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Abstract
Pitch has captured extensive interest as an anode material for sodium-ion batteries due to the abundant resources, low cost, 
and improvable reversible capacity through oxidation; however, not all the oxidations are effective. Here, a precise low-
temperature pyrolysis strategy is successfully adopted to affirm the effective oxidation precursor. The results indicate that 
adjusting the state of pitch before oxidation can realize different structural conversions and Na storage performances during 
high-temperature carbonization. Carbonized pristine pitch (P-1400) and carbonized oxidized pitch, whose precursor is pyro-
lyzed at 600 °C (P600-N + S-1400), both show graphite-like microcrystallite structures and deliver reversible capacities 92.4 
and 93.1 mAh g−1 (at 20 mA g−1) with 48.8 and 47.6% initial coulombic efficiencies, respectively. In comparison, carbon-
ized oxidized pitch, whose precursor is pyrolyzed at 400 °C (P400-N + S-1400), displays a typical amorphous structure and 
increases the reversible capacity to 315.1 mAh g−1 (at 20 mA g−1) with 61.4% initial coulombic efficiency. Only incompletely 
carbonized pitch can have effective oxidation with suppressed graphitization and enhanced electrochemical performances.

Keywords  Incompletely carbonized pitch · Sodium-ion battery · Oxidation · Suppressed graphitization · Enhanced 
electrochemical performances

Introduction

Sodium-ion batteries (SIBs) have similar working principles 
and components to lithium-ion batteries (LIBs). Abundant 
resources, low costs, and safety performances make SIB 
promising in the field of large-scale energy storage [1, 2]. 
Surprisingly, graphite, which is a kind of carbon anode with 
excellent electrochemical performances and mature com-
mercial application in LIB [3], is difficult to insert/extract 
for Na+ due to thermodynamics [4, 5]. It prompts research-
ers to pay more attention to other carbon materials [6–18]. 
Compared with hard carbon with a higher specific capacity 
but higher cost, researchers are still searching for better-
performed soft carbon through tuning and optimizing the 
structures [19–23].

Many precursors have been used to synthesize soft car-
bon, including petroleum coke, pitch, plastics, tar, and most 
aromatic compounds [7, 24–29]. Among them, pitch has a 
low price [30]. However, pitch is also abundant with oli-
gomers of alkylated polycyclic aromatic hydrocarbons. The 
direct pyrolysis of pitch at high temperatures results in soft 
carbon with near parallel stacked carbon sheets and a rela-
tively high graphitization degree, which is unsuitable for 
Na+ insertion/extraction [31].

Fortunately, it has been reported that oxidation can effec-
tively stabilize the molecule structure of pitch and prevent its 
softening through forming the cross-linking networks during 
carbonization [32–36]. It results in more disordered crystal-
line structures with enlarged interlayer spacing, which exhib-
its the typical Na storage behavior of hard carbon. Based on 
previous researches [6, 32, 37, 38], the formation of cross-
linking networks is favored by the presence of oxygen or 
shortage of hydrogen in the raw carbon materials. During 
the early stage of carbonization, carbon materials with much 
hydrogen can constantly form hydrocarbon decomposition 
products, which will prevent carbon materials from solid 
state and remain relatively mobile, inducing a continual 
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reduction and destruction of cross-links. By contrast, if the 
carbon residue remains few hydrogens after the first mass 
loss at the early stage of carbonization, the voids formed 
by the gas escape would not be able to collapse, leading to 
solid-state carbonization and non-graphitization at further 
high temperatures [37–39].

Recently, Qi et al. presented an in situ Mg(NO3)2·6H2O 
solidification strategy for pitch to convert the fusion-state 
into solid-state carbonization [40]. The oxygen species 
and solid products generated from the decomposition 
of Mg(NO3)2·6H2O retarded the melting and reorder-
ing of pitch. Furthermore, the comparison experiment of 
Fe(NO3)3·9H2O proposed that not all the oxidations are 
effective. Only by providing oxygen within an appropriate 
temperature range can the excess hydrogen be neutralized, 
preventing the melting at the initial stage of pitch carboniza-
tion. Compared with the traditional oxidation method, this 
research provides a new thought that using the continuous 
decomposition of Mg(NO3)2·6H2O can supply oxygen dur-
ing carbonization. Nevertheless, it also raises a question: 
how to reach the appropriate oxidation temperature range 
for pitch?

Here, a series of pitch-based carbon for SIB anodes via 
low-temperature pyrolysis, oxidation, and high-temperature 
carbonization were prepared. A precise low-temperature 
pyrolysis strategy, which adjusted the pyrolysis temperature 
over a wide range of 0 ~ 800 °C, was adopted to affirm the 
effective oxidation precursor. The results reveal that adjust-
ing the state of pitch before oxidation can realize different 
structural conversions and Na storage performances during 
high-temperature carbonization. Only by oxidizing incom-
pletely carbonized pitch can the non-graphitizing carbon be 
formed after carbonization, exhibiting the superior revers-
ible capacity and initial coulombic efficiency (ICE) for SIB.

Experimental

Material synthesis

The pristine pitch (P, Canrd) was firstly heated under argon 
treatment at different temperatures (200 °C, 300 °C, 400 °C, 
500 °C, 600 °C, and 800 °C) for 2 h to get different states 
of pitch-based carbon (P, P200, P300, P400, P500, P600, 
and P800). Then, pitch-based carbon was dispersed in the 
mixture of sulfuric acid (H2SO4, 95.0 ~ 98.0%) and nitric 
acid (HNO3, 65.0 ~ 68.0%), respectively, keeping V(H2SO4)/
V(HNO3) = 1:2. After stirring at 50 °C for 12 h, washing 
with deionized water, and heating at 80 °C for 24 h, the 
oxidation products (P-N + S, P200-N + S, P300-N + S, 
P400-N + S, P500-N + S, P600-N + S, and P800-N + S) 
were obtained. Finally, the dried oxidation products were 
annealed at 1400  °C for 2  h under flowing argon, and 

the target products (P-N + S-1400, P200-N + S-1400, 
P300-N + S-1400, P400-N + S-1400, P500-N + S-1400, 
P600-N + S-1400, and P800-N + S-1400) were synthesized. 
The optimal carbonization temperature was 1400 °C with 
the best electrochemical performances after oxidation [35].

As the pitch-based carbon in this experiment was heated 
twice, namely low-temperature pyrolysis and high-tem-
perature carbonization, carbonized pitches with differ-
ent pyrolysis temperatures and an identical carbonization 
temperature were tested to confirm whether pyrolysis tem-
perature affects the electrochemical performances of pitch. 
Comparing the galvanostatic charge/discharge curves (the 
first cycle, 20 mA g−1) in Fig. S1, it showed that the revers-
ible capacities of carbonized pitches with different pyroly-
sis temperatures were nearly the same. Therefore, different 
pyrolysis temperatures did not affect the experimental data 
in this paper.

Material characterization

High-resolution transmission electron microscopy (HRTEM) 
and selected area electron diffraction (SAED) measurements 
were performed on a JEOL-F200. X-ray diffraction (XRD) 
was analyzed on a Rigaku Ultima IV. Raman spectra were 
obtained on a Thermo Scientific DXR. Fourier transform 
infrared spectroscopy (FTIR) measurements were performed 
on a Frontier NIR. X-ray photoelectron spectra (XPS) were 
performed on a Shimadzu AXIS Supra. Thermogravimetry 
(TG) and differential scanning calorimeter (DSC) were car-
ried on an STA 449 F5.

Electrochemical measurements

The electrochemical tests were conducted on CR2025 coin 
cells at ambient temperature. The working electrode was 
prepared by spreading the homogeneous slurry onto a copper 
foil, which consisted of 80% active materials, 10% acetylene 
black, and 10% PVDF in N-methyl-2-pyrrolidone. Sodium 
metal was utilized as the counter electrode in SIB, and potas-
sium metal was utilized as the counter electrode in potas-
sium-ion battery (PIB). Glass fiber filters (GF/D) were used 
as the separator. The electrolyte in SIB was 1 M NaClO4 
with 2% fluoroethylene carbonate (FEC) additive dissolved 
in a mixture of ethylene carbonate, dimethyl carbonate, and 
ethyl methyl carbonate (EC/DMC/EMC = 1:1:1, vol%). The 
electrolyte in PIB was 0.8 M KPF6 in a mixture of ethylene 
carbonate and diethyl carbonate (EC/DEC = 1:1, vol%). The 
coin cells were assembled in an Ar-filled glovebox (Mik-
rouna, H2O, O2 < 0.1 ppm). Galvanostatic charge/discharge 
curves, rate performances, and cycling performances were 
obtained within the potential range of 3.00 ~ 0.01 V (vs. Na+/
Na) and 3.00 ~ 0.01 V (vs. K+/K) on a Land CT2001A bat-
tery tester. Cyclic voltammetry (CV) and electrochemical 
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impedance spectroscopy (EIS) were conducted using a 
CHI604E electrochemical workstation.

Results and discussion

To analyze the structural conversions from oxidation, 
HRTEM, XRD, and Raman analyses of P400-N + S-1400, 
P600-N + S-1400, and P-1400 were performed. Apparent 
long-range-ordered parallel carbon layers are shown in 
HRTEM images (Fig. 1a, c), which reveal the high graphiti-
zation degrees of P-1400 and P600-N + S-1400. SAED pat-
terns show sharp diffraction rings, which also demonstrate 

the graphitic structures of P-1400 and P600-N + S-1400 [37, 
41]. Oppositely, P400-N + S-1400 in Fig. 1b has a different 
microstructure. The disordered turbostratic structure with 
curved carbon layers becomes evident over the entire area, 
giving rise to a large number of voids due to layer shift-
ing or folding with each other from the atomic mobility. 
Moreover, the diffraction ring in the corresponding SAED 
pattern is blurred, indicating the disordered structure of 
P400-N + S-1400 [42, 43].

XRD patterns (Fig.  1d) of P400-N + S-1400 and 
P600-N + S-1400 are also different. P400-N + S-1400 has 
a broad diffraction peak at 2θ ≈ 23.46° (Table 1), corre-
sponding to the (002) plane, which is a characteristic of a 

Fig. 1   HRTEM images of a P-1400, b P400-N + S-1400, and c P600-N + S-1400. d XRD patterns and e Raman spectra of P-1400, 
P400-N + S-1400, and P600-N + S-1400. f TG curve of pitch under N2 atmosphere

Table 1   Physical parameters of samples from XRD, Raman, and XPS

Samples (002) peak (°) d002 (nm) ID/IG C1s (at.%) O1s (at.%) N1s (at.%) Atomic (%)

C–O C = O C–OH

P400 24.76 0.359 0.55 95.59 4.41 - 0.54 0.58 0.52
P600 25.52 0.349 0.61 90.94 9.96 - 1.04 1.67 1.18
P400-N + S 23.24 0.382 0.69 70.67 21.87 7.46 1.71 3.44 3.59
P600-N + S 25.46 0.350 0.71 81.75 15.56 2.69 0.98 3.84 1.35
P400-N + S-1400 23.46 0.379 1.07 89.93 10.07 - - - -
P600-N + S-1400 25.74 0.346 0.99 93.53 6.47 - - - -
P-1400 25.80 0.345 0.99 95.27 4.73 - - - -
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typical amorphous structure. In contrast, the (002) peak of 
P600-N + S-1400 is quite sharp and symmetric, which is 
similar to P-1400, revealing graphite-like microcrystallite 
structures [37, 41, 43, 44]. The carbon layer spacings (d002) 
calculated from the XRD data are shown in Table 1, which 
are consistent with the HRTEM results (Figs. 1a–c and S2-
4). XRD patterns of other carbonized oxidized pitches are 
shown in Fig. S5. P-N + S-1400, P200-N + S-1400, and 
P300-N + S-1400 all indicate typical amorphous struc-
tures, the same with P400-N + S-1400. P800-N + S-1400 
is graphitized just like P-1400 and P600-N + S-1400. 
P500-N + S-1400 is likewise graphitized, whereas the 
intensity of (002) peak is much lower than that of P-1400 
and P600-N + S-1400, indicating P500-N + S-1400 is at the 
transition stage from a highly disordered structure to graph-
ite-like structure. Raman spectra are presented in Fig. 1e. 
The intensity of D band is stronger than that of G band in 
P400-N + S-1400, while the situations are entirely inverse 
for P-1400 and P600-N + S-1400, which confirms the higher 
disorder degree of P400-N + S-1400 [35].

TG curves (Fig. 1f) were obtained to understand the state 
conversion of pitch. Weight loss is slight up to 300 °C due 
to the water desorption and the loss of methylene hydrogen. 
Evident weight loss is observed between 300 and 560 °C, 
indicating that pitch decomposes rapidly during this tem-
perature as processes like molecule volatilization, hydrocar-
bon skeleton cleavage, as well as functional group partially 
abstraction may occur. After 560 °C, a polymerization reac-
tion occurs and molecules are rearranged [45]. The weight 
loss becomes less apparent, revealing the carbonization of 
pitch has been completed [35].

Pitch is a kind of soft carbon, which is easy to convert 
amorphous carbon into graphite when the temperature is 
above 2500 °C [37]. The above results reveal that not all 
the oxidations can restrain the graphitization of pitch at 
high temperatures. Only incompletely carbonized pitch can 
maintain the amorphous structure after oxidation and car-
bonization, just like P, P200, P300, and P400. When pitch is 
carbonized at 500 °C, P500 is at the transition stage and its 
carbonized oxidized pitch is graphitized with low intensity. 

When pitch is completely carbonized, such as P600 and 
P800, carbonized oxidized pitch turns to a graphite-like 
microcrystallite structure.

The changes caused by the introduction of oxygen were 
further analyzed. XRD patterns in Fig. 2a show that (002) 
peak of P400 is poorly crystallized, and a small bump is in 
the range of 10 ~ 20°. Compared with P400, P600 has a right 
shift (002) peak, and the bump is disappeared. It indicates 
that P400 is incompletely carbonized and P600 is completely 
carbonized [46], which is in correspondence with TG analy-
sis. Compared with P400, (002) peak of P400-N + S shifts 
to the left and retains an amorphous structure, demonstrat-
ing an increased interlayer spacing of P400-N + S (Table 1). 
Unlike P400 series of carbon, only minute differences of 
(002) peaks are noticed between P600 and P600-N + S. 
In addition, typical broad amorphous carbon diffraction 
peaks corresponding to the (002) plane are all displayed in 
XRD patterns for pitch-based carbon and oxidized pitch-
based carbon, indicating that the overall structure does not 
change after oxidation. Raman spectra in Fig. 2b present 
that the values of intensity ratio (ID/IG, Table 1) for P400, 
P400-N + S, P600, and P600-N + S are 0.55, 0.69, 0.61, and 
0.71, respectively, indicating that the oxidized pitch-based 
carbon has higher ID/IG values, which is an evolution of local 
structure from ordered to disordered after oxidation [35].

FTIR (Fig. 3a) measurement was conducted to affirm the 
existing state of oxygen. The peaks at around 3436 cm−1 cor-
respond to the O–H stretching vibration of hydroxyl groups 
and residual water. The peaks at approximately 1735 cm−1 
represent carboxyl/carbonyl stretching groups. Besides, the 
peaks occurring at 1343 cm−1 are due to the O–H bending 
deformation of C–OH groups, and the C–O stretching vibra-
tions are detected at 1032 cm−1 [47]. It can be noticed in 
P400 series of carbon and P600 series of carbon that oxygen-
containing groups such as C = O, C–O, and C–OH are all 
increased after oxidation, while the intensities are different. 
It could be tentatively concluded that the introduction of 
oxygen is mainly in the form of carboxyl after oxidation 
[48, 49]. Oxygen-containing groups are both introduced into 
P400-N + S and P600-N + S, just in different amounts.

Fig. 2   a XRD patterns and b 
Raman spectra of P400, P600, 
P400-N + S, and P600-N + S
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XPS was collected to further understand the nature of cor-
responding bonds. XPS survey spectra (Fig. 3d) show that 
the content of O1s in P400-N + S is 21.87 at.% (Table 1), 
which is higher than that in P400 (4.41 at.%). High-resolu-
tion O1s spectra of P400-N + S (Fig. 3c) changes to higher 
binding energy than that of P400 (Fig. 3b), with three peaks 
denoting C = O, C–O, and C–OH being deconvoluted. The 
amounts of C–O, C = O, and C–OH in P400 are 0.54, 0.58, 
and 0.52 at.%, while those in P400-N + S are 1.71, 3.44, 
and 3.59 at.%, respectively. It demonstrates that P400-N + S 
contains more oxygen-containing groups than P400, espe-
cially C = O and C–OH [35, 47]. Compared to P600, the 
content of O1s in P600-N + S has a rise, which is from 9.96 
to 15.56 at.%. The amounts of C = O and C–OH in P600 
series of carbon also increase from 1.67 and 1.18 (Fig. 3e) 
to 3.84 and 1.35 at.% (Fig. 3f) after oxidation, respectively. 
In addition, the content of O1s in P400-N + S-1400 and 
P600-N + S-1400 is both higher than that in P-1400, which 
is 10.07, 6.47, and 4.73 at.%, respectively. Therefore, oxygen 
is picked up and mainly presents in carboxyl after oxidation. 
The growths of oxygen-containing groups are quite huge in 
P400-N + S, while those in P600-N + S are barely visible.

In conclusion, the oxidation effects on P400 series of car-
bon and P600 series of carbon are diverse. Lots of carboxyl 
are introduced into P400-N + S after oxidation, resulting in 
more small molecules (such as H2O, CO, and CO2) volatil-
izing with the decomposition of oxygen-containing groups 
during the high-temperature carbonization [40, 46, 50]. The 

loss of more hydrogen contributes P400-N + S-1400 to form 
cross-linking networks and remain the amorphous structure 
[35, 37, 39]. Oppositely, oxidation has a limited effect on 
P600-N + S-1400. The completely carbonized pitch P600 
has achieved fusion-state carbonization. Decreasing the 
hydrogen of P600 through oxidation to convert the fusion-
state into solid-state carbonization is impossible. Most of the 
oxygen-containing groups introduced into P600-N + S after 
oxidation are decomposed into volatile substances during the 
high-temperature carbonization, and the rest causes a slight 
increase of oxygen in P600-N + S-1400. The carbonization 
process of P600 series of carbon is still a gradual graphitiza-
tion of pitch at high temperatures.

The verified structure variations undoubtedly influ-
ence electrochemical performances. CV curves at dif-
ferent scanning rates of P-1400, P400-N + S-1400, and 
P600-N + S-1400 are shown in Fig.  4a–c. The curves 
of P-1400 and P600-N + S-1400 are quite distinct from 
those of P400-N + S-1400. P-1400 and P600-N + S-1400 
have wide humps as the redox peaks, which are particu-
larly evident at high scanning rates. The redox peaks of 
P400-N + S-1400 are a pair of sharp peaks at about 0.1 V, 
which is similar to the CV curve of a typical hard car-
bon anode, indicating the Na storage in P400-N + S-1400 
has changed apparently and resembles the mechanism of 
hard carbon. Moreover, Fig. 4d, f suggests that P-1400 and 
P600-N + S-1400 have linear relations between peak cur-
rent (Ip) and the square root of scanning rate (v1/2), which 

Fig. 3   a FTIR spectra and d XPS survey spectra of P400, P600, P400-N + S, and P600-N + S. High-resolution O1s spectra of b P400, c 
P400-N + S, e P600, and f P600-N + S
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conforms to the Randles–Sevcik equation [51]. The corre-
sponding Ip-v1/2 relationship of P400-N + S-1400 (Fig. 4e) 
cannot fit linearly, revealing the unlike diffusion behavior 
of Na+.

Galvanostatic discharge/charge measurements 
(Fig. 5a) conducted between 3.00 and 0.01 V versus Na+/
Na at a rate of 20 mA g−1 were observed. The obtained 
P400-N + S-1400, P600-N + S-1400, and P-1400 deliver 

Fig. 4   CV curves at different scanning rates of a P-1400, b P400-N + S-1400, and c P600-N + S-1400. Corresponding Ip-v.1/2 relationship of d 
P-1400, e P400-N + S-1400, and f P600-N + S-1400

Fig. 5   a Galvanostatic charge/discharge curves (the first cycle), b charge capacities (the third cycle) from the sloping-voltage and plateau-voltage 
regions, c CV curves (the first cycle), d EIS, e rate performances, and f cycling stabilities of P-1400, P400-N + S-1400, and P600-N + S-1400
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reversible capacities of 315.1, 93.1, and 92.4 mAh g−1 
with 61.4, 47.9, and 48.8% ICE, respectively. P-1400 and 
P600-N + S-1400 basically show the sloping region, cor-
responding to the Na+ interlayer intercalation due to the 
graphite-like structure and wide humped redox peaks of soft 
carbon [6, 24, 26, 44]. P400-N + S-1400 displays the sloping 
and 0.1 V plateau regions. Based on the mechanism of hard 
carbon [52, 53], the plateau region results from interlayer 
intercalation, and the sloping region is associated with defect 
adsorption. Galvanostatic discharge/charge curves of other 
carbonized oxidized pitches are shown in Fig. S6. After oxi-
dation and carbonization, incompletely carbonized pitches 
enhance the Na storage performances and other carbonized 
pitches have limited improvement, corresponding to the 
microstructure analysis.

The dependence of the reversible capacity and the cor-
responding contribution from the sloping and 0.1 V pla-
teau regions on different samples are plotted in Fig. 5b. 
The plateau capacity of P400-N + S-1400 is 189.2 mAh g−1 
at 20 mA g−1, accounting for 59.7% of its total reversible 
capacity, which is much higher than that of P600-N + S-1400 
and P-1400. It reveals that the plateau region contributes to 
the enhanced reversible capacity of P400-N + S-1400 [35].

Correspondingly, the CV curves of P400-N + S-1400, 
P600-N + S-1400, and P-1400 at 0.1 mV s−1 (Fig. 5c and 
Fig. S7-9) show a regular evolution. All the curves have 
an irreversible 1.1 V reduction peak, which is generally 
attributed to the electrolyte decomposition and the forma-
tion of a solid electrolyte interface (SEI) film on the elec-
trode surface [25]. Among the CV curves, P400-N + S-1400 
has a pair of obvious 0.1 V redox peaks, indicating a high 
plateau capacity [6]. As P-1400 and P600-N + S-1400 are 
graphitized carbon, an overall higher sodiation potential of 
the quasi-plateau induces the reversible reduction peak at 
around 0.3 V [24].

EIS analysis (Fig. 5d) was carried out between 10 mHz 
and 100 kHz by applying an AC perturbation signal of 5 mV 
to check the impedances of cells with P400-N + S-1400, 
P600-N + S-1400, and P-1400 anode materials. The cor-
responding Nyquist plots of P600-N + S-1400 and P-1400 
are nearly the same, both possessing larger semicircles than 

those of P400-N + S-1400. It indicates that the cell with 
P400-N + S-1400 anode has a smaller internal resistance, 
resulting from the decomposition of electrolytes and forma-
tion of the SEI film, which is consistent with the improved 
ICE [35, 54].

The  ra t e  capab i l i ty  o f  P400-N + S-1400 , 
P600-N + S-1400, and P-1400 is shown in Fig. 5e. The 
reversible capacity of P400-N + S-1400 maintains 91.7% of 
the initial reversible capacity at 50 mA g−1, remains 26.9% 
of the initial reversible capacity at 500 mA g−1, and recovers 
98.3% of the initial reversible capacity at 20 mA g−1 after 
experiencing 2000 mA g−1, indicating an inferior rate capa-
bility, which is in accord with the performance of typical 
hard carbon anode. As for the cycling stabilities (Fig. 5f), 
the performances of all the samples seem close to each other, 
maintaining around 90% of the initial reversible capacity at 
20 mA g−1 over 100 cycles.

Nevertheless, it is worth noting that the electrochemi-
cal performances of P600-N + S-1400 and P-1400 are not 
selfsame, although the low capacity makes the improvement 
not apparent. As graphitized carbon is better for the stor-
age of K+ [55–63], the improvement of P600-N + S-1400 
anode was measured in PIB. In Fig. 6a, P600-N + S-1400 
and P-1400 deliver reversible capacities 252.6 and 233.6 
mAh g−1 (at 20 mA g−1) with 56.9 and 51.8% ICE in PIB, 
respectively. With an increased rate, the reversible capac-
ity of P-1400 downs faster than P600-N + S-1400 and even 
stops at 1000 mA g−1. P600-N + S-1400 recovers the capac-
ity of 20 mA g−1 after experiencing 1000 mA g−1 high rate 
discharge, however, with a serious capacity fading in the 
later cycles. The capacity fading of P600-N + S-1400 and 
P-1400 during cycling at 200 mA g−1 (Fig. 6b) are obvious, 
like other carbon anodes in PIB [56, 59, 64–67]. It is clear 
that oxidation improves the electrochemical performances 
of P600-N + S-1400 in PIB, corresponding to the results of 
oxygen in XPS since oxygen can be seen as a doping to 
improve K+ transport and increase storage sites [59]. Obvi-
ously, oxidation has a slight effect on the microstructure 
of P600-N + S-1400, making it not exactly identical with 
P-1400 and resulting in the corresponding variation in elec-
trochemical performances.

Fig. 6   a Rate performances and 
b cycling stabilities of P-1400 
and P600-N + S-1400 in PIB
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Linking the interpretation of microstructure with Na stor-
age performances, it is affirmed that the state of pitch before 
oxidation plays a key role in suppressing the graphitization 
and improving the electrochemical performances. After oxi-
dation and high-temperature carbonization, the incompletely 
carbonized pitch has superior Na storage performances with 
an amorphous structure. Oppositely, the completely carbon-
ized pitch is gradually graphitized, inducing the reversible 
capacity similar to that of the carbonized pristine pitch.

Specifically (Fig. 7), when the pyrolysis temperature is 
lower than complete carbonization temperature (Tp), pitch 
turns to incompletely carbonized pitch with basically con-
stant structure. After oxidation, a mass of oxygen-containing 
groups are introduced, inducing an oxygen-enriched carbon 
precursor. During the high-temperature carbonization, the 
precursor first liberates more volatile substances to lose 
hydrogen, forming a strongly cross-linked, open-structured, 
non-graphitizing carbon. As the carbonization temperature 
gradually increases, the pitch-based carbon maintains the 
non-graphitizing structure until the heating finishes and 
exhibits the outstanding reversible capacity and ICE.

On the contrary, when the pyrolysis temperature is higher 
than Tp, pitch turns to completely carbonized pitch and 
begins to form ordered carbon layers due to excess hydro-
gen. The subsequent oxidation is too late to transform the 
fusion-state into solid-state carbonization, only increasing a 

number of oxygen-containing groups, most of which are also 
decomposed into volatile substances during the high-temper-
ature carbonization. It is a process of gradually graphitized 
for pitch with limited oxygen increase and electrochemical 
performances improvement.

Conclusions

A series of pitch-based carbon for SIB anodes via low-tem-
perature pyrolysis, oxidation, and high-temperature carboni-
zation were prepared. We adopted a precise low-temperature 
pyrolysis strategy, which adjusted the pyrolysis temperature 
over a wide range of 0 ~ 800 °C, to affirm the effective oxi-
dation precursor. The microstructure of pitch-based carbon 
was characterized by HRTEM, XRD, Raman, TG, FTIR, and 
XPS. The Na storage behaviors and performances were eval-
uated by galvanostatic charge/discharge, CV, cycle, rate, and 
EIS measurements. Based on the evolution of the Na stor-
age behavior with the microstructure, the following insights 
about the carbonized oxidized pitch are proposed. First, not 
all the oxidations can restrain the graphitization of pitch and 
enhance Na storage performances, which is only effective 
for incompletely carbonized pitch. Second, whether or not 
oxidation is effective, oxygen is introduced into carboxyl in 
different amounts. Third, when the precursor is incompletely 

Fig. 7   Schematic comparison 
of carbonized pristine pitch and 
carbonized oxidized pitch
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carbonized pitch, the carbonized oxidized pitch is an amor-
phous structure, whose electrochemical performances have 
been greatly improved with a 0.1 V voltage plateau. Fourth, 
when the precursor is completely carbonized pitch, the car-
bonized oxidized pitch is a graphite-like microcrystallite 
structure with limited effect on the electrochemical perfor-
mances in SIB.

The “only incompletely carbonized pitch can be effec-
tive oxidized” behavior more clearly illustrates the nature 
of oxidation to suppress the graphitization and enhance Na 
storage performances. Carbon material can remain an amor-
phous structure at high temperature as long as the hydrogen 
content is reduced before complete carbonization. Oxidation 
should not be the only way to lose hydrogen through releas-
ing volatile substances. The introduction of other elements 
to lose hydrogen through releasing volatiles with hydrogen 
is worthy of further exploration and research, which presents 
a new insight into the design and development of advanced 
soft carbon anode materials for SIB.
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