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Abstract
Increasing active sites by constructing a heterostructure is a very effective method to improve the electrocatalytic performance. 
In this work, we synthesized a three-dimensional self-supporting  Ni2P-Ni12P5/NF heterostructure supported on nickel foams 
by hydrothermal reaction and low-temperature phosphorization, used as an efficient hydrogen evolution reaction (HER) 
electrocatalyst. The structure, composition, morphology, and HER performance of the catalyst were characterized by XRD, 
XPS, SEM, TEM, and electrochemical workstation. The experimental results show that the  Ni2P-Ni12P5/NF heterostructure 
demonstrates better HER catalytic activity in 0.5 M  H2SO4, only requiring an overpotential of 124 mV at 10 mA  cm−2 with 
a Tafel slope of 84.1 mV  dec−1 and displaying good long-term stability. The high activity and stability of the as-synthesized 
 Ni2P-Ni12P5/NF catalyst in HER are mainly due to the synergy between  Ni2P-Ni12P5 with a unique heterostructure and nickel 
foam conductive substrate with a three-dimensional porous structure, which is beneficial to increase the electrocatalytic 
active area and thus provide more active sites.
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Introduction

With the rapid development of social economy and the 
continuous growth of the population, people’s demand for 
energy is increasing [1, 2]. Long-term use of traditional fossil 
fuels will accelerate the energy crisis, climate change, and 
environmental pollution. Therefore, it is an irresistible trend to 
develop clean, efficient, and renewable alternative energy, such 
as wind energy, hydrogen energy, solar energy, and biomass 
energy [1–3]. However, much renewable energy cannot be 
effectively utilized because of their instability, intermittence, 
and regionality. As an energy carrier, hydrogen has the 

advantages of high energy density, non-toxicity, wide range 
of sources, environmentally friendliness, and so on, which is 
considered to be one of the most promising renewable clean 
energy alternatives to fossil fuels [4, 5]. The development 
of hydrogen production technology is of great practical 
significance to relieve energy crisis and environmental 
problems, and realize the sustainable development of energy. 
Electrochemical water splitting is recognized to be the most 
promising way to achieve sustainable energy development and 
zero emission in the current hydrogen production technologies 
[6, 7]. However, because of its slow reaction kinetics for HER, 
it is necessary to design and develop effective electrocatalysts 
that can reduce HER overpotential [8]. At present, noble metal 
platinum-based catalysts exhibit outstanding HER catalytic 
activity. Unfortunately, such catalysts have the disadvantages 
of limited earth reserves and high price, which limit their 
large-scale industrial applications [9]. Therefore, it is urgent 
to develop non-noble metal–based catalysts with abundant 
reserves, low cost, high efficiency, and stability, which is very 
important to realize the industrial application of hydrogen 
production by electrochemical water splitting.

At present, the most studied non-noble metal HER cata-
lysts are transition metal compounds, such as sulfides [10], 
selenides [11, 12], and phosphides [13–16]. Especially, 
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transition metal phosphides have been widely studied as 
HER catalysts in recent years because of their abundant 
reserves, low cost, good conductivity, and stable catalytic 
activity. But they show higher overpotential, slower charge 
transfer, and poorer conductivity compared with noble metal 
platinum-based catalysts. So, a variety of modification meth-
ods have been proposed, such as morphological controlling 
[17, 18], compounding [19, 20], and doping [21–26]. Sum-
boja et al. [18] synthesized the alveolar sac–like morphology 
of cobalt phosphide (Co-P I) and randomly shaped nanopar-
ticles of cobalt phosphide (Co-P II). Compared with Co-P II, 
Co-P I displayed better catalytic activity in acidic and alka-
line media, which was due to that its unique structure could 
increase the catalytic active area, contributing to enhance 
HER activity. Ge et al. [21] reported that well-crystallized 
molybdenum phosphide was dispersed on graphene carbon 
nanosheets co-doped with N and P (MoP/NPG). The results 
showed that the coupled interfaces and synergistic effect 
between MoP and graphene substrate could promote charge 
transfer kinetics and improve its catalytic activity. Gao et al. 
[27] revealed that rare-earth elemental Ce was doped into 
CoP to improve HER performance by modulating electronic 
structures and decreasing adsorption free energy of hydro-
gen. The above modification methods have significantly 
improved the HER performance of catalysts, but the insuf-
ficient active sites are still the key to affect catalytic activ-
ity. In recent years, constructing heterojunction by interface 
engineering has been recognized as an effective method to 
further improve the HER electrocatalytic performance of 
materials [28–31]. Boppella et al. [32] synthesized two-
dimensional cobalt phosphide/nickel cobalt phosphide (CoP/
NiCoP) heterojunction nanosheets supported by nitrogen-
doped carbon. The collective effects of electronic structure 
engineering and strong interfacial coupling between CoP 
and NiCoP in heterojunction improved the reaction kinetics 
and catalytic performance of HER. Yan et al. [33] success-
fully prepared  Ni2P-Ni5P4 heterostructure nanosheet arrays 
by simply tuning the reaction temperatures. The abundant 
catalytic active sites, large surface areas, highly conductive 
support of carbon cloth substrates, and unique free-standing 
arrays could enhance kinetics and electrocatalytic perfor-
mances for the HER, oxygen evolution reaction (OER) and 
overall water splitting.

These studies reveal that porous nickel phosphides have 
good conductivity and large surface area, which can provide 
abundant active sites and accelerate electron transportation 
and charges transfer [34, 35]. Constructing a heterostruc-
ture through different nickel phosphide phases can effec-
tively increase electroactive sites, contributing to improve 
catalytic activity [33]. At the same time, the three-dimen-
sional porous nickel foam substrate possesses large surface 
area, high structural porosity, and fast electron transport 
channels, which are beneficial for electron transport and 

mass transfer. Wang et al. [36] prepared a self-supported 
 Ni5P4-Ni2P nanosheet (NS) array by directly phosphating 
nickel foam with phosphorus vapor, which showed better 
electrocatalytic activity and long-term persistence for HER 
in acidic medium. Herein, we constructed a self-supporting 
 Ni2P-Ni12P5/NF heterostructure catalyst supported on three-
dimensional porous nickel foam substrate through hydro-
thermal reaction and low-temperature phosphorization. The 
synergy between the  Ni2P-Ni12P5 heterostructure and the 
three-dimensional porous nickel foam substrate effectively 
enhanced the HER electrocatalytic activity and stability of 
the catalyst.

Experimental section

Materials

Hydrochloric acid, acetone, ethanol, and urea were supplied 
by Sinopharm Chemical Reagent Co., Ltd. Red phosphorus 
and nickel nitrate hexahydrate were obtained from Shanghai 
Zhongqin Chemical Reagent Co., Ltd. Sodium hypophos-
phite monohydrate and ammonium fluoride were obtained 
from Yantai Shuangshuang Chemical Co., Ltd. Potassium 
hydroxide was purchased from Taicang Hushi Reagent Co., 
Ltd. Nickel chloride hexahydrate and sodium lauryl sulfate 
were produced by Shanghai Titan Technology Co., Ltd, 
and Shanghai Aladdin Biochemical Technology Co., Ltd., 
respectively. All chemicals utilized were of analytical grade 
and were used as supplied without any further purification.

Material preparation

Nickel nitrate hexahydrate (2 mmol), ammonium fluoride 
(6 mmol), and urea (10 mmol) were added to 30 mL of 
deionized water, forming a green homogeneous mixture 
after ultrasonicating for 1 h. The above mixture and acid-
washed nickel foams (NF) were introduced into a 50 mL 
high-pressure reactor and kept at 120 °C for 6 h in the oven. 
The obtained solid was washed with ethanol and deionized 
water, and then placed in a vacuum oven at 60 °C to com-
pletely dry to obtain a Ni(OH)F/NF precursor [37]. Ni(OH)
F/NF was placed in a tube furnace and then heated to 450 °C 
for 2 h at a heating rate of 5 °C  min−1 in air atmosphere 
to obtain NiO/NF. The subsequent phosphorization was 
carried out in Ar atmosphere by gradually heating sodium 
hypophosphite monohydrate and NiO/NF to 350 °C at a 
heating rate of 3 °C  min−1 for 2 h. The product was natu-
rally cooled to room temperature, washed with ethanol and 
deionized water alternately for several times, and dried in a 
vacuum oven at 60 °C to obtain the material  Ni2P-Ni12P5/
NF. The preparation process of the  Ni2P-Ni12P5/NF is shown 
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in Fig. 1. The preparation process of  Ni2P was given in the 
Supporting Information.

Material characterizations

X-ray diffraction (XRD) tests were performed on a D/Max 
2400 powder diffractometer to analyze crystal phases of the 
as-synthesized materials. Scanning electron microscopy 
(SEM) was conducted on JSM-6701F to characterize the 
morphology of the materials. Transmission electron micros-
copy (TEM) and energy-dispersive X-ray (EDX) spectrom-
etry measurements were carried out on TF20 to characterize 
lattice fringes and chemical elements. X-ray photoelectron 
spectroscopy (XPS) characterization was performed on a 
PHI 5702 XPS instrument to analyze the chemical composi-
tions and valence states of the materials.

Electrochemical measurements

All the electrochemical measurements were conducted 
on a three-electrode electrochemical cell by an Autolab 
PGSTAT128N electrochemical workstation.  Ni2P-Ni12P5/
NF and other samples as controls were used as the working 
electrode. Ag/AgCl and Hg/HgO were used as the reference 
electrodes in acidic and alkaline electrolytes, respectively. 
The graphite rod was used as counter electrode. Electro-
chemical tests were performed in 0.5 M  H2SO4 and 1.0 M 
KOH electrolytes, respectively. The presented potentials in 
this work were all converted to reversible hydrogen electrode 

(RHE) via the equation: E (RHE) = E (Ag/AgCl) + 0.059 
pH + 0.197 (in acidic electrolyte) and E (RHE) = E (Hg/
HgO) + 0.059 pH + 0.098 (in alkaline electrolyte). All of the 
polarization curves were recorded using linear sweep vol-
tammetry (LSV). Electrochemical impedance spectroscopy 
(EIS) measurements were performed at the corresponding 
open-circuit potential to the electrode. The frequency range 
was 50 kHz–0.01 Hz. The charge-transfer resistance (Rct) 
was calculated by the diameter of the semicircular arc in 
the Nyquist plots. The double-layer capacitance (Cdl) values 
were determined by performing cyclic voltammetry (CV) 
measurements at different scanning rates of 30 ~ 150 mV  s−1 
under a non-Faradaic potential range. The Faradaic effi-
ciency (FE) was evaluated by comparing the theoretical 
value with the amount of  H2 obtained from the experiment 
based on the current density of 10 mA  cm−2. The amount 
of produced  H2 was recorded by the drainage method. The 
calculation formula is FE (%) = (m × n × F)/(I × t). m and 
n represent the number of hydrogen production (mol) and 
electrons transferred by a hydrogen molecule, respectively. 
F represents Faraday’s constant (96,485 C  mol−1). I and t 
represent current (A) and time (s), respectively.

Results and discussion

XRD tests were used to identify the crystal structure of 
materials. Figure 2a shows the XRD patterns of the as-
synthesized  Ni2P and  Ni2P-Ni12P5. The diffraction peaks of 

Fig. 1  Preparation process of 
 Ni2P-Ni12P5/NF
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 Ni2P-Ni12P5 can be well indexed to  Ni2P (PDF#74–1385) 
and  Ni12P5 (PDF#74–1381). The peaks at 40.7, 44.6, 47.4, 
54.3, and 55.1° are indexed to (111), (201), (210), (300), 
and (211) crystal planes of  Ni2P, respectively. The dif-
fraction peaks appeared at 48.9, 46.9, and 38.4° are cor-
responding to (312), (240), and (112) crystal planes of 
 Ni12P5, respectively. This indicates that two kinds of nickel 
phosphide were successfully prepared by hydrothermal 
reaction and the followed low-temperature phosphoriza-
tion. The diffraction peaks of the pure  Ni2P are also well 

indexed to  Ni2P (PDF#74–1385). The XRD pattern of NiO 
was given in Fig. S1a (Supporting Information).

Figure 2b shows the SEM image of  Ni2P-Ni12P5/NF. It 
can be seen that  Ni2P-Ni12P5/NF is characterized with a 
three-dimensional porous structure composed of nanopar-
ticles and nanosheets. As shown in Fig. S1b, the precur-
sor NiO/NF covered on nickel foams with a sheet structure 
composed of nanoparticles. NiO/NF was phosphorized with 
 PH3 gas that was generated by in-situ thermal decompo-
sition of sodium hypophosphite to form  Ni2P-Ni12P5/NF 

Fig. 2  The characterizations of  Ni2P-Ni12P5/NF. a XRD patterns, b SEM image, c TEM image, d HRTEM image, e–h HAADF-STEM image 
and EDX elemental mappings
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with a three-dimensional porous structure of nanoparti-
cles and nanosheets. This porous structure is capable not 
only of increasing catalytic active areas of the material, but 
also of contributing to improve HER performance. TEM 
image in Fig. 2c reveals that  Ni2P-Ni12P5 possesses a three-
dimensional porous structure composed of nanoparticles 
and nanosheets, in agreement with the results of its SEM 
image (Fig.  2b). The high-resolution TEM was further 
performed to confirm the boundary of  Ni2P and  Ni12P5, as 
shown in Fig. 2d. We can see that the lattice fringes with 
distances of 0.523 and 0.343 nm correspond to (100) and 
(001) planes of  Ni2P (PDF#74–1385), respectively, and the 
lattice fringe with distance of 0.615 nm corresponds to the 
(110) plane of  Ni12P5 (PDF#74–1381), which are consistent 
with the XRD results. The boundary of  Ni2P and  Ni12P5 can 
be clearly observed, proving the successful preparation of 
the  Ni2P-Ni12P5 heterostructure. The element composition 
and distribution of the material were analyzed by the EDX 
attached to the TEM instrument, as shown in Fig. 2e–h. It 
demonstrates the existence of Ni, P, and O elements in the 
material. The oxygen element may be caused by the slight 
surface oxidation of the material exposed in air.

The surface chemical compositions and valence of the 
 Ni2P-Ni12P5 heterostructure were investigated by XPS. 
The XPS survey spectrum of  Ni2P-Ni12P5 shows the pres-
ence of C, O, Ni, and P elements in the sample (Fig. 3a), 
which is basically consistent with the results of EDX. Ni 
2p and P 2p spectra of  Ni2P-Ni12P5 and  Ni2P are shown in 
Fig. 3 b and c, respectively. In Fig. 3b, the two peaks of 
 Ni2P-Ni12P5 located at 870.5 and 853.1 eV correspond to 
the Ni  2p1/2 and Ni  2p3/2 of Ni�+ species, and the two peaks 
appeared at 874.6 and 856.4 eV correspond to the Ni  2p1/2 
and Ni  2p3/2 of  Nix+ species, respectively.  Nix+ species 
are assigned to nickel oxides due to the surface oxida-
tion of the catalyst exposed in air, which is very common 
for the transition-metal phosphides[32, 35, 37]. Figure 3c 
shows that the two peaks of  Ni2P-Ni12P5 at the binding 
energies of 129.4 and 130.1 eV are ascribed to P  2p3/2 
and P  2p1/2, respectively. The peak appeared at 133.4 eV 
may be P-O species due to the superficial oxidation of the 

catalyst exposed in air [38, 39]. Compared with  Ni2P, the 
peaks of Ni 2p in  Ni2P-Ni12P5 shift towards higher bind-
ing energy, while the peaks of P 2p shift towards lower 
binding energy, suggesting that the electron interaction 
between  Ni2P and  Ni12P5 leads to the charge redistribution 
at the coupling interface [32, 40, 41].

In order to evaluate the HER electrocatalytic performance 
of  Ni2P-Ni12P5/NF, the electrochemical tests were performed 
in 0.5 M  H2SO4 and 1.0 M KOH using a standard three-
electrode cell. Linear sweep voltammetry (LSV) plots in 
0.5 M  H2SO4 and 1.0 M KOH are shown in Figs. 4 and 5, 
respectively. The catalytic activities of NiO/NF,  Ni2P/NF, 
and Pt/C/NF were also investigated for comparison. All of 
the polarization curves of the samples above were collected 
without iR correction. As shown in Fig. 4a, the overpoten-
tial of  Ni2P-Ni12P5/NF is only 124 mV at a current density 
of 10 mA  cm−2 that is obviously much lower than those 
of  Ni2P/NF (308 mV) and NiO/NF (534 mV), exhibiting 
better HER catalytic activity. It may be due to the fact that 
heterostructure for  Ni2P-Ni12P5/NF could provide more 
catalytic active sites, promoting the HER electrocatalytic 
performance of the material.

The electrocatalytic kinetics and mechanism for HER 
were investigated by the Tafel slope obtained via fitting the 
linear regions of Tafel plot, which is an important parameter 
to evaluate catalytic activity of the catalysts. According to 
the HER mechanism for electrolysis of water, the theoreti-
cal values of Tafel slope for Volmer, Heyrovsky, and Tafel 
reaction as the rate-limiting step are 120, 40, and 30 mV 
 dec−1, respectively [42]. Figure 4b shows that the Tafel 
slope of  Ni2P-Ni12P5/NF is 84.1 mV  dec−1, indicating that 
the HER process undergoes Volmer-Heyrovsky mechanism 
[42, 43]. In addition, it is clearly observed that the Tafel 
slope of  Ni2P-Ni12P5/NF is much smaller than those of  Ni2P/
NF (207.8 mV  dec−1) and NiO/NF (273.4 mV  dec−1). It 
demonstrates that the HER kinetics on the  Ni2P-Ni12P5/NF 
is faster than the contrast samples, displaying good HER 
activity. The HER activity of  Ni2P-Ni12P5/NF is better than 
that of most reported transition metal phosphide catalysts, 
as shown in Table S1.

Fig. 3  aXPS survey spectrum of  Ni2P-Ni12P5,b Ni 2p, and c P 2p spectra of  Ni2P-Ni12P5 and  Ni2P.
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Electrochemical impedance spectroscopy (EIS) is an 
effective analytical technique to study the catalytic reac-
tion kinetics at electrode/electrolyte interface, which can 

disclose the charge-transfer properties [7, 44]. The charge-
transfer resistance (Rct) was calculated through the diameter 
of the semicircular arc in the Nyquist plots, indicating the 

Fig. 4  HER performance of different samples in 0.5 M  H2SO4 solu-
tion. a LSV curves, b corresponding Tafel slopes, c Nyquist plots, the 
inset shows Nyquist plots magnified, d electrochemical double-layer 
capacitance, and e LSV curves of the  Ni2P-Ni12P5/NF before and 

after 2000 CV cycles; the inset shows the chronopotentiometric curve 
at a current density of 10 mA  cm−2 for 20 h. f Actual  H2 production 
versus theoretically calculated quantities for  Ni2P-Ni12P5/NF in 0.5 M 
 H2SO4 under constant current density of 10 mA  cm−2
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charge-transfer kinetics [13]. Figure 4c shows the Nyquist 
plots of the  Ni2P-Ni12P5/NF,  Ni2P/NF, and NiO/NF materi-
als in the frequency range from 50 kHz to 0.01 Hz. It can be 

found that  Ni2P-Ni12P5/NF shows a much smaller semicircle 
than those of  Ni2P/NF and NiO/NF. The lower Rct of the 
 Ni2P-Ni12P5/NF demonstrates its higher intrinsic catalytic 

Fig. 5  HER performance of different samples in 1.0  M KOH solu-
tion. a LSV curves, b corresponding Tafel slopes, c Nyquist plots, 
d electrochemical double-layer capacitance, e LSV curves of the 
 Ni2P-Ni12P5/NF before and after 2000 CV cycles; the inset shows the 

chronopotentiometric curve at a current of 10  mA   cm−2 for 20  h. f 
Actual  H2 production versus theoretically calculated quantities for 
 Ni2P-Ni12P5/NF in 1.0  M KOH under constant current density of 
10 mA  cm−2
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activity and the faster charge-transfer rate at the electrode/
electrolyte interface during the HER process [7, 45].

The electrochemically active surface area (ECSA) reveals 
the HER catalytic activity of catalysts, which is estimated 
by measuring the double-layer capacitance (Cdl) because 
of their positively proportional correlation [46–48]. The 
Cdl values were obtained by performing cyclic voltam-
metry (CV) measurements at different scanning rates of 
30–150 mV  s−1 under a non-Faradaic potential range in 
0.5 M  H2SO4 (Fig. S2). As shown in Fig. 4d,  Ni2P-Ni12P5/
NF exhibits a Cdl value of 13.9 mF  cm−2, which is much 
higher than those of  Ni2P/NF (0.42 mF  cm−2) and NiO/NF 
(0.059 mF  cm−2). The high Cdl value of the  Ni2P-Ni12P5/NF 
heterostructure indicates the presence of abundant catalytic 
active sites, contributing to improve HER activity.

HER catalysts are required to possess not only good 
catalytic activity but also good stability. In practical appli-
cations, good stability means maintaining good catalytic 
activity for enough long time. So stability is an important 
index to evaluate the quality of the catalysts. The cycling 
stability of  Ni2P-Ni12P5/NF was examined by continuous 
CV with a potential scan from − 0.2 to − 0.8 V at a scan 
rate of 50 mV  s−1 for 2000 cycles. From the LSV curves in 
Fig. 4e, it can be seen that  Ni2P-Ni12P5/NF shows negligible 
degradation after 2000 CV cycles, demonstrating its supe-
rior cyclic stability in acidic media during HER process. In 
addition, the long-term stability of  Ni2P-Ni12P5/NF for HER 
was measured in 0.5 M  H2SO4 using chronopotentiometry 
at controlled current density of 10 mA  cm−2 for 20 h. As 
displayed in the inset of Fig. 4e,  Ni2P-Ni12P5/NF exhibits a 
stable potential response for HER without significant degra-
dation after continuous testing for 20 h, revealing preferable 
long-term stability.

Furthermore, the Faradaic efficiency (FE) of generated 
 H2 for the  Ni2P-Ni12P5/NF heterostructure was evaluated 
by comparing the theoretical value with the amount of  H2 
obtained from the experiment based on the current density of 
10 mA  cm−2, as shown in Fig. 4f. The amount of produced 
 H2 was recorded by the drainage method and the experimen-
tal value is very close to the theoretical value.

Figure 5 shows the HER tests of different catalysts in 
1.0 M KOH solution. It can be seen from Fig. 5a and b that 
the overpotential of  Ni2P-Ni12P5/NF is 206 mV at a cur-
rent density of 10 mA  cm−2 and Tafel slope is 109.6 mV 
 dec−1, which are obviously lower than those of  Ni2P/NF 
(275 mV, 218.3 mV  dec−1) and NiO/NF (428 mV, 194.1 mV 
 dec−1), displaying better HER catalytic activity in alkaline 
medium. As shown in Fig. 5c, the Rct value of  Ni2P-Ni12P5/
NF is much lower than those of  Ni2P/NF and NiO/NF, 
exhibiting its faster charge-transfer rate for HER in alka-
line medium. The Cdl values were obtained by CV tests at 
different scanning rates of 30–150 mV  s−1 in 1.0 M KOH 
solution (Fig. S3). As displayed in Fig. 5d, the  Ni2P-Ni12P5/

NF shows a higher Cdl value (0.96 mF  cm−2) than  Ni2P/
NF (0.29 mF  cm−2) and NiO/NF (0.22 mF  cm−2), indicat-
ing its good HER activity. The stability of the  Ni2P-Ni12P5/
NF catalyst for HER was also measured in 1.0 M KOH. 
Figure 5e shows that the polarization curve obtained after 
2000 cycles of the CV test displays slight degradation. The 
chronopotentiometry curve from the inset in Fig. 5e reveals 
that  Ni2P-Ni12P5/NF maintains good activity after continu-
ous testing for 20 h, displaying better long-term durability 
in alkaline medium. Figure 5f shows that the FE of produced 
 H2 for  Ni2P-Ni12P5/NF in 1.0 M KOH at current density of 
10 mA  cm−2 is almost 100%.

Based on the above electrochemical analysis results, the 
as-synthesized  Ni2P-Ni12P5/NF heterostructure displays bet-
ter HER electrocatalytic activity and outstanding stability, 
especially in acidic medium, which can be ascribed to its 
unique structure and composition. First, the unique hetero-
structure formed between  Ni2P and  Ni12P5 leads to a strong 
electronic interaction at the interface, thereby modulating 
the electronic structure [49, 50], optimizing the adsorp-
tion of hydrogen, increasing the number of active sites, and 
accelerating the charge transfer rate [33, 51, 52]. It is benefi-
cial to improve HER electrocatalytic activity of the catalyst. 
Second, the three-dimensional porous nickel foam substrate 
with large surface area is beneficial for not only generat-
ing highly exposed catalytically active sites, but also pro-
viding many transport channels for accelerating interfacial 
charge transfer. In addition, the synergistic effect between 
the  Ni2P-Ni12P5 heterostructure and nickel foam substrate 
effectively improves the HER electrocatalytic activity and 
stability of the as-synthesized catalyst.

Conclusions

In summary, to design an effective HER electrocatalyst, a 
three-dimensional porous self-supporting  Ni2P-Ni12P5/NF 
heterostructure was successfully synthesized by hydro-
thermal reaction and low-temperature phosphorization. 
The as-synthesized  Ni2P-Ni12P5/NF catalyst exhibits better 
catalytic activity and stability for HER, especially in acidic 
medium. It only requires the low overpotential of 124 mV 
to drive a current density of 10 mA  cm−2 with a Tafel slope 
of 84.1 mV  dec−1 in 0.5 M  H2SO4, showing better elec-
trocatalytic performance than  Ni2P/NF. The synergistic 
effect between  Ni2P-Ni12P5 with a unique heterostructure 
and nickel foam substrate with three-dimensional porous 
structure contributes to the improvement of HER catalytic 
activity and the stability of the catalyst.
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