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Abstract
Lithium-sulfur (Li–S) batteries are among the most promising next-generation energy storage technologies due to their abil-
ity to provide up to three times greater energy density than conventional lithium-ion batteries. The implementation of Li–S 
battery is still facing a series of major challenges including (i) low electronic conductivity of both reactants (sulfur) and 
products (polysulfides) that limits the rate capability of the battery; (ii) high solubility of the polysulfide products into the 
electrolyte that affects the cycle life; and (iii) the reactivity of the lithium metal anode that induces serious safety hazards. 
Replacing hazardous organic electrolytes with solid-state electrolytes (SSEs) can prevent lithium polysulfides crossover 
and Li dendrite growth. SSEs with high ionic conductivity and good electrochemical stability can boost Li–S technology 
by improving electrochemical performance and cycling stability. All-solid lithium-sulfur batteries (SLSBs), comprising 
of sulfur cathode, solid electrolyte, and Li metal anode, are much safer than liquid-based electrochemical batteries such as 
conventional lithium batteries. They possess longer cycle life and require less effort in terms of packaging and monitoring 
circuits. SLSBs have the powerful ability to transfer the converted stored chemical energy into electrical energy with high 
efficiency and without the release of harmful gasses. This review focuses on the types of SSEs, their advantages and draw-
backs in conjunction with Li–S batteries, and the challenges that hinder the practical application of SLSBs.
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Introduction

Combatting global warming urgently requires, among other 
actions, an effective usage of other prospective energy 
sources and the substitution of gasoline- and diesel-powered 
car engines with non-emitting electric motors, such as plug-
in hybrid vehicles (PHEVs) or, ideally, full electric vehicles 
(EVs). All CO2-free energy sources, such as solar, wind, 
and geothermal, would benefit from energy storage devices 
that could offer a solution for time and space limitations 
to allow continuous energy production. The most attractive 
are portable electrochemical batteries, in particular lithium 
batteries, due to their exceptional capability to deliver stored 
chemical energy as electrical energy with remarkable con-
version proficiency, high energy density, and without any 
kind of gaseous exhaust. Moreover, lithium batteries are 

the most promising, if not the sole players, to power effi-
ciently PHEVs and EVs. However, the present lithium bat-
tery technology is not adequate for boosting PHEVs or EVs 
and fails to satisfy the high energy requirement that allows 
for an acceptable driving distance. With the present lithium 
technology (150 Wh/kg), over 150 kg of batteries would be 
needed to provide a driving range of 250 km with a single 
charge of an average consumer car, which is an unaccep-
table weight load. Hence, advanced lithium batteries with 
higher energy density than that of the conventional ones are 
urgently needed. Among these, lithium-sulfur (Li–S) bat-
tery system is attracting a worldwide interest since it offers 
3,500 Wh/kg of energy density versus 380 Wh/kg from the 
present lithium-ion batteries (see Fig. 1). In addition, there is 
an added advantage of a significant cost reduction as sulfur 
is much cheaper than the cobalt-based cathodes used today. 
Furthermore, this battery is of strategic interest where sulfur 
is largely available as by-product in gas processing plants.

Although its concept dates back several decades ago, 
the Li–S battery has been silent until very recently when 
the appearance of a series of papers [1–8] has consistently 
renewed interest in this high-energy system. However, 
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despite these mostly academic successes, the implementa-
tion of the battery is still restrained by a series of unresolved 
issues. These are mainly: (i) low electronic conductivity of 
both reactants (sulfur) and products (polysulfides) that lim-
its the rate capability of the battery; (ii) high solubility of 
the polysulfide products into the electrolyte that affects the 
cycle life; and (iii) the reactivity of the lithium metal anode 
that produces serious safety hazards. Lithium-sulfur batter-
ies are among the potential next-generation energy storage 
technologies since they have much greater energy density 
by 2 to 3 times than other lithium-ion batteries [9]. In addi-
tion, SLSBs are attracting more attention and interest than 
other electrochemical batteries since they have longer cycle 
life, better safety, and fewer efforts in monitoring circuits 
compared to conventional liquid lithium-ion batteries (LIBs) 
[10]. Beside the high energy density, which can reach 2600 
Wh kg−1, Li–S batteries have an extremely high specific 
capacity of 1675 mA h g−1 [11]. Moreover, Li–S batteries 
are lower in cost and the cathode material is highly abun-
dant, which makes them extremely attractive as an energy 
storage technology. In addition, the manufacturing of Li–S 
batteries could be fabricated with the same configurations 
and identical factors as lithium-ion batteries. Furthermore, 
electrode reactions work spontaneously, and their kinetics 
are fast, enabling Li–S batteries to work well by achieving 
good rates of charging and discharging without any exter-
nal intervention of a catalyst or any thermal source [12].
Li–S batteries are extremely attractive since they have the 
ability to effectively deliver the converted stored chemical 
energy into electrical energy with high energy density and 
in environmentally friendly way without any harmful gas 
exhaust. This encourages researchers to devote stronger 
efforts to improve the performance of these batteries by 
implementing several technologies and enhancements that 

could boost lithium-based batteries in general, while keep-
ing the same features. However, in spite of all their success-
ful improvements, Li–S batteries are still hindered by many 
issues. One of the most significant problems is scaling up the 
sulfur loading. Moreover, the low conductivity (sulfur and 
lithium polysulfides) limits the capacity of Li–S batteries. 
The relatively high solubility of lithium polysulfides in the 
electrolyte has a negative impact on the cycle life. Finally, 
the relatively high reactivity of the anode (lithium metal) 
raises some concern over safety hazards by the formation of 
Li dendrites [13].

Solid-state electrolytes have many advantages in improv-
ing the long-term cycling performance by having high ionic 
conductivity and a good electrochemical stability. In addi-
tion, they prevent lithium polysulfides crossover and growth 
of Li dendrites. There are many cathode materials used in 
SLSBs including elemental sulfur, lithium sulfides, metal 
sulfides, lithium thiophosphates, and lithium polysulfi-
dophosphates, while using a Li/Li-M alloys as anode mate-
rials. Moreover, all SLSBs exhibit high energy densities with 
an excellent safety due to the interfacial modifications of 
cathode and anode materials by the side reactions of carbon 
additives and solid-electrolyte interface (SEI) coatings.

In this review, the progress in the development of various 
types of solid electrolytes and remaining challenges in the 
practical application of SLSBs will be discussed. Solid elec-
trolytes used in SLSBs can be classified into several catego-
ries including inorganic solid electrolytes (ISEs), solid poly-
mer electrolytes (SPEs), glass–ceramic electrolytes (GCEs), 
and gel polymer electrolytes (GPEs). All of these electrolyte 
types and their combinations will be discussed further.

Fundamentals and principles 
of lithium‑sulfur batteries

The basic Li–S cell is composed of a sulfur cathode, a 
lithium metal as anode, and the necessary ether-based elec-
trolyte. The sulfur exists as octatomic ring-like molecules 
(S8), which will be reduced to the final discharge product, 
which is Li2S, and it will be reversibly oxidized to sulfur 
while charging the battery. The cell operation starts by the 
discharge process. The full reaction could be represented as 
shown in Eq. 1.

However, the most common electrochemical reaction 
for Li–S batteries in the processes of discharge/charge is 
extremely complex and includes many side reactions that 
lead to the formation of various polysulfides, as shown in 
Fig. 2 [9, 14, 15]. The order of product formation during the 
discharge process is highlighted in Eq. 2.

(1)S
8
+ 16Li → 8Li

2
S

Fig. 1   Comparison of the theoretical energy density of a lithium-sul-
fur battery versus that of conventional lithium-ion batteries

4938 Ionics (2021) 27:4937–4960



1 3

The working mechanism of Li–S batteries of charge and 
discharge processes is done in stages as the discharge pro-
cess splits into two or three stages of reduction [16], depend-
ing on the electrolyte and its composition (see Fig. 3).

(2)Li
2
S
8
→ Li

2
S
6
→ Li

2
S
2
→ Li

2
S

Discharge–charge process is an electrochemical reaction, 
which occurs approximately in three stages, as shown in 
Fig. 3. The first region is the reversible conversion of sulfur 
to polysulfides which are soluble through a reduction reac-
tion S0 → S4

2−. The kinetics of this reaction is fast due to the 
solubility of the polysulfides. The second region represents 
the conversion of polysulfides S4

2− to Li2S2 (S0.5 → S−), 
which is more complicated than the previous reaction due 
to the energy required to nucleate the solid phase. The third 
and final stage is the conversion of the last product (solid 
Li2S2) to solid Li2S. This step is the most challenging step 
due to the very slow diffusion of the solid lithium [17].

Challenges with conventional Li–S batteries

Formation of polysulfides

The overall electrochemical process (Eq. 1) involves a series 
of steps involving the sequential formation of polysulfides. 
The initial, highly ordered Li2Sx polysulfides (4 < x < 8) are 
very soluble in typical electrolytes used in Li-ion batter-
ies, such as LiPF6 EC-DMC (LP30) organic solution. This 
allows the polysulfides to diffuse by a shuttle mechanism to 
the lithium metal anode to form lower ordered polysulfides 
(2 < x < 4), which tend to be less soluble and may precipitate 
on the anode itself (see Fig. 4). All of these result in a loss 

Fig. 2   Scheme of the lithium-sulfur battery and its charge–discharge process

Fig. 3   Discharge/charge profiles of a lithium-sulfur cell, showing 
3 stages: (I) solid sulfur converted to soluble polysulfides; (II) poly-
sulfides converted to solid Li2S2; (III) solid Li2S2 converted to solid 
Li2S [17]
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of active mass with associated severe capacity fading upon 
cycling.

Another developed safe electrolyte based on 
ε-caprolactam/acetamide can dissolve all sulfide and poly-
sulfide species, and therefore, major issues associated with 
Li2S/Li2S2, such as volume expansion, uncontrollable depo-
sition, and voltage polarization, can be minimized [18]..

Another aspect of concern is in the low resistivity 
(~ 5 × 10−30 S/cm at 25 °C, almost insulator) of both reactant 
(S8) and product (Li2S8), and in their large volume variation 
upon cycling, giving rise to serious problems in terms of 
low kinetics and of mechanical stresses at the cathode side. 
Most of the works so far performed on the Li–S battery 
have been addressed to the optimization of the sulfur elec-
trode morphology, with the aim of keeping the mechanical 
and electrical integrity of the sulfur cathode by constraining 
sulfur (charge) and lithium polysulfide within the electrode 
framework using various types of host materials, including 
mesoporous carbons, carbon nanotubes and spheres [19]. 
These consistent findings participated in upgrading the tech-
nology of the Li–S battery; however, some obstacles still 
retard the complete effective utilization of this high-energy 
battery system.

Electrolyte

The majority of the recent works still rely on classical liq-
uid organic carbonate solutions as the suitable electrolyte. 
Although sulfur and/or lithium sulfides are protected by 
the previously described carbon matrices, this essentially 
prevents contact with the electrolyte. In addition, it has not 
been fully determined whether the addition of carbon matri-
ces inhibits the dissolution of the polysulfides. Therefore, 
finding alternative electrolytes capable of preventing the 

polysulfide dissolution will have a great significance for the 
evolution of the Li–S battery technology.

In terms of safety, the utilization of organic liquid elec-
trolytes in batteries causes serious hazards such as fires and 
explosions. The majority of liquid electrolyte organic sol-
vents possess low boiling point (generally below 300 °C) 
and a flash point below 150 °C. The safety issues for batter-
ies that use organic liquid electrolytes such as Li-ion batter-
ies (LIBs) were for several reasons which are the flammabil-
ity, thermal instability, and volatility of the organic liquid 
electrolytes [20, 21].

Anode

Another serious issue, often ignored, is the use of lithium 
metal as the anode material. As well known, lithium metal 
may cause significant safety hazards due to the irregular den-
drites deposited upon charge, which may grow and reach the 
positive electrode leading to a battery short circuit and sub-
sequently, explosions or fire (see Fig. 5). Due to this safety 
threat, battery manufacturers are generally very reluctant to 
use lithium metal as electrode. Hence, the replacement of the 
reactive lithium metal with a more reliable anode would be 

Fig. 4   Scheme of the issues affecting the lithium-sulfur battery and voltage profile of its discharge. The dash blue regions identify the zones of 
stability of the various polysulfides

Fig. 5   Scheme and view of dendrites growing through a cell using 
lithium metal electrode
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a step forward for promoting the practical implementation 
of the Li–S battery.

Eligibility of solid‑state electrolytes for Li–S 
batteries

Electrolytes play a huge role in transporting ions in Li–S bat-
teries. Some liquid electrolytes could achieve fast kinetics, 
but it also creates many concerns about safety and life cycle 
of the battery. The electrolytes which are used nowadays 
are composed mainly of organic electrolytes such as ethers 
or carbonates. These electrolytes have very low thermal 
stability and can leak out, which causes serious safety con-
cerns. However, ionic liquids are considerably safe and non-
flammable, but they are critical in terms of environmental 
hazards, high in cost, and inadequate for large-scale applica-
tion in batteries. In addition, there are no solutions yet that 
prevent the issues of consumptive side relations and the for-
mation of Li dendrites, which happens in the cells wherein 
liquid electrolytes are used [22–25]. The substitution of 
these liquid electrolytes with solid-state electrolytes (SSEs) 
would be a great way to solve the safety issues associated 
with organic liquid electrolytes since SSEs are non-flam-
mable and thermally stable. In the 2000s, plenty of research 
that aimed the implementation of SSEs were done in several 
kinds of lithium-based batteries which include LIBs [20, 
26], Li–S batteries [27, 28], and Li-air batteries [29, 30]. 
However, until now there is no developed individual SSE 
that covers all the functionalities. Various SSEs have several 
challenges that prevent their practical applications, which 
will be discussed further in their respective sections in this 
review. Recently, a considerable progress has been made for 
all solid-state lithium batteries by experiments that develop 
and optimize the solid electrolytes [31, 32]. During the pre-
vious four decades, many promising Li–S batteries, which 
use conducting solid electrolytes, have been introduced due 

to their potency to enhance the safety and energy density of 
Li–S batteries simultaneously [33, 34]. There are numerous 
solid electrolytes available today, which differ in proper-
ties and compositions. Solid electrolytes for Li–S batteries, 
including inorganic solid electrolytes (ISEs), solid polymer 
electrolytes (SPEs) [33, 34], and composite polymer electro-
lytes (CPEs) that are obtained by the addition of fillers, are 
attracting more attention nowadays (see Fig. 6). Generally, 
a good solid electrolyte should have a high ion conductiv-
ity, great electrical insulation, wide electrochemical window, 
and chemically stable with electrode materials.

However, there are many remaining problems for the 
lithium metal solid electrolyte interface [36]. In all-solid-
state Li-based batteries, which operate with inorganic solid 
electrolytes, the most crucial problem is the tendency to 
make a solid–solid interface between the electrode and the 
solid electrolyte. Recent studies show that the probed con-
tact between the solid/solid is too small to be detected for 
short-term experiments. However, some reports have shown 
that Li7La3Zr2O12 (LLZO) is so far the only solid electrolyte 
which has a sufficient speed that illustrates an adequate sta-
bility in contact with Li metal [37, 38]. Figure 7 shows the 
difference between solid and liquid electrolytes in terms of 

Fig. 6   Li–S battery diagram 
based on different electrolytes 
[35]

Fig. 7   The contact area at the electrolyte/electrode of solid and liquid 
electrolytes and the difference between them [39]
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contact area at the electrolyte and electrode. In order to pre-
vent the shuttle effect of the polysulfides, which are formed 
during the charge and discharge process, new electrolytes 
should be studied to ensure the high lithium ion conductiv-
ity. Thus, the cycle life of Li–S batteries and the utilization 
of active sulfur species will be improved.

Traditional liquid electrolyte-based Li–S batteries, shown 
in Fig. 8a, face some challenges; these challenges mainly 
come from four undesirable phenomena: (1) the insulating 
properties of elemental sulfur (ca. 10−30 S cm−1 at 25 °C) 
and discharged product Li2S (ca. 10−13 S cm−1 at 25 °C), 
although the interface between the charged and discharged 
product may be more conductive; (2) the formation, dissolu-
tion, and shuttling of Li polysulfide (LiPS) intermediates in 
the liquid electrolyte; (3) the significant volumetric expan-
sion of sulfur during lithiation; and (4) the poorly controlled 
and rather unstable Li/electrolyte interface. To mitigate these 
issues, various strategies have been applied, such as using 
“host” materials, “interlayer” materials, various “core–shell” 
particle architectures, concentrated electrolytes, and vari-
ous electrolyte additives, among many others. However, so 
far the above approaches could not fully address the exist-
ing challenges, particularly for high areal capacity loading 
battery electrodes (4–10 mAh cm2), where the fraction of 
inactive materials (such as foils and separator membranes) 
is small and which are currently required for attaining lower 
fabrication cost and higher energy characteristics. In addi-
tion, the safety hazards associated with the poor stability of 
liquid electrolyte in contact with Li metal and the resulting 
Li metal pulverization, expansion, and dendrite growth-
induced thermal runaway remain very serious drawbacks 
[40, 41].

A potential solution is replacing a liquid electrolyte with 
a solid-state electrolyte to construct solid-state Li–S batter-
ies. Compared with liquid electrolyte-based Li–S batteries, 
solid-state Li–S batteries may offer several advantages: (1) 
the improved cycling ability and increased energy efficiency 

due to the elimination of LiPS formation and shuttling; (2) 
the enhanced stability of Li stripping/plating; and (3) greatly 
improved safety by using the nonflammable solid-state elec-
trolytes that do not evaporate upon thermal runaway and 
thus do not amplify undesirable fire hazard. In recent years, 
the trend of developing both quasi-solid-state Li–S batter-
ies (Fig. 8b) and all-solid-state Li–S batteries (Fig. 8c) is 
increasing rapidly within a research community due to their 
high energy density and safety showing great potentials for 
mobile and stationary energy storage systems [41].

Generally, solid electrolytes such as solid polymer elec-
trolytes (SPEs) are single-ion conductors, unlike liquid elec-
trolytes which have the ability to include at least two types 
of mobile species. The mobile ionic species’ concentration 
in electrolytes is 1 mol/L or greater for energy storage and 
conversion applications. At these concentrations, the ionic 
interactions play a significant role by leading to dynamic 
correlations in the movement of ions, as shown in Fig. 9.

In particular, the ions do not move randomly, but they 
perform correlated movements which could affect the 
charge and mass transport properties. The ion movement 
depends on the ion interactions, which means ions could 
prefer to move in the same or opposite direction. Moreover, 
correlated ion movements are mostly relevant to the highly 
concentrated liquid electrolytes like ionic liquids, solvate 
ionic liquids, and solvent in salt electrolytes [43–48]. The 
higher the diffusion coefficient, the higher the ionic con-
ductivity due to the increase in the concentration of mobile 
ions, which leads to the increase of the conductivity. Yet, the 
influence of ionic correlations on the conductivity depends 
strongly on the type of electrolyte whether it is a solid or 
a liquid electrolyte, also on the concentration of the ionic 
species. For example in Fig. 9, lithium transference numbers 
in solid electrolytes are much higher than in liquid electro-
lytes, which means that the dynamic ion correlations in the 
bulk are simpler. All of these advantages make SSEs much 
preferred than liquid electrolytes.

Fig. 8   Schematic illustrations 
of a liquid electrolyte-based 
Li–S battery, b quasi-solid-state 
Li–S battery, and c ALSS Li–S 
battery [41]
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Types of SSEs for Li–S batteries

Inorganic solid electrolytes

Inorganic solid electrolytes (ISEs) which are used in Li–S 
batteries are chemically diverse and even larger than 
their organic polymer analogs. Most ISEs are sulfide- 
or phosphate-based with crystalline structures [49], 
while a smaller selection are of non-crystalline nature 

(glass–ceramics) including LiPON [50]. The various types 
of SSEs and their recent developments are summarized in 
Table 1. Some of these inorganic solid electrolytes were 
applied in Li–S batteries such as Li3PS4 [51], LiBH4-LiCl 
[52], and Li2S-P2S5 [53]. In addition, some of these ISEs 
demonstrate higher ionic conductivity compared to liquid 
electrolytes even at room temperature, such as Li6PS5Br 
[54] and Li10GeP2S12 [55]. Although ISEs have many 
advantages, they are still restricted by some challenges due 
to high interfacial resistance, which could lower the overall 

Fig. 9   Graphical representation 
of all-solid-state batteries SSBs 
(left side) and of LIBs which 
contains a liquid electrolyte 
(right side). The middle part 
represents the zoomed-in 
regions which describes the 
possible ion movements in the 
electrolyte [42]

Table 1   Comparison between solid-state electrolytes for Li–S batteries in terms of composition and properties

Type of electrolyte Components Ionic conductivity 
(S·cm−1) at 25 °C

Advantages Challenges/disadvantages Ref

Inorganic solid electrolyte 
(ISE)

Inorganic material and 
lithium salt

10−5 to 10−4 - High ionic conductivity
- Outstanding thermal 

stability

- High interfacial resist-
ance

- Low ionic conductivity

[59]

Glass–ceramic electrolyte 
(GCE)

Inorganic material, 
lithium salt, and additive

1 − 3 × 10−6 (LiPON)
10−3 (Li7P3S11-based)

- Chemically stable
- Wide range of electro-

chemical window
- Low interfacial resist-

ance

- Low ionic conductivity 
(LiPON)

[60–62]

Solid polymer electrolyte 
(SPE)

Polymer, lithium salt, and 
additive

 < 10−5 - Low interfacial resist-
ance

- Great thermal stability
- Safe and flexible

- Low ionic conductivity
- Low mechanical 

strength

[59, 63]

PEO-based solid elec-
trolyte

Polymer-PEO (polyeth-
ylene oxide) LiTFSI/
polyethylene oxide

6.35 × 10−7 - Very low mass densities, 
high flexibility, and suit-
ability with large-scale 
roll-to-roll manufactur-
ing

- High stability of the 
mechanical properties at 
the reasonable potentials 
of charging in the Li–S 
cell

- Semi-crystalline 
substances and ion 
transport take place in 
amorphous material

- Low ionic conductivity 
at room temperature

[64]
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electrode reaction kinetics. Moreover, plenty of the most 
attractive ISEs are chemically unstable when they come 
in contact with the Li anode. Researchers have found that 
the implementation of LiIn [54] and LiAl [56] as anode 
reduced the interfacial resistance between the anode and 
SSE. Furthermore, the insertion of an electrolyte layer that 
is compatible with Li (i.e., unreactive) can prevent physi-
cal contact between the SSE and Li anode, which ulti-
mately prevents any reaction between the two interfaces 
and preserves the integrity of the SSE. For instance, an 
electrolyte layer composed of Li2S-P2S5-P2O5 was added 
between a Li10GeP2S12 electrolyte and Li anode, resulting 
in a favorable performance [57, 58].

Crystalline solid electrolytes

A recent study reported the development of a new struc-
ture of solid-state Li–S batteries wherein reduced gra-
phene oxide and sulfur nanocomposites are mixed with 
Li10GeP2S10-acetylene black at the cathode side. This pro-
cess was done in order to preserve the high ionic conduc-
tivity and to lower the stress and strain during the charge/
discharge process [55]. Ionic conductivity, being one of the 
most important criteria in the development of SLSBs, has 
been extensively researched in the hopes of further enhanc-
ing these values. The incorporation of carbon in other vari-
ous forms in SLSBs has been widely reported to improve 
ionic conductivity, including Li2S-carbon nanotubes com-
posite with Li10GeP2S10 [65], Li3PS7-mesoporous car-
bon cathode composite [66], carbonized cotton fiber with 
Li7P3S11 coating [67], and low-melting Li3I3(HPN)2 with 
sulfur-3D graphene foam [68]. However, another issue that 
might arise from this is creating a homogenized compos-
ite with sulfur, carbon, and SSE to achieve greater electro-
chemical performance. As a solution, Alzahrani et al. [69] 
prepared a sulfur-carbon composite via sulfur vapor depo-
sition and created a “three-component sulfur-carbon-solid 

electrolyte composite” with Li3PS4. The composite as a cath-
ode material for SLSBs achieved higher discharge specific 
capacity due to greater homogeneity and deeper confinement 
of sulfur in the composite, compared to the more common 
preparation methods (sulfur liquid deposition and sulfur 
solid deposition). On the contrary, the inclusion of carbon in 
SSE-cathode composites has been observed to result in low 
Coulombic efficiency (CE) due to SSE oxidative degradation 
upon contact between carbon and SSE during charge [70, 
71]. A solution for this issue is to utilize a sulfur host mate-
rial such as transition metal sulfides [72–74]. More recently, 
Xu et al. [74] investigated the electrochemical performance 
of sulfur/VS2/Li3PS4 composite as cathode for SLSBs. Elec-
trochemical findings have shown that it has achieved 96% 
CE during the initial cycle and remained at almost 100% 
throughout cycling, which is an improvement from the CE 
values from other SLSBs [75–77].

As another strategy to increase the conductivity of crys-
tal ISEs, elemental substitution technique could be effec-
tive. For instance, it was corroborated that the conductivity 
of Li3PS4 crystal could be boosted by the incorporation of 
phosphorus and germanium into the crystal. As a result, 
Li3.25P0.75Ge0.25S4 crystal shows a high conductivity that 
reaches 2.2 × 10−3 S cm−1 at room temperature condition 
[78]. To sum up, this solid-state electrolyte has plenty of 
valuable features in terms of fabrication, electrochemical 
properties, and safety. Lithium-stuffed garnet-type oxide 
Li7La3Zr2O12 (LLZO) has been largely studied due to its 
high conductivity (above 10−4 S cm−1 at room tempera-
ture), outstanding thermal performance, and great stability 
against Li metal anode [38]. LLZO has cubic and tetragonal 
crystal phases [79–81]. Its cubic crystal structure is shown 
in Fig. 10A. Figure 10B illustrates the variation of ionic 
conductivity for the Ba- and Ta-substituted LLZO samples 
as function of 1000/T. Ba-substitution levels affect both the 
ionic conductivity and the activation energy. The lattice size 
of LLBZOT at x ≤ 0.10 keeps reducing with the increase of 

Fig. 10   A Schematic represen-
tation of the crystal structure of 
cubic garnet-type Li7La3Zr2O12 
(LLZO) and B represents the 
temperature dependence of 
ionic conductivity for Ba- and 
Ta-substituted LLZO with 
several compositions [82]
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x, while the ionic conductivity is slightly increasing at room 
temperature. Furthermore, the lattice size of Ba- and Ta-
substituted LLZO continues to increase with x, while ionic 
conductivity is reduced when x is increasing from 0.1 to 0.3.

For Li–S batteries, in order to reduce the interfacial resist-
ance between S and the ion/electron conductive matrix due 
to the poor ionic/electronic conductivities of S and Li2S, 
LLZO nanoparticle-decorated carbon foam (LLZO@C) was 
synthesized by the one-step facile Pechini sol–gel method. 
Figure 11 shows that S is uniformly dispersed in the porous 
carbon matrix. The LLZO-PEO-LiClO4 electrolyte is casted 
onto the composite cathode directly. Meanwhile, the cathode 
and electrolyte have very close components, which is ben-
eficial to reduce the interface resistance between the solid-
state electrolyte and the cathode electrode. The S cathode 
constructed from the LLZO@C (Fig. 11) shows remarkable 
cyclability and can work at the normal human body tem-
perature of 37 °C. Compared to using polymer composites 
of PEO with ZrO2 for Li–S batteries operated at 70 °C, and 
using PEO polymer with LiTNFSI for Li–S battery at 60 °C, 
LLZO@C work represents a step forward toward lower tem-
perature operation due to the improved ionic and electronic 
conductivity [83].

Non‑crystalline solid electrolytes: glass–ceramics

Glass–ceramic electrolytes (GCEs), which are of amorphous 
nature, were first introduced and reported in 1992 at Oak 
Ridge National Laboratory with a thin film material called 
lithium phosphorous oxynitride (LiPON) as an electrolyte 
[50]. The material was deposited using radio frequency (RF) 
magnetron sputtering from Li3PO4 target in pure nitrogen 
gas atmosphere. It was suggested by Fu et al. [84] that thin 
films of LiPON could be high-temperature materials. Fur-
thermore, it is chemically stable with the lithium metallic 
anode with a wide electrochemical potential range of 0 to 

5.5 V (vs. Li/Li+). All these advantages make it a competi-
tive electrolyte material [85]. However, the bulk-type bat-
teries based on that electrolyte material have insufficient 
mechanical stability. In addition, LiPON possesses a low 
Li ionic conductivity of 1 − 3 × 10−6 S cm−1 at 25 °C, which 
could restrain the further development of batteries with thick 
LiPON membranes [60]. Recently, there were many studies 
done on optimizing LiPON electrolyte layer, especially on 
enhancing the lithium ionic conductivity and investigating 
the deposition condition [86, 87]. In addition to the thickness 
optimization [88], the results of these investigations show 
that the quality of LiPON thin film is extremely sensitive on 
sputtering power, pressure, nitrogen (N2) gas atmosphere, 
and the deposition rate [89]. Crystalline LiPON structures 
have been synthesized throughout the years but they fail to 
match the ionic conductivities of amorphous LiPON, even 
at elevated temperatures [90–92].

Figures 12a and b represent the 2D and 3D atomic force 
microscope (AFM) images of lithium-LiPON thin film, 
respectively. The largest height of surface undulation is 
1.6 nm on the Li-LiPON thin film. In those LiPON thin 
films, the element ratio was studied by executing the induc-
tively coupled plasma (ICP) tests in order to analyze the 
lithium content in LiPON electrolyte layer. The electrical 
response of the samples, shown in Fig. 12c, is represented 
by an equivalent circuit. For example, the resistance R1 is 
representing the resistance of the Cu current collectors, and 
CPE1 is representing the constant phase element of the top 
and bottom Cu-LiPON junctions. The bulk LiPON response 
is symbolized by the CPE2 element, which is in parallel with 
R2. The lithium ionic conductivity (σ) of each electrolyte 
was determined by the evaluation of the high frequency part 
of the Nyquist diagram σ = d/(R2 × A), where d is the thick-
ness of the film, A is the surface area of the metal contact, 
and R2 is the electrolyte resistance determined from the fit-
ting to equivalent circuit. The electrochemical impedance 
spectra (EIS) results for N-LiPON electrolyte layer illus-
trate an increase of ionic conductivity when the working 
pressure is decreased from 0.5 to 0.2 Pa. It also shows the 
largest ionic conductivity at 2.4 × 10−6 S cm−1 under pres-
sure of 0.2 Pa. Yet when the working pressure is decreasing 
to 0.08 Pa, the ionic conductivity decreased dramatically. 
In addition, the fitted results of N-LiPON and Li-LiPON 
electrolyte layers are showed in Fig. 12c which are meas-
ured under pressure of 0.2 Pa. All results confirmed that 
combining Li in LiPON electrolyte could improve the Li 
ionic conductivity [93]. Furthermore, Fig. 12d represents 
the cycle dependence on the discharge capacities of thin film 
lithium batteries (TFLBs) at specified rates. All solid-state 
TFLBs are a promising candidate for micro-power imple-
mentations [94]. It could be widely used in smart cards, 
radio frequency identification, portable electronic devices, 
and other micro-electromechanical systems. TFLBs are 

Fig. 11   Schematic illustration of an all solid-state Li–S battery 
based on LLZO nanostructures. The blue background indicates the 
PEOLiClO4 solid polymer electrolyte. The pink and yellow spheres 
correspond to the LLZO and S particles, respectively [83]
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comprised of a cathode layer, an electrolyte layer, and an 
anode layer. The discharge capacity for N-TFLB decreased 
from 62.1 μAh⋅cm−2⋅μm−1 at 0.1 C to 51.7 μAh cm−2⋅μm−1 
at 4 C. However, the degradation of Li-TFLB is noticeably 
slighter than N-TFLB.

For Li–S batteries, the LiPON coating serves as an elec-
trochemically stable, mechanically robust, and highly ionic 
conductive interfacial layer for Li metal anodes. The coat-
ing has the ability to minimize the corrosive reactions with 
dissolved sulfur, soluble lithium polysulfides or organic 
electrolytes, and resisting the incursion of Li dendrites at 
the Li/LiPON interface. As such, LiPON-coated Li metal 
cells exhibited a very stable and dendrite-free cycling for 
over 900 cycles at a high current density of 3 mA cm−2. In 
addition, using the LiPON-coated Li as anode, the Li–S cells 
demonstrated a large capacity and a significantly enhanced 
cycle performance, even in high-energy–density pouch cells 
(Fig. 13). This facile and effective approach opens a new 
route for stabilizing the Li metal anode and could lead to 

the practical application in the field of rechargeable Li metal 
batteries [96].

Glass–ceramic electrolytes in general have many vari-
ous advantages as they possess isotropic properties, which 
eases the ion migration and facilitates the control of prop-
erties by changing the chemical compositions [97]. On 
the other hand, GCEs also face some challenges as they 
are extremely sensitive to humidity and air [33]. A recent 
study developed a superionic conductor glass–ceramic elec-
trolyte (Li7Sb0.05P2.95S10.5I0.5) that is stable in air, highly 
conductive at room temperature (2.55 mS cm−1), and has 
a stable electrochemical window of up to 7 V vs. Li+/Li 
[61]. Another study doped a sulfide-based SSE (Li7P3S11) 
with Nb and O as a way of enhancing electrochemical and 
chemical performance, forming Li6.988P2.994Nb0.2S10.934O0.6 
glass–ceramic electrolyte [62]. Results have shown that this 
novel GCE is also stable in air, has excellent stability against 
Li, and higher ionic conductivity at room temperature (2.82 
mS cm−1), compared to Li7P3S11. In addition, the newly 

Fig. 12   a and b represents the 2D and 3D atomic force microscope 
(AFM) images of Li-LiPON electrolyte thin film, respectively. c The 
electrochemical impedance spectra of electrolyte layers and d cycle 

dependence on the discharge capacities for thin film lithium batteries 
(TFLBs) at specific rates [95]
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synthesized GCE exhibited lower interfacial resistance 
compared to Li7P3S11, which has resulted in high discharge 
capacity and ≈100% Coulombic efficiency.

Oxidative stability of ISEs

In order to determine the kinetic stability limit of the elec-
trolytes against oxidation (using carbon C65), cyclic voltam-
metry was conducted. Dewald et al. reported a model case 
investigation by comparing with solid-state batteries while 
excluding the reactions with active materials. The stability 
limits against oxidation are illustrated in Fig. 14 [98], in 
addition to the theoretical predictions of the stability win-
dows [36]. Figure 15 shows the stability of thiophosphate 
solid electrolytes, the practical stability window, and the 
redox of decomposition products. The results obtained show 
that the oxidative stability of these electrolytes is higher than 
the predicted values. Moreover, the materials are partially 
unstable against the typical cathode materials, which may 
be solved by the use of coatings.

Round-robin approach was performed using several 
lithium argyrodites which exhibits different orders of mag-
nitude with various ionic conductivities as reference materi-
als. Nowadays, rapid ionic conductors such as lithium and 
sodium thiophosphates are deeply investigated for their 
implementation in all-solid-state batteries [40, 100]. Recent 
studies show that there is several Li+- and Na+-based materi-
als, such as the thiophosphates Li10+x M1−xP2+xS12 {M = Si, 
Ge, Sn} [78, 101–105], Li2S-P2S5 glasses [106–112], and 

Li6PS5X {X = Cl, Br, I} [113–118]. All of these materials 
can offer an ionic conductivity which is higher than 1 mS 
cm−1, making them applicable for solid-state battery imple-
mentations. The stepwise cyclic voltammetry and X-ray 
photoemission illustrate the oxidative decomposition of the 
tested electrolytes which are Li10GeP2S12, 70:30 Li2S-P2S5 
glass, and Li6PS5Cl electrolytes. Most of the electrolytes 

Fig. 13   a The performance of a 
LiPON-coated Li metal anode 
in Li–S battery configurations; 
b galvanostatic cycling perfor-
mance of Li–S pouch cells at 
0.79 mA cm−2 [96]

Fig. 14   The practical oxidative stability limit of thiophosphate-based 
solid electrolytes (Li10GeP2S12, 70:30 Li2S-P2S5 glass, and Li6PS5Cl) 
vs. a carbon composite electrode which is indium metal counter elec-
trode. The stability region of each electrolyte is illustrated in blue and 
the oxidative decomposition is represented in orange [98]
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exhibit a high oxidative stability limit (between 2.3 and 
2.6 V vs. In/InLi, which corresponds to 2.9 V and 3.2 V 
vs. Li + /Li) when measured against an electrode which is 
composed of carbon unlike the theoretical calculations. In 
addition, the results illustrate that the practical oxidative 
stability limits are much higher than the theoretical values. 
Furthermore, in order to provide higher electrode stability 
with the active cathode materials, coating could be included. 
Finally, by increasing the electrolyte stability, long-time 
cycling stability of SSBs could be increased.

Solid polymer electrolytes

Solid polymer electrolytes (SPEs) are safer and have better 
flexibility compared to other SSEs and liquid electrolytes. 
These advantages make SPEs one of the promising electro-
lyte candidates for all kinds of solid-state Li batteries includ-
ing Li-ion, Li-air, and Li–S batteries [119].

SSLSB typically use lithium metal as the anode to 
achieve high energy density. The cathode is usually a mix-
ture of sulfur/carbon/electrolyte composite. This is because 
of the insulating nature of sulfur and Li2S. Carbon materials 
serve as electron conductors and solid electrolytes serve as 
Li-ion conductors. Sulfur should be in good contact with 
both electron conductor and Li-ion conductor to ensure high 
sulfur utilization. Some examples of polymer electrolytes for 
Li–S batteries are polyethylene oxide-based electrolytes and 
composite polymer electrolytes [120].

PEO‑based solid electrolytes

Studies on SPEs initiated from the discovery of polyethyl-
ene oxide (PEO) complexes by Wright and his colleagues 
in 1973 [121]. PEO could easily convert to crystalline form 
at room temperature which prevents the Li-ion migration. 
Lithium ion migration depends on the movement of poly-
mer chains and usually takes place in amorphous phases 
[122, 123]. Therefore, PEO-based batteries usually work at 
temperature higher than the melting temperature of the PEO 

itself, generally over 80 °C. Yet, PEO homopolymer is a liq-
uid with high viscosity under these conditions, which makes 
it mechanically very weak to reduce the growth of Li metal 
dendrites while cycling [124, 125]. This has led to the explo-
ration of PEO combined with lithium salts, in which lithium 
salts could be dissolved by the polymer solvent in order to 
form the cations and anions in the solid polymer electrolyte 
system [63, 126]. In particular, Li+ cations are solvated by 
the polymer, making it more dynamic when moving through 
the polymer chains (see Fig. 16). However, the free Li+ cati-
ons have the ability to move significantly through the chain, 
which could affect the Li+ transportability in the SPE sys-
tem, and ultimately affect the performance of the batteries.

Many studies were done in order to enhance the ionic 
conductivity and mechanical properties of PEO-based SPEs. 
In addition, these were conducted to gain more understand-
ing of the conductivity mechanisms since the movement of 
Li+ ions in SPEs at room temperature is much less than in 
liquid electrolytes, even less than ISEs. Some strategies to 
improve ionic conductivity include the utilization of nano-
sized fillers and nanostructured block/grafted copolymers, 
which help in promoting the formation of localized amor-
phous regions [128, 129]. The addition of fillers to SPEs 
gives rise to a new type of SSE: composite polymer electro-
lytes (CPEs). Figure 17 shows that the addition of nanosized 
inorganic fillers or the modification with block polymers has 
the ability to interrupt the structural order of the polymer 
matrix and boost the content of amorphous phase, resulting 
in the transfer of Li+ ions [130–133].

Since the discovery of the ionic conductivity of PEO 
complexes combined with alkali metal salts almost 
40 years ago, PEOs combined with oligoether constitutes 
(-CH2-CH2-O-)n were studied in an extensive way [135]. 
In general, polymers such as PEO are able to enhance the 
ion pair dissociation by coordinating with the Li+ cation 
in the salt. This kind of electrolytes could be synthesized 
easily and has very low mass densities, high flexibility, 
and suitability with large-scale roll-to-roll manufactur-
ing, which makes them attractive. However, PEO-based 

Fig. 15   A Schematic represen-
tation that shows the stability of 
thiophosphate solid electrolytes 
[98], B round-robin study [99]
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electrolytes face some challenges since these polymers 
are semi-crystalline substances, and ion transport gener-
ally takes place in amorphous phase. Furthermore, SPEs 
often require a high temperature (> 60  °C) to achieve 
high ionic conductivity [136–138], which restricts their 
applications to SLSBs that function at room temperature. 
Moreover, elevated temperatures will ultimately diminish 
the ability of SPEs to suppress the shuttle effect [35, 139] 
and Li dendritic growth [140]. Low ionic conductivity 
of 6.35 × 10−7 S cm−1 at temperature of 25 °C has been 
reported for PEO-based polymer (PEO/LiTFSI) (Fig. 18) 

[141]. More recent developments in CPEs include PEO-
LiBH4 composite electrolyte with SiO2 nanofillers [142], 
cyclopropenium cationic-based covalent organic polymer 
as fillers [143], and cathode-supported-electrolyte [144]. 
The latter provides better contact between SSE and elec-
trode than the conventional lamination method; therefore, 
reduced interfacial resistance and enhanced electrochemi-
cal performance were observed [144]. However, it is worth 
noting that these reported developments still require ele-
vated temperatures due to PEO’s low ionic conductivity 
at room temperature.

Fig. 16   Schematic representa-
tion of Li-ion transfer across 
three different kinds of poly-
mers: a a crystalline polymer, b 
crystalline polymer with nano-
fillers, and c a modified polymer 
with nanofillers [127]

Fig. 17   Schematic representa-
tion for lithium-ion transport 
in the composite polymer (with 
nanoparticles and nanowires) 
[134]
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Many studies have been performed in order to develop 
new strategies and technologies to improve this type of 
electrolytes and boost their ionic conductivity. It was found 
that the strong interaction of nanosized fillers with the poly-
mer or salt causes disruption in the crystallization of PEO, 
resulting in an amorphous phase with higher conductivity 
at room temperature [64]. Furthermore, the dispersion of 
nanofillers including ZrO2 [146], montmorillonite clays 
[147]. SiO2 [148], and cornstarch [149] in PEO can enhance 
ionic conductivity of PEO at room temperature. Moreover, 
some fillers can form thinner and more compacted layer 
with increased conductivity in all solid-state Li–S batteries, 
such as LiN3 [150]. The same effect was observed with the 
addition of P2S5 into PEO-based SPE, as well as increased 
interfacial stability between SSE and electrodes and suppres-
sion of Li dendritic growth and shuttle effect of polysulfides. 
In addition, improved cycling performance and high Cou-
lombic efficiency were achieved in the solid-state Li–S cell 
[151]. Other strategies involve the use of a bilayer electrolyte 
(layer of Li+-intercalating material with SPE) [152] and the 
inclusion of a conductive carbon nanotubes interlayer [153], 
with operating temperatures of 25 and 35 °C, respectively.

Polyvinylidene fluoride (PVDF) coating was used as 
a binder in the sulfur cathode, as shown in Fig. 18. As a 
result, the cycling performance of PEO-based Li–S cells has 
considerably improved by inhibiting the formation of poly-
sulfides with the PVDF polymer. The long chains of poly-
sulfide intermediates were not produced in the PVDF-coated 
S-cathode during cycling, which shows a direct transforma-
tion of sulfur to solid Li2S2/Li2S. Therefore, the solid Li–S 
cells preserve the reversible discharge capacity of 630 mAh 
g−1 after 60 cycles (at 0.05 mA cm−2 and 55 °C). In addition, 

the implementation of the solid–solid step reaction in PEO-
based SSLBs provides an additional path for the develop-
ment of high-energy Li–S batteries which are characterized 
by a long cycle stability [145]. In a similar manner, Garbayo 
et al. [154] investigated the effect of alumina nanofilm coat-
ing on the PEO-based membrane (cathode-electrolyte inter-
face). Despite having a lower initial discharge capacity than 
its uncoated counterpart, the coated membrane achieved 
considerably longer cycling (120 cycles) with almost 100% 
Coulombic efficiency.

As mentioned previously, many approaches were done to 
improve the ionic conductivity and mechanical properties of 
PEO-based SPEs. This includes the utilization of nanosized 
fillers to provide a higher surface area that (i) allows efficient 
contact with electrolytes, (ii) improves the cell capacity, (iii) 
shortens the lithium diffusion pathways, and (iv) facilitates 
the lithium insertion-extraction reaction compared to their 
traditional bulk counterparts. Furthermore, adding nanopar-
ticles such as SiO2, Al2O3, and TiO2 could prevent the local 
reorganization of chains in the polymer and reduce poly-
mer crystallization, which makes the lithium ion transport 
higher. Meanwhile, copious studies showed that the Lewis 
acid–base model interactions could support the increase in 
ionic conductivity, which make it an interesting approach 
to enhance the electrochemical performance of composite 
polymer electrolytes [155].

Composite polymer electrolytes

It is known that Lewis acid sites inserted on the filler sur-
faces could strongly interact with anions of salt, release 
the positively charged lithium ions, and enhance the ionic 
conductivity of the composite polymer [128, 156–161]. 
Oxygen-ion conducting ceramics, which are improved for 
solid oxide fuel cells and sensors, are capable of achieving 
these effects due to high ionic conductivity and high sta-
bility (chemically, thermodynamically, and mechanically) 
over a large temperature and oxygen partial pressure ranges. 
Y2O3-doped ZrO2 (YSZ) is an example of the most credible 
oxide-ion conductors at very high temperatures [162–167]. 
The oxygen vacancies located in YSZ have a positive charge 
and can act as Lewis acid sites in the composite polymer 
electrolyte, as illustrated in Fig. 15. The oxygen-ion con-
ducting YSZ nanowires can improve the ionic conductiv-
ity of PAN-LiClO4 polymer electrolyte in an efficient way. 
In addition, Liu et al. [168] utilized nanowires instead of 
nanoparticles as results from their previous study revealed 
that nanowires allowed higher continuous ion conducting 
across longer distance, as well as the creation of an effective 
percolation network, unlike nanoparticles which are isolated 
as shown in Fig. 17.

Another example of composite polymer for Li–S bat-
tery uses an electrolyte membranes fabricated by the 

Fig. 18   Schematic illustration of solid-state lithium-sulfur bat-
tery that used PEO/LiTFSI electrolyte and a polyvinylidene fluoride 
(PVDF)-coated cathode [145]
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incorporation of Li10SnP2S12 into the poly(ethylene oxide) 
(PEO) matrix using a solution-casting method. The incor-
poration of Li10SnP2S12 plays a positive role on Li-ionic 
conductivity, mechanical property, and interfacial stability 
of the composite electrolyte and thus significantly enhances 
the electrochemical performance of the solid-state Li–S bat-
tery compared to the pure PEO/LiTFSI electrolyte (Fig. 19) 
[169].

Challenges that face the implementation 
of solid lithium‑sulfur batteries

The implementation of the Li–S technology has been hin-
dered by plenty of practical problems and challenges with 
the materials of choice or the system itself. The solid-state 
electrolyte may be a better option than liquid electrolytes due 
to their efficiency in reducing the dissolution and shuttle of 
polysulfides. However, the low ionic conductivity and poor 
interfacial stability, which are associated with the majority 
of SSEs, could cause more issues when they are used in 
SLSBs. Despite of the rapidly growing interest in SLSBs, 
numerous challenges still need to be overcome in both the 
manufacturing and fundamental understanding of the tech-
nology. There are many challenges that face the implemen-
tation of solid lithium-sulfur batteries. However, there are 
two main challenges which must be addressed before the 
practical application of M lithium to be commercialized in 
batteries which are the lithium dendrite growth and the low 
Coulombic efficiency after the long-term charging/discharg-
ing processes. Li dendrites are the main issue, which cause 
internal short circuits, thermal runaway, and may even lead 
to a significant failure. With traditional liquid electrolytes, 
the growth of lithium dendrites could be partially prevented 
by inserting some additives. However, it does not completely 

solve the issue, especially the safety problems that face the 
Li metal batteries [22, 170]. Therefore, the best strategy 
to overcome those issues is by replacing the conventional 
liquid electrolytes with the SSEs due to their considerable 
advantages, such as the lack of leakage or flammability in 
SSEs and the ability to suppress Li dendritic growth through 
various strategies. However, SSEs still have some disadvan-
tages and challenges that hinder the practical application 
of all SLSBs in general, such as the complex manufactur-
ing process, extremely poor mechanical strength, and huge 
interfacial impedance. In addition, the further increase in 
energy and power density could cause additional issues 
for SLSBs. Moreover, SSEs tend to have insufficient ionic 
conductivities, as the ionic conductivity (IC) in ceramic 
conductors is found to be within the range of 10−5 to 10−3 
S cm−1, which is lower than the IC of organic liquid elec-
trolytes (LEs) (usually 10−2 S cm−1). Furthermore, there is 
poor interfacial compatibility between electrode and SSE. 
Generally, the high solid–solid interfacial resistances are 
produced after the first charging process because of the 
high strain and stress produced at the interface. Also, the 
suitable interfaces between the Li metal anode and SSEs 
are very difficult to be formed due to the existence of grain 
boundaries, which are on the surface of SSEs in bulk SSBs. 
Another challenge which could prevent the implementation 
of SLSBs is the insufficient knowledge of the interfacial 
process after charge and discharge, and the movement of Li 
ions and the interfacial evolution, which are very crucial for 
SLSBs [171]. The major challenges in developing solid-state 
batteries are represented in Fig. 20. The formed SEI between 
the Li anode and the SSE is represented by RSE/SEI. Also, the 
grains and grain boundaries of SSE are represented by RSE 
and RSE,gb. Mostly, SSEs react with active cathodes which 
needs to be protected them by coating the active material, as 
shown in Fig. 20. The red line shows the drop of the electric 

Fig. 19   Pure PEO/LiTFSI, PEO-1%Li10SnP2S12, and PEO-
3%Li10SnP2S12 electrolytes for Li–S batteries comparison in terms of 
a temperature dependence of the ionic conductivity of the three poly-
mer electrolytes and b cycling performance of the Li–S cells with the 

PEO-1%LSPS electrolyte and the PEO/LiTFSI electrolyte with a pho-
tograph of the solid-state polymer Li–S battery with PEO-1%LSPS 
lighting a red LED device is inserted in [169]
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potential across the space, while the blue arrows illustrate 
the mechanical pressure.

The inorganic solid-state electrolytes, such as LLZO and 
Li3PS4, are still suffering from the Li dendrite formation 
issue [172–174]. The reason behind this could be that Li 
dendrites grow around the grain boundary of the SSEs. The 
challenges and the solutions for SSE/electrode interface are 
illustrated in Table 2

Strategies to overcome challenges with SSEs

As already pointed out, the strategy to upgrade the Li–S bat-
tery involves addressing the issues with the electrolyte and 
anode used. The attention was first focused on the research 
of suitable electrolytes to replace the common carbonate 
organic solutions with the goal of addressing the polysulfide 
solubility issue. In this respect, polymer-like membranes or 
solvent-free polymer membranes appeared as very promis-
ing systems. A valid example of the former is the so-called 

gel polymer electrolytes (GPEs). One may simply describe 
GPEs as hybrids consisting of liquid-polymer blends with 
the liquid component constrained within the polymer matrix 
(see scheme of Fig. 21). It is proposed that the polymer 
shell plays the role of a protective layer to prevent contact 
between the polysulfide cathode products and the inner liq-
uid solutions.

GPEs have many advantages as it combines the advan-
tages of liquid and solid electrolytes, while sharing more 
similarities with liquid electrolytes [189]. In fact, gel poly-
mer electrolytes are more practical than solid polymer elec-
trolytes, which has led to its earlier commercialization than 
SPEs. These electrolytes are extremely attractive due to their 
very low volatility, high thermal stability, and safety [190]. 
One of the most used polymers in GPEs is polyvinylidene 
fluoride (PVDF) since it has a strong electron-withdrawing 
functional group (–F). Polymers based on PVDF could pos-
sess an extremely high anodic stability. The high dielectric 
constant increases the ionization of lithium salts by provid-
ing a high concentration of charge carriers [191].

Fig. 20   The major challenges in 
developing solid-state batteries 
(SSBs) [40]

Table 2   Challenges and proposed solutions for PEO- and LLZO-based solid-state electrolyte for Li–S batteries

Solid-state electrolyte 
(SSE)

Interface challenges toward 
Li anode

Solutions for SSE/Li anode 
interface

Interface challenges toward 
cathode

Solutions for SSE/cathode 
interface

Solid polymer electrolyte 
polyethylene oxide 
(PEO-SPE)

Li dendrite formation [175] Inorganic fillers to improve 
the mechanical strength 
and interface stability 
[176]

Rigid support to enhance 
the mechanical strength 
[177, 178]

Cross-linked polymer to 
improve the mechanical 
strength [179]

Electrochemical oxidation 
of PEO at very low volt-
age less than 3.8 V [180]

Interface adjustment with 
metal oxide and polymer 
materials [181, 182]

Modifying SPE with a high 
voltage stable polymer 
electrolyte [183]

LLZO Poor wettability [175]
High interfacial resistance

Interface engineering to 
obtain the lithiophilic 
LLZO/Li interface [175]

Poor interface contact 
[184]

High interfacial resistance
Side reactions [185]

Co-sintering with low melt-
ing point SSE [186]

Coat the interface to avoid 
side reaction [187]

Enlargement of SSE/elec-
trode materials contact by 
porous SSE [188]
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A more efficient way to stop the dissolution of the reac-
tion products is foreseen to be offered by applying solvent-
free, solid-state, lithium conducting membranes, usually 
called “polymer electrolytes” (PEs). Well-known exam-
ples are complexes formed by poly(ethylene oxide) (PEO) 
and lithium salts complexes, added by small-sized ceramic 
powders, in order to form the so-called composite poly-
mer electrolytes (CPEs), as shown in Fig. 22. The polymer 
chains fold around the lithium ions separating them from 
the corresponding anions. The lithium ion transport occurs 
via an inter-chain hopping mechanism. Accordingly, fast 
ion transport requires high chain flexibility, a condition that 
is only attained between 70 and 90 °C. These membranes 
demonstrated their effectiveness as separators for Li–S cells 
with quite interesting results, showing that indeed full cell 
capacity can be acquired by solid-state, PEO-based polymer 
Li–S batteries (see Fig. 23).

Evidently, these polymer electrolyte batteries have 
shown a better performance due to enhanced conductivity 
between 70 and 90 °C. However, this will not be considered 

a drawback, especially if the battery is designed for applica-
tions and devices that withstand high temperature operation, 
such as in the electric vehicle sector. In addition, since it is 
totally liquid-free, these membranes are the only electrolytes 
that can be safely used in conjunction with a lithium metal 
anode. Therefore, PEO-based Li–S batteries can also provide 
a high degree of safety. However, in the cases where the high 
temperature of operation may be an issue, more conventional 
liquid electrolytes must be used, which brings back the risk 
associated with the reactivity of the metallic lithium anode. 
Consequently, an important step forward in the Li–S bat-
tery technology is the replacement of lithium with a more 
stable and reliable anode. On the other hand, this operation 
requires adapting the structure of the cell such as to provide 
the source of lithium ions necessary to drive the electro-
chemical process. Alternatively, an artificial SEI can be inte-
grated to block contact between Li anode and SSE. This was 
previously done with Li3N, which has exhibited increased 
capacity retention but has failed to inhibit Li dendrite growth 
over long-term cycling [192]. The latest material to be used 

Fig. 21   Scheme and appearance 
of a gel-type membrane that 
may be described as formed by 
a liquid component contained 
within a polymer network

Fig. 22   The poly(ethylene 
oxide) PEO-lithium salt mem-
brane. Structure, appearance, 
and conductivity mechanism
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as an artificial SEI is MoS2, which successfully prevented 
the breakdown of the electrode–electrolyte interface and 
delivered high initial and final discharge capacities, 675.8 
and 584.1 mAh g−1. Compared to uncoated Li anode, the 
addition of MoS2 layer decreased capacity fading from 27.3 
to 13.6% after 200 cycles [193].

Conclusion and outlook

Due to several safety concerns, there is a big market for all-
solid Li–S batteries. One of the most significant components 
in all solid-state Li–S batteries is the electrolyte. Ideal elec-
trolytes depend on several criteria and requirements, which 
include high ionic conductivity, compatibility with electrode 
materials, and good mechanical properties. In addition, such 
electrolytes should overcome the challenges that hinder the 
commercialization of solid-state batteries. In this review 
paper, recent technologies and progress in previous years 
for solid-state Li–S batteries were summarized including 
the historical progress and technical obstacles. Many types 
of SSEs were reported such as inorganic solid electrolytes 
(ISEs), solid polymer electrolytes (SPEs), and glass–ceramic 
electrolytes (GCEs). Although these electrolytes have many 
advantages as discussed in this review paper, they also have 
several disadvantages and challenges which need to be 
resolved in order to proceed toward the practical application 
and commercialization of solid-state lithium-sulfur batteries. 
The different kinds of solid-state electrolytes were discussed, 
as well as their charge transfer, chemical properties, advan-
tages, and challenges that hindered these electrolytes were 
further explored in detail. In addition, the technical chal-
lenges of the implementation of solid-state Li–S batteries 
were discussed in terms of preparation and design. These 
issues include the Li dendrite growth and low Coulombic 
efficiency after long-term cycling. Furthermore, extremely 
poor mechanical strength, huge interfacial impedance, and 
insufficient ionic conductivity of SSEs remain to be solved 
by strategic innovations. In general, ideal solid electrolytes 
should possess high ionic conductivity at ambient tempera-
tures, electrical insulating properties, wide electrochemical 

window, and chemical stability. As of now, one of the most 
promising SSEs and strategies for solid Li–S batteries are 
GCEs and the development of gel polymer electrolytes 
(GPEs), respectively, due to their higher ionic conductivi-
ties even at room temperature, among others. Addition, 
GCEs can provide mechanical stability to solid-state Li–S 
batteries, which other solid electrolytes lack. Besides the 
advantages of GCEs mentioned above, LiPON coating on 
Li anode, in particular, has been shown to enhance mechani-
cal and electrochemical stability, minimize corrosive reac-
tions that lead to Li dendritic growth during long-term 
cycling, and improve cycling performance of solid-state 
Li–S batteries [96]. Ultimately, this strategy would allow 
the development of solid-state Li–S batteries for commercial 
applications. One downside to this is the extreme sensitiv-
ity of GCEs to air and humidity; therefore, more attention 
and development should be focused on resolving this issue. 
Furthermore, many strategies like using composite poly-
mer electrolytes have been applied to combat other issues 
such as the suppression of Li dendritic growth and shuttling 
effect, which have proven to be effective for some. In terms 
of commercialization, the main factor is the cost of manu-
facture. Hence, researchers should focus on developing bat-
tery materials via simple and cost-effective manufacturing 
processes that can be easily applied into large-scale opera-
tions to enable the viable commercialization of solid-state 
Li–S batteries. As for GPEs, the liquid–solid hybrid nature 
consisting of polymeric networks provides a protective 
layer on electrodes, which avoids unwanted reactions that 
may lead to Li dendrite formation or other substances that 
may jeopardize the optimal functioning of batteries. Fur-
thermore, GPEs share similar properties as both liquid and 
solid electrolytes, which can provide synergistic effects and 
enhanced practicality in commercial applications. To sum 
up, solid-state Li–S batteries have great potential to deliver 
better electrochemical performance than conventional LIBs 
in the market when combined with the ideal SSE. Contin-
ued efforts are needed in developing SSEs to commercial-
ize solid-state Li–S batteries for its role in deploying clean 
energy and helping to achieve a carbon neutral society.

Fig. 23   Charge–discharge 
voltage profiles and capac-
ity versus cycle number 
for a Li/CPE/S battery at 
various temperatures. CPE, 
PEO20LiCF3SO3Li2S10%ZrO2
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