 101 6.782 6.782 0.962 0.968
330 52.99 52.9 7.156 7.156 0.975 0.972
340 39.3 39.3 6.973 6.973 0.955 0.974
350 91.3 29.7 6.850 6.850 0.967 0.976
360 71.0 22.5 5.951 5.951 0.970 0.978
370 52.1 17.4 6.572 6.572 0.977 0.979
380 40.4 13.5 6.563 5.648 0.978 0.982
390 31.5 10.7 6.537 5.564 0.978 0.983
400 25.1 8.34 6.538 5.390 0.978 0.985
410 19.6 6.57 6.501 5.511 0.979 0.983
420 15.6 5.09 6.510 5.443 0.979 0.984
430 12.6 4.12 6.521 5.483 0.979 0.9836
440 10.3 3.22 6.547 6.156 0.979 0.9826
450 8.19 2.60 6.489 6.227 0.9798 0.982
460 6.61 2.00 6.417 6.338 0.981 0.980
470 5.35 1.67 6.353 6.518 0.981 0.978

Fig. 8   a Grain resistance plots as function of temperature, b variation 
of ln(Rg) versus (1000/T) from the two samples Mg700 and Mg1100

611Ionics (2023) 29:603–615



1 3

Conclusion

The ferrite material LiMg
2
Fe

3
O

7
 was successfully 

synthesized by the citrate process and the obtained 
nanoparticles were treated separately at two different 
sintering temperatures, namely 700 and 1100  °C. The 
morphology of the two samples was analyzed by SEM, 
which showed that the grains were composed of different 
crystallites. Besides, the EDX analysis confirmed the 
purity of the samples. The electrical characterization of 
LiMg

2
Fe

3
O

7
 sintering at 700 and 1100 °C allowed us to 

conclude that increasing the temperature improves the 
electrical conductivity. The sample annealed at 1100 °C has 
the highest conductivity and the lowest activation energy. 
The conduction mechanism of conduction mechanism was 
charge carrier hopping between ions of different valence 
states. The variation of the exponent s as a function of 
temperature shows the presence of two conduction models, 
large polaron tunneling model (OLPT) and non-overlapping 
small polaron tunneling model (NSPT) for Mg700 and 
Mg1100 , respectively. The activation energies were 
calculated from the conduction of the imaginary part of 

Fig. 9   The variation of the elec-
trical conductivity versus the 
frequency at different tempera-
tures of Mg700 (a) and Mg1100 
(b) samples, c–d example of fit 
at T = 320 K of the two samples
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the impedance, resistance of the grains, alternating current 
dc, and imaginary part of the modulus and conformed that 
the electric and dielectric have and the same professed.
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