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Abstract
Graphene oxide (GO) was first prepared by an improved Hummers method;  Fe3O4,  ZrO2, and corresponding metal oxide-GO 
composite materials were synthesized by a hydrothermal method. The electrochemical performance of as-prepared materi-
als modified glassy carbon electrode (GCE) was investigated by cyclic voltammetry (CV). The ternary  Fe3O4-ZrO2-GO 
composite modified GCE was used as the electrochemical sensor for the dopamine (DA) detection. The CV test showed 
that the  Fe3O4-ZrO2-GO composite modified GCE had a good response to DA with good stability and reproducibility. 
Electrochemical impedance spectroscopy (EIS) illustrated that  Fe3O4-ZrO2-GO/GCE exhibited the lower Rct value (14.11 
Ω). Differential pulse voltammetry (DPV) test demonstrated that the ternary composite has excellent anti-interference 
ability. The linear relationship by differential pulse voltammetry for  Fe3O4-ZrO2-GO/GCE was Ipa(µA) = 0.2552x + 0.0056 
(R2 = 0.9804) with the sensitivity of 3.649 µA µM−1  cm−2 and detection limit of 0.1562 µM in the ranges of 0.5 − 15 µM. The 
developed electrochemical sensor was successfully applied to the DA detection in human serum with satisfactory recovery 
rate. The possible synergistic amplification effect brought from  Fe3O4,  ZrO2, and GO for DA detection was proposed based 
on experimental results.
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Introduction

Dopamine (DA), found in the kidney, hormone system, and 
central nervous system, is a kind of catecholamine neuro-
transmitter [1]. It plays a key role for mankind in controlling 
behavior, emotion, cognition, and memory [2]. Abnormal 
concentration of DA in body fluid may lead to neurological 
diseases [3]. Therefore, it is very necessary to accurately, 
sensitively, and selectively detect DA in biological fluid. Cur-
rently, liquid chromatographic analysis (LC) [3], chemilu-
minescence analysis (CL), [4] fluorescence analysis (FL) [5, 
6], capillary electrophoresis analysis (CE) [7], and UV–Vis 
spectroscopy [8] and other methods have been used for DA 
detection. Nevertheless, owing to the disadvantages of the 

large size of the device, high cost, lengthy pretreatment pro-
cess, and complex operating conditions, the wide application 
of the above methods is limited. In contrast, electrochemi-
cal method has received extensive attention due to the out-
standing advantages such as rapid determination, conveni-
ent operation, high sensitivity, and good selectivity [9]. The 
development of electrode materials with high electrochemical 
activity is a key issue in the construction of sensitive and 
accurate electrochemical sensors for DA detection  [10].

Metal oxide usually has good sensitivity, cost-effectiveness, 
non-toxicity, and rapid response, and its chemical composition 
is relatively stable. Metal oxides are known for their ease of 
fabrication; they can be tailored into multiple nanostructures 
like nanorod [11], nanotube [12], nanowire [13], nanosphere 
[14], and nanoparticle [15]. If they are used as an electrode 
material, they can not only increase working time but also 
broaden the application environment of electrochemical sen-
sors. Moreover, the various chemical valence states of metal 
oxides can provide space for redox reactions.  Fe3O4 is a typi-
cal magnetic nanoparticle that has attracted widespread atten-
tion due to low cost, easy synthesis, superior electrocatalytic 
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activity, and the advantages of environmental friendliness [16, 
17], which allow them to be used in a variety of fields such as 
targeted drug delivery [18], biological imaging [19], and, in 
particular, electrochemical sensors [20]. However, it is diffi-
cult to prepare a uniform  Fe3O4-modified electrochemical sen-
sor due to the fact that they are prone to aggregation brought 
from the magnetic attraction between the dipoles. At the same 
time, the limited specific binding functional groups result in 
the reduction of electrocatalytic activity and the obstruction 
of electron transfer [21]. In addition,  Fe3O4 is very likely to 
aggregate [22]. Studies have shown that the hybridization of 
 Fe3O4 with other nanomaterials can prevent their aggregation, 
improve their chemical stability, and reduce their toxicity [23, 
24]. Among which, carbon, conductive polymers, and metal 
oxides NPs can play a crucial role, thus enhancing the per-
formance of electrochemical sensors [25]. Zirconium oxide, 
with a wide band gap of 5.0 eV, is chemically inactive with a 
high melting point, high resistivity, and low thermal expansion 
coefficient and has been widely used in piezoelectric materi-
als [26], ceramic material [27], magnetic materials [28], and 
catalysts [29]. Due to the extreme chemical stability,  ZrO2 have 
been rarely reported as eletrochemical sensors for DA detec-
tion. The existing reports for sensors are mainly for gas sensors 
[30, 31]. In addition,  ZrO2 was used as excellent surface modi-
fier to effectively improve the response to DA of  ZrO2-based 
electrochemical sensor. Graphene oxide (GO) are very prom-
ising materials for biosensors due to their low-cost fabrica-
tion, high surface area, and direct interaction with a variety 
of biomolecules. GO has both  sp2 and  sp3 hybridized carbon 
atoms, as well as different functional groups such as hydroxyl, 
carboxyl, and epoxy[32–35]. Furthermore, compared with gra-
phene, GO can be dispersed in water, which is suitable for 
mass production [32], and the chemical structure of GO can 
be modified by chemical, thermal, or solvent thermal reduction 
methods [36], which is also valuable for biosensors due to its 
adjustable electronic and optical properties. [37]

Therefore, in this work, single-metal oxides  (Fe3O4,  ZrO2) 
and GO are firstly prepared respectively, and then binary, ter-
nary composites are synthesized in turn. Among which, GO 
is used as the substrate and loaded with two metal oxides. 
By taking advantage of the excellent conductivity of GO, the 
enhanced redox capacity of metal oxides, and the synergis-
tic effect of the two metal oxides and GO, the composite can 
achieve the goal of high sensitivity, high selectivity, and excel-
lent stability in the dopamine detection.

Experimental section

Reagents and apparatus

All chemicals were of analytical reagent grade and used 
directly without further treatment. Graphite powder was 

provided by Shenzhen Hanhui graphite Co. LTD (China). 
Ferrous sulfate heptahydrate  (FeSO4·7H2O), sodium 
hydroxide (NaOH), zirconium nitrate pentahydrate 
(Zr(NO3)4·5H2O), anhydrous sodium acetate  (CH3COONa), 
N,N-dimethylformamide (DMF), ethanol, and hydrochloric 
acid (HCl) were purchased from Sinopharm Chemical Rea-
gent Co., LTD (Shanghai, China). All aqueous solutions 
were freshly prepared with deionized water.

X-ray diffraction (XRD) was obtained using D/Max 2500 
PC X-ray diffractometer with Cu Kα radiation (Rigaku 
Corporation, Japan), while Fourier transform infrared 
spectroscopy (FTIR) spectrum was recorded using FTIR-
8400S Fourier infrared spectrometer (Shimadzu, Japan). 
Scanning electron microscopy (SEM) images and energy 
dispersive X-ray analysis (EDS) data were obtained using 
Regulus-8100 (HITACHI, Japan). The X-ray photoelec-
tron spectroscopy (XPS) was performed using an Omicron 
energy analyzer (AXIS, Shimadzu, Japan).

Synthesis of samples

Synthesis of GO

GO is prepared according to the improved Hummers method 
[38].  H2SO4 (~ 98%, 23 mL) was added to the mixture of 
graphite powder (1.0 g) and  NaNO3 (0.5 g), and the tem-
perature of above mixture was cooled to 0 °C, then  KMnO4 
(3.0 g) was slowly added in batches to keep the reaction 
temperature below 20 °C. Next, the reaction temperature 
was increased to 35 °C and stirred for 5 h, the additional 
 KMnO4 (3.0 g) was added in batches again. Then 140 mL 
of deionized water was added into it and stirred for 30 min, 
followed by adding 30%  H2O2 (1.0 mL) until the mixture 
turned bright yellow, the mixture was centrifuged and the 
remaining solid substance was continuously washed with 
30% HCl and water respectively until the pH was 4 − 5, and 
the resulting solids are dried in vacuum.

Synthesis of Fe3O4‑GO

Ten milligram GO was added into 20 mL deionized water, 
which was dispersed by ultrasound for 30 min, then 10 mL 
 FeSO4·7H2O solution (0.50 mol  L−1) was added to the above 
suspension under strenuous agitation. After adjusting pH to 
10 with 0.50 mol  L−1 NaOH solution, the suspension was 
transferred to a stainless steel autoclave and heated at 180 
℃ for 8 h. The resulting product was washed with ethanol 
and water, and then dried in a vacuum drying oven of 60 ℃ 
to constant weight. The synthesis method of  Fe3O4 was the 
same as the above steps, except that GO was not added in 
the first step.
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Synthesis of Fe3O4‑ ZrO2‑GO

0.10 g  Fe3O4-GO was added to 20 mL water for ultrasonic 
dispersion of 30 min, and 0.0999 g zirconium nitrate hydrate 
was added to the above suspension under agitation. The pH 
value of the solution was adjusted to 9 − 10 with 0.50 mol 
 L−1 NaOH solution, and the mixed solution was moved into 
the autoclave, which was heated at 180 ℃ for 8 h. The result-
ing sample was washed with ethanol and water respectively 
to pH 7 and dried at 60 ℃ for 12 h, and the final product 
 (Fe3O4-  ZrO2-GO) was obtained.

Electrochemical measurements

The type, parameters of three-electrode system, measurement 
method, and preparation of dispersion liquid for electrochem-
ical measurement were provided in our previous work [39], 
which will not be described here. The schematic representa-
tion of the fabrication process for  Fe3O4-  ZrO2-GO/GCE and 
main test methods to DA are briefly illustrated in Scheme 1.

Results and discussion

Characterizations

XRD and FTIR analysis

Figure 1 shows the XRD patterns of GO,  ZrO2,  Fe3O4, 
and  Fe3O4-ZrO2-GO. In Fig.  1A, the strong diffraction 

peaks at 2θ of 30.167°, 35.307°, 49.785°, and 59.725° 
correspond, respectively, to (111), (200), (202), and (311) 
crystal planes of  ZrO2 (JCPDS NO.37–1484). In Fig. 1B, 
the diffraction peaks at 2θ of 18.988°, 31.249°, 36.820°, 
38.524°, 44.762°, 53.412°, 56.959°, 62.561°, and 74.460° 
are, respectively, indexed to (111), (220), (311), (222), 
(400), (422), (511), (440), and (533) crystal planes of  Fe3O4 
(JCPDS NO.26–1136). The sharp peak indicates it is with 
good crystallinity. In Fig. 1C, the diffraction peak at 2θ 
of 10.615° is ascribed to the (001) crystal planes of GO 
(JCPDS NO.44–0558), which can also be observed on the 
XRD pattern of  Fe3O4-ZrO2-GO. Meanwhile, a set of peaks 
similar to  Fe3O4 and  ZrO2 are clearly visible on the ternary 
composites, indicating that  Fe3O4 and  ZrO2 are successfully 
loaded on the GO surface with high purity.

Figure 1D shows the FTIR of GO,  ZrO2,  Fe3O4, and 
 Fe3O4-ZrO2-GO. For all the FTIR curves, the absorption 
bands around 3400  cm−1 are attributes to − OH asymmet-
ric stretching vibration of C − OH groups and/or water 
between the layers of GO, the band near 2356  cm−1 is 
ascribed to atmospheric  CO2. For GO, the peak appeared 
at 1700   cm−1 is due to C = O stretching vibrations in 
carboxylic acid and carbonyl groups, and the peak at 
1541  cm−1 belonged to the vibration band of unoxidized 
graphite skeleton C = C. The absorption bands at 1623 and 
1400  cm−1 confirm the presence of vibrational modes of 
C–C aromatics and C–O carboxyl groups, respectively. 
The peak at 1045  cm−1 is assigned to C–O alkoxy group 
[40]. The vibrations around 553  cm−1 and 709  cm−1 arise 
from the Zr–O vibrations of the tetragonal  ZrO2. A sharp 
band around 752   cm−1 is characteristic for monoclinic 

Scheme 1  Schematic represen-
tation of the fabrication process 
for  Fe3O4-  ZrO2-GO/GCE and 
main test methods to DA
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 ZrO2. [41] As for  Fe3O4, the characteristic absorption 
band near 580  cm−1 is ascribed to Fe–O stretching vibra-
tion of the magnetite phase [42]. Likewise, the charac-
teristic peaks of Fe–O, Zr–O and GO appear in the infra-
red spectrum of  Fe3O4-ZrO2-GO. Combined with XRD 
results, FTIR further verifies the successful preparation 
of  Fe3O4-ZrO2-GO.

SEM images

SEM images of different materials are shown in Fig. 2. It can 
be observed from Fig. 2A that GO presents a typical folded 
layered structure. The image of  ZrO2 shown in Fig. 2B is 
porcelain flake with uniform distribution and relatively 
smooth surface when viewed at magnification scale. The 
flake thickness is about a few nanometers. In Fig. 2C,  Fe3O4 
shows a cube particle with uniform particle size. The particle 
sizes range from a few hundred nanometers to a few microns. 

In Fig. 2D, the morphology of  Fe3O4-ZrO2-GO composite 
presents irregular block and flake with a small amount of 
grain agglomerations, which can be observed more clearly 
in the enlarged image (Fig. 2E). Figure 2F is the EDS spectra 
of  Fe3O4-ZrO2-GO. The weight ratios of C, O, Fe, and Zr in 
ternary materials are 47.41%, 46.37%, 5.36%, and 0.86%, 
which further verifies the coexistence of  Fe3O4,  ZrO2, and 
GO. In addition, element mapping analysis was performed 
for  Fe3O4-ZrO2-GO. It can be found from Fig. 2G − J the 
ternary composite is composed of C, O, Zr, and Fe elements, 
and the distribution of elements is more uniform.

XPS analysis

The elemental composition and oxidation state of 
 Fe3O4-ZrO2-GO ternary composites were characterized by 
XPS. The survey spectrum in Fig. 3A confirms the coexist-
ence of Zr, C, O, and Fe elements in  Fe3O4-ZrO2-GO. The 

Fig. 1  XRD patterns of A  ZrO2, B  Fe3O4, C GO,  ZrO2,  Fe3O4, and  Fe3O4-ZrO2-GO, D FTIR spectra of GO,  ZrO2,  Fe3O4, and  Fe3O4-ZrO2-GO
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high-resolution XPS spectrum of Zr 3d in Fig. 3B shows the 
two spin orbit of Zr  3d5/2 (182.48 eV) and Zr  3d3/2 (184.78 eV), 
which are consistent with the typical  Zr4+ ions [43–45]. In 
Fig. 3C, four peaks of C 1 s are assigned to C − C/C = C 
(284.18 eV), C − O (285.28 eV), C = O (287.58 eV), and 
O − C = O (289.38 eV) respectively, which is in agreement 
with XPS spectra of GO in literature [46, 47]. In Fig. 3D, the 
O1s region is deconvoluted into three spectral peaks. The most 
intense peak at 529.78 eV is due to the lattice oxygen in the 
metal oxide. The peak near 531.18 eV is ascribed to the car-
bonyl (C = O), and the relatively small peak around 532.68 eV 
is attributed to C − O [35, 48]. Fig. 3E shows the XPS spectrum 
of Fe 2p. Two strong characteristic peaks appeared around 
710 and 724 eV are assigned to Fe  2p3/2 and Fe  2p1/2,which 
can be divided into two sub-peaks with binding energies of 
709.88, 711.18 eV, and 724.18, 725.78 eV, corresponding to 
 Fe2+ and  Fe3+, respectively. Two accompanied satellite (Sat.) 
peaks (715.48, 732.48 eV) indicate the presence of  Fe3O4 in 
the composite [49–, 50–54]. In addition, the ratios of  Fe2+ to 
 Fe3+ for Fe  2p3/2 and Fe  2p1/2 are both less than 1, which means 
that during the formation of  Fe3O4-ZrO2-GO, part of  Fe2+ ions 
are converted into  Fe3+ ions. [35, 55, 56]

Optimization of test conditions

Optimization of pH

CV was used to investigate the influence of pH between 
5.0 and 9.0 in the determination of DA by  Fe3O4-ZrO2-GO 

modified GCE (Fig.  S1A). It is obvious that with the 
increase of pH, the peak current reaches the maximum 
value at pH 7.0, and the peak shape is obvious, which has 
a better response to DA. Considering the sensitivity of 
physiological environment, pH 7.0 was selected for fur-
ther experiments.

Optimization of the ratio of materials

The properties of GCE modified by composite materials 
with five weight ratios in 0.2 M PBS solution (pH 7.0) 
containing 5 μM DA were also investigated (Fig. S1B). 
It can be observed that the composite material has a cer-
tain response to DA, and the peak current varies with 
the different proportions. By contrast, when the weight 
ratio of  Fe3O4-GO /ZrO2 is 1:1, the response signal is the 
strongest, and the obvious redox peak can be observed. 
This phenomenon may be caused by the fact that when 
the weight ratio of  Fe3O4-GO /ZrO2 is 2:1 or 1.3:1, the 
dosage of  ZrO2 is too small, and its excellent performance 
is unconspicuous, and the synergy between the three sub-
stances cannot be fully reflected, resulting in not much 
increase of the active site of the hybrid. However, when 
their weight ratio is 1:1.25 or 1:1.5, excessive  ZrO2 will 
lead to the degradation of electrocatalytic performance 
due to the decrease of electrical conductivity. Therefore, 
the weight ratio of  Fe3O4-GO /ZrO2 of 1:1 was selected 
for the next experiment.

Fig. 2  SEM images of A GO, 
B  ZrO2, C  Fe3O4, and D, E 
 Fe3O4-ZrO2-GO. F EDS spectra 
of  Fe3O4-  ZrO2-GO. Element 
mapping of G C, H O, I Zr, and 
J Fe
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Optimization of the amount of the target material 
on the electrode surface

The electrochemical behavior of  Fe3O4-ZrO2-GO compos-
ites with different contents on the electrode surface was stud-
ied by DPV (Fig. S1C). Keeping 5 μL of modified ink on 
the electrode surface every time, and the optimal content of 
target substance in the electrode modified ink was explored. 
It can be noted that the DPV signal changes with the amount. 
When the target substance is 5.0 mg, the response to DA 
is the strongest. Therefore, 5.0 mg was selected for further 
exploration.

Electrochemical characterization

CV analysis

CV curves of GO,  ZrO2,  Fe3O4, and  Fe3O4-ZrO2-GO 
modified GCE were tested in 0.1 M KCl solution contain-
ing 5 mM [Fe(CN)6]3−/4− at the scan rate of 100  mVs−1 
(Fig. S2). It can be noticed that CV shows good reversible 
wave, which is caused by the redox reaction of potassium 
ferricyanide on the electrode surface. The peak current of the 

 Fe3O4-ZrO2-GO composite is significantly increased com-
pared with that of GO,  ZrO2, and  Fe3O4. The relevant data 
are listed in Table 1.

As shown in Table 1, the potential difference between two 
peaks (△Ep = Eanodic-peak-Ecathodic-peak) of the  Fe3O4-ZrO2-GO 
modified GCE is 0.142 mV, which is smaller than that of 
other test materials, indicating  Fe3O4-ZrO2-GO/GCE shows 
better electrochemical performance. Moreover, the peak 
current of the  Fe3O4-ZrO2-GO composite (143.6 μA) is the 
highest among all electrode materials. For reversible CV 
reactions, the peak current can be used to calculate the elec-
trochemical active surface area of the modified electrode on 
basis of Randles–Sevcik equation.

where Ip, A, D, n, ν, and C represent the peak current (A), 
the surface area of the electrode  (m2), the diffusion coeffi-
cient (D = 7.6 ×  10−3  cm2  s−1), the number of electrons in the 
electrode reaction (n = 1), the scanning rate (ν = 0.1 V  s−1), 
and the concentration of [Fe(CN)6]3−/4− (C = 5 ×  10−3 M), 
respectively. [57] Obviously, compared with other modi-
fied electrodes (GO, 0.01  cm2;  ZrO2, 0.09  cm2;  Fe3O4, 0. 13 

(1)Ip = 2.69 × 10
5AD1∕2n3∕2v1∕2C

Fig. 3  XPS spectra of A survey spectrum, B Zr 3d, C C 1 s, D O 1 s, and E Fe 2p
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 cm2),  Fe3O4-ZrO2-GO/GCE has higher electroactive surface 
area (0.18  cm2), indicating that  Fe3O4-ZrO2-GO has good 
conductivity, which promotes the electron transfer of potas-
sium ferricyanide on the electrode surface, and thus speed-
ing up the reaction.

CV response to DA

In addition, CV method was also employed to investi-
gate the electrochemical response of GO,  Fe3O4,  ZrO2, 
and  Fe3O4-ZrO2-GO modified GCE towards DA. Fig-
ure  4A − D shows the CVs of GO,  Fe3O4,  ZrO2, and 
 Fe3O4-ZrO2-GO modified GCE in 0.2 M phosphate buffer 
solution (PBS, pH7.0) with and without DA (5  μM). 
All the modified GCEs have a certain response to DA. 
In contrast, the single GO/GCE,  ZrO2/GCE, and  Fe3O4/
GCE exhibit weak response to DA, while the ternary 
 Fe3O4-ZrO2-GO/GCE has an obvious peak for DA detec-
tion. Figure 4E is the CV comparison of different materi-
als modified GCE in 0.2 M PBS containing 5 μM DA. 
Compared with other related single materials modified 
GCE,  Fe3O4-ZrO2-GO/GCE presents a pair of distinct 
redox peaks, which is consistent with the peak position 
of DA in literature [58, 59]. The oxidation mechanism of 
DA is expressed in Scheme 2. [59] Furthermore, the cor-
responding CV areas are presented in Fig. 4F. The results 
show that  Fe3O4-ZrO2-GO/GCE has the largest CV area, 
indicating it has a good signal for DA detection.

EIS analysis

Figure  5 shows the electrochemical impedance spec-
troscopy (EIS) plot of different materials in 5  mM 
[Fe(CN)6]3−/4− solution. Inset is an equivalent circuit, where, 
Rs, Rct, and Zw represent electrolyte resistance, charge trans-
fer resistance, and Warburg impedance, respectively. The 
Rct value of  Fe3O4-ZrO2-GO modified electrode (14.11 Ω) 
is lower than that of GO (29.28 Ω),  Fe3O4 (20.83 Ω),  ZrO2 
(14.88 Ω), indicating that  Fe3O4-ZrO2-GO has good electron 
transport capability.

Electrochemical kinetics

Figure S3A shows the CV response of  Fe3O4-ZrO2-GO mod-
ified GCE to DA at the different scan rates (50–300  mVs−1). 
As the scan rate increases from 50 to 300  mVs−1, the peak 
current also increases and the peak potential has slightly pos-
itive or negative shift. It can be observed from Fig. S3B that 
both oxidation peak current and reduction peak current are 
proportional to the square root of scanning rates, and the lin-
ear regression equation is expressed as Ipa = 6.91ν1/2 − 18.29 
(R2 = 0.99311), and Ipc =  − 8.11ν1/2 + 25.92 (R2 = 0.99785), 
which further verifies that the reaction to DA is quasi-revers-
ible, and the electrocatalytic oxidation process of DA on 
 Fe3O4-ZrO2-GO modified GCE surface is a typical diffu-
sion-control process. [60, 61]

Electrochemical performance of Fe3O4‑ZrO2‑GO 
composite modified GCE

Linear range and detection limit of DA

Differential pulse voltammetry (DPV) has been used to 
study the electrochemical performance of the as-prepared 
electrode materials towards DA. DPV of  Fe3O4-ZrO2-GO 
composite modified GCE was detected in 0.20 M PBS 
(pH7.0) containing different concentrations of DA. As 
shown in Fig. 6A, with the increasing concentration of DA, 
the oxidation peak current also increases, and within the 
concentration range of 0.5 − 15 µM (0, 5, 10, 20, 40, 60, 100, 
150, 200, 300 µM), there is a linear relationship with the 
oxidation peak current of DA detection (Fig. 6B). Its linear 
regression equation is Y = 0.2554x + 0.0056 (R2 = 0.9804), 
and the sensitivity (S) is 3.649 µA µm−1  cm−2. The detection 
limit is 0.1562 µM calculated according to LOD = 3Sb/S, 
where Sb is the standard deviation of five blank samples.

In addition, the results of  Fe3O4-ZrO2-GO/GCE for 
DA detection were compared with those of reported 
modified electrodes (Table  2). The results suggest the 
 Fe3O4-ZrO2-GO/GCE exhibits wide linear range and a lower 
detection limit for DA. It is speculated that the excellent 
performances are mainly attributed to the good sensitivity of 

Table 1  △Ep, Ip and electroactive active surface areas of different modified GCE

Materials Eanodic-peak Ecathodic-peak △Ep/mV Ip
(μA)

Electroactive 
surface area 
 (cm2)

GO/GCE 0.288 0.146 0.142 9.5 0.01
Fe3O4/GCE 0.290 0.117 0.173 99.5 0.13
ZrO2/GCE 0.287 0.123 0.164 71.6 0.09
Fe3O4-ZrO2-GO/GCE 0.270 0.128 0.142 143.6 0.18
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Fig. 4  CV curves of A GO, B  ZrO2, C  Fe3O4, and D  Fe3O4-ZrO2-GO 
modified GCE in 0.2  M PBS electrolyte (pH7.0) with and without 
5 μMDA solution. E CV combination pattern of GO,  ZrO2,  Fe3O4, 

and  Fe3O4-ZrO2-GO modified GCE in 0.2 M PBS electrolyte (pH7.0) 
containing 5 μM DA solution. F Histogram of corresponding CV area

4860 Ionics (2022) 28:4853–4865
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the metal oxides, the larger specific surface area, and higher 
electrical conductivity of GO, as well as the synergistic 
amplification effect brought from  Fe3O4,  ZrO2, and GO.

Anti‑interference

Figure 7A shows the anti-interference test of  Fe3O4-ZrO2-GO 
composite by DPV method. Then, 100 μL of 0.25 mM dopa-
mine (DA) was added into 10 mL of 0.20 M PBS solution 
(pH 7.0) for the DPV test. After that, the same concentra-
tion of uric acid (UA), D( +) -glucose (Glu), L-Cystine, 
L-Cysteine, and ascorbic acid (AA) were successively 
added into the above solution to repeat the operation, and 

the current changes of the whole process were observed. The 
change rates of the corresponding peak current are shown 
in Fig. 7B. The influence of all potential interfering sub-
stances on the current is less than 5%, indicating that the 
 Fe3O4-ZrO2-GO composite still has good selectivity in the 
presence of the above interfering substances.

Stability and reproducibility

Fe3O4-ZrO2-GO composite modified GCE was used as an 
electrochemical sensor, and 5 µM dopamine was detected 
by CV in 0.20 M PBS electrolyte (pH7.0) for 5 consecu-
tive days. Figure 8A is the CV curves of DA detection with 
composite modified electrode during these 5 days. It can 
be noticed that the peak current decreases slightly with the 
increase of days. The relationship between the peak current 
of DA oxidation and time can be more clearly showed in 
Fig. 8B. The peak current on the last day does not decrease 
much compared to the peak current on the first day, and the 
peak current on 5th day is 91.18% of that on 1st day, which 
proves that the  Fe3O4-ZrO2-GO/GCE has good stability in 
DA detection.

Reproducibility was measured as follows: Five differ-
ent  Fe3O4-ZrO2-GO composite modified electrodes were 
selected and 5 µM DA was detected by CV method in 
0.20 M PBS electrolyte (pH7.0). The results are shown in 
Fig. 9A. When different electrodes were used for detec-
tion, the oxidation peak current of DA does not change 
much. As shown in Fig. 9B, the relative standard devia-
tion for oxidation peak current is 3.76%, implying that 
the  Fe3O4-ZrO2-GO/ GCE has good reproducibility in DA 
detection.

Scheme 2  Oxidation mecha-
nism of DA at  Fe3O4-ZrO2-GO 
modified GCE

OH

OH
NH2

-2H+-2e-
O

O
NH2

Dopamine Dopaminequinone

Fig. 5  Nyquist plot of GO,  ZrO2,  Fe3O4, and  Fe3O4-ZrO2-GO modi-
fied GCE. (Inset) equivalent circuit

Fig. 6  A DPV curves of 
 Fe3O4-ZrO2-GO/GCE in 0.20 M 
PBS (pH = 7.0) containing 
different concentrations of DA 
(0.5 − 15 μM). B Relation plot 
of oxidation peak current versus 
concentration of DA

4861Ionics (2022) 28:4853–4865



1 3

Test of real samples

In order to verify the reliability of the method for the DA 
detection, the as-prepared  Fe3O4-ZrO2-GO modified GCE 
was applied to determine DA in real human serum by stand-
ard addition method. All serum samples were diluted 10 
times with PBS (pH7.0). Each sample passed 5 parallel DPV 

tests. To evaluate the accuracy of the method, a standard DA 
solution with a known concentration (1.0 mM) was added to 
the electrolyte. The test results listed in Table 3 show that the 
 Fe3O4-ZrO2-GO/GCE sensor has satisfactory recovery rate 
within the range of 98.8 − 102.0% and good relative standard 
deviation (RSD) (0.34 − 0.36%), and so it has the potential 
of practical application.

Table 2  Comparison of 
electrochemical detection for 
DA on  Fe3O4-ZrO2-GO/GCE 
with recent reported modified 
electrodes

GO-PANI graphene oxide / polyaniline, AGONF/CPE alanine functionalized GO nanoflakes / carbon paste 
electrode, Chite-GR chitosan graphene, CCE/Fc a carbon ceramic electrode modified with ferrocenecar-
boxylic acid, SWV square wave voltammetry, PSA/GCE poly(sulfosalicylic acid) modified GC electrode, 
PEDOT poly (3,4-ethylenedioxythiophene)

Electrode materials Methods Linear range (μM) Detection limit 
(μM)

References

GO DPV 1 − 15 0.27 [62]
GO/TmPO4 DPV 2 − 10 0.785 [63]
GO-PANI /GCE DPV 2 − 14 0.5 [64]
AGONF/CPE CV 2 − 7 0.84 [65]
Chite-GR/GCE DPV 1 − 24 1.0 [66]
CCE/Fc SWV 1 − 2.5 0.45 [67]
PSA/GCE DPV 1 − 6 0.33 [68]
PEDOT/Pd composite DPV 0.5 − 1 0.5 [69]
Fe3O4-ZrO2-GO/GCE DPV 0.5 − 15 0.1562 This work

Fig. 7  A DPV curve for DA 
and other interferences at 
 Fe3O4-ZrO2-GO modified GCE. 
B Change rate of peak current

Fig. 8  Stability test of 
 Fe3O4-ZrO2-GO/GCE: A CV. B 
Histogram of peak current
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Conclusion

In this work, a novel electrochemical sensor based on 
 Fe3O4-ZrO2-GO composite was developed for the detection 
of dopamine. Among which, GO is used as the substrate 
and loaded with two metal oxides. It not only enhances the 
conductivity, but also, together with  ZrO2, weakens the 
accumulation of  Fe3O4, exposing more active sites of com-
posite. The sensor based on  Fe3O4-ZrO2-GO/GCE exhibits 
excellent electrocatalytic performance for DA detection. 
In the concentration range of 0.5 − 15 µM, its sensitivity 
is 3.649 µA µm−1  cm−2, the detection limit is 0.1562 µM. 
Additionally,  Fe3O4-ZrO2-GO/GCE also shows good anti-
interference capability, stability, and reproducibility, and it 
was successfully used in the determination of DA in human 
serum. This study is expected to open up a new way for the 
construction of sensitive sensor based on bimetallic oxides.
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