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Abstract
H-infinity filter (HIf) is widely used in state of charge (SOC) estimation of lithium-ion batteries due to its superior perfor-
mance to extended Kalman filter (EKF) whose robustness is weak. In this paper, an improved HIf-based SOC estimation
algorithm is proposed, which incorporates a sliding mode observer, yielding better estimation stability and accuracy than
conventional HIf. The proposed algorithm takes advantages of HIf and sliding mode observer that it is more robust to the
modeling error and noises. Samsung ICR18650 lithium-ion battery cell is tested and results show that the proposed method
improves SOC estimation accuracy, two error indicators are evaluated and both are reduced compared to that of the EKF
and HIf.
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Introduction

Energy crisis and environmental pollution are major prob-
lems that have slowed down the development of technology
[1]. Because of the merits of long service life, high power
rating, high nominal voltage, and excellent safety perfor-
mance, Lithium-ion batteries (LiBs) have become the most
widely used material for storing electrical energy [2]. LiBs
reliability, safety and efficiency are determined by the
performance of the standard battery management system
(BMS) [3]. The state of charge (SOC) is a major factor
in BMS and can provide valuable information such as the
amount of power left in the LiBs in its current state; thus,
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effective protection decision can be made to avoid accidents,
such as overcharge and overdischarge [4].

However, the SOC of LiBs is unobservable and needs
to be estimated based on the characteristics of LiBs [5].
The existing SOC estimation methods can be roughly
classified into two groups: non-model-based methods and
model-based ones [6]. Non-model type can estimate SOC
without constructing a mathematical model that describes
the dynamics of LiBs and includes lookup table-based
methods and the Coulomb-counting methods. The look-
up table-based approach estimates SOC from open circuit
voltage (OCV)-SOC relationship table [7]. OCV models
are offline methods which require long rests to achieve the
desired state [8]. The Coulomb-counting method has good
SOC estimation, but it is sensitive to the errors of initial
SOC and cumulated during iteration [9, 10].

The mathematical model can also be used to characterize
the charging and discharging dynamics of the battery and
estimate SOC. There are three well known battery models:
data-driven models, electrochemical models and equivalent
circuit models (ECM). Data-driven model involves the
neural network [11, 12] and fuzzy logic model. They require
a large amount of measurements that are precisely detected
by high hardware equipment, and models are changing
subject to different data set [13–15]. Electrochemical model
is the closest to the battery, but due to complex inner
chemical reactions, it is difficult to establish a completely
appropriate model with desired accuracy [16–18]. The

/ Published online: 18 September 2021

Ionics (2021) 27:5147–5157

http://crossmark.crossref.org/dialog/?doi=10.1007/s11581-021-04234-3&domain=pdf
mailto: dingjie@njupt.edu.cn
mailto: 1219054120@njupt.edu.cn
mailto: chengyy@njupt.edu.cn
mailto: 1218053626@njupt.edu.cn


computational complexity of the ECM is much smaller than
that of the electrochemical model and parameters can be
easily estimated by system identification methods. And the
ECM does not need a lot of data like what data-driven
models do [19–21].

A typical ECM usually utilizes resistor-capacitor (RC)
networks to describe the dynamics of LiBs [22, 23]. There
are mainly three steps in the ECM-based methods to
realize SOC online estimation [24]. Firstly, the relationship
between OCV and SOC is fitted by intermittent charge-
discharge test or low-current charge-discharge test. Then,
an appropriate equivalent circuit model is established with
highly estimated model parameters identified by the least
square algorithm or other identification algorithms. Finally,
the SOC is estimated online by effective methods, but
is not limited to proportional-integral-differential (PID)
observer [25], sliding mode observer [26], Kalman filter-
based algorithms [27–30], H-infinity filter (HIf) [31, 32]
and particle filter [33].

A suitable modeling and estimation algorithm with high
accuracy is expected in the model-based estimation. Wei
et al. [34] integrated recursive total least squares with
an SOC observer to reduce the noise impact in SOC
estimation of LiBs. Chen et al. [35] employed parameter
backtracking strategy in recursive least squares (RLS) to
identify the ECM parameters, and applied EKF to estimate
the SOC. Luo et al. [36] evaluated the estimation accuracy
of SOC by combining a fractional order ECM with cubature
Kalman filter. Lao et al. [37] presented a RLS with
varying forgetting factor and unscented Kalman filter to
identify parameters and estimate SOC online at different
temperatures. However, EKF assumes that the noise is white
gaussian which is not the case in the real working conditions
and will give rise to poor estimation robustness [38].

Since the accuracy of the extended Kalman filter relies
greatly on the system model and statistical characteristics
of the noises, this paper adopts HIf improved by discrete
sliding mode observer (DSMO) to estimate SOC. Sliding
mode observer is a kind of nonlinear observer with small
calculation amount and good robustness, which reduces the
influence of system parameter changes and disturbance to a
certain extent [39, 40].

In this article, the RLS method with a forgetting factor
(FFRLS) algorithm is utilized for online parameter identifi-
cation of constructed battery ECM. Further, a modified HIf
is established to estimate the SOC of LiBs, where DSMO is
used to improve the estimation process. Finally, the perfor-
mance is tested with data sets from Samsung 18650 LiBs at
the process of intermittent discharge and dynamic stress test
(DST) with different evaluation methods.

This paper is briefly organized as follows. In “ECM for
lithium-ion batteries ”, an ECM of the battery is constructed,
and the online model identification by FFRLS is presented.

In “Improved H-infinity filter for SOC estimation”, an
HIf incorporated with discrete sliding mode observer is
presented, and the estimation accuracy SOC is verified by
comparison to existing filters under DST in “Experiments
and analysis”. “Conclusions” summarizes the main work.

ECM for lithium-ion batteries

Lithium-ion battery model

A reliable battery model is primary to accurately estimate
the SOC [41]. The dual polarization model shown in Fig. 1
is one of the estimation models with high precision and low
computation, which involves three parts: (1) Uoc is the open
circuit voltage of the power battery; (2) Ohmic resistanceR0

refers to the resistance of power battery electrode materials,
electrolyte and other parts; (3) Parallel RC networks, Ra ,
Ca , Rb and Cb describe the dynamics of LiBs.

According to Kirchhoff’s voltage and current law, the
state space model of the dual polarization model can be
expressed as:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

U̇a = −Ua

RaCa

+ IL

Ca

,

U̇b = −Ub

RbCb

+ IL

Cb

,

UL = Uoc − Ua − Ub − ILR0,

(1)

where IL and UL are the current and terminal voltage of
the LiB, respectively, Uoc represents OCV. The relationship
between OCV and SOC can be fitted by high-order polyno-
mial

Uoc(s) =
m∑

i=0

βiSOCi (2)

where β0 to βm are the coefficients that can be determined
by OCV-SOC test, m is the order of the polynomial that
larger m means higher accuracy and robustness in general
[42], SOC represents state of charge:

SOC(t1) = SOC(t0) −
∫ t1
t0

ηi(t)dt

Qn

(3)

where SOC(t1) represents the SOC at time t1, η is the
Coulomb coefficient, Qn is capacity and i(t) is the current,
which is positive (negative) when it is discharging (charging).

Parameters estimation

The model in Eq. (1) can be rewritten as

UL(s)−Uoc(s)=−I (s)

(

R0+ Ra

1+RaCas
+ Rb

1+RbCbs

)

(4)
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Fig. 1 The second-order RC
ECM

Defining EL(s) = UL(s) − Uoc(s) gives

G(s) = EL(s)

IL(s)

= −R0s
2 + R0RaCa+R0RbCb

RaCaRbCb
s + R0+Ra+Rb

RaCaRbCb

s2 + RaCa+RbCb

RaCaRbCb
s + 1

RaCaRbCb

(5)

By a bilinear transformation s = 2
T

· 1−z−1

1+z−1 , where z is the
discretization operator and T is the system sampling period,
G(s) can be written as:

G(z−1) = EL(z−1)

IL(z−1)
= θ3 + θ4z

−1 + θ5z
−2

1 − θ1z−1 − θ2z−2
(6)

θi (i = 1, 2, · · · , 5) are the coefficients:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ1 = 8b − 2T 2

4b + 2cT + T 2
,

θ2 = 4cT

4b + 2cT + T 2
− 1,

θ3 = −4ab + 2eT + dT 2

4b + 2cT + T 2
,

θ4 = 8ab − 2dT 2

4b + 2cT + T 2
,

θ5 = −4ab − 2eT + dT 2

4b + 2cT + T 2
,

(7)

where a = R0, b = τaτb, c = τa + τb, d = R0 + Ra + Rb,
and e = R0(τa + τb) + Raτb + Rbτa , τa is RaCa , and τb is
RbCb.

Transforming Eq. (6) to obtain a discretized recursive
form of the equivalent circuit model,

E(k) = θ1E(k − 1) + θ2E(k − 2) + θ3I (k) + θ4I (k − 1)

+θ5I (k − 2)

= θT(k)ϕ(k) (8)

where θ(k) = [θ1 θ2 θ3 θ4 θ5]T and ϕ(k) = [E(k −
1) E(k−2) I (k) I (k−1) I (k−2)]T, Taking θ̂i (k) as

the estimates of true θi(k), i = 1, · · · , 5. In order to ensure
the uniqueness of the reconciliation, τa and τb are computed
from τaτb = b and τa+τb = c, where τa takes the maximum
value and τb takes the minimum.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a = θ̂4 − θ̂3 − θ̂5

1 + θ̂1 − θ̂2
,

b = T 2(1 + θ̂1 − θ̂2

4(1 − θ̂1 − θ̂2)
,

c = T (1 + θ̂2)

1 − θ̂1 − θ̂2
,

d = −θ̂3 − θ̂4 − θ̂5

1 − θ̂1 − θ̂2
,

e = T (θ̂5 − θ̂3)

1 − θ̂1 − θ̂2
,

(9)

τa = c + √
c2 − 4b

2
, τb = c − √

c2 − 4b

2
(10)

Thus the resistance and capacitance of the ECM can be
obtained:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

R0 = a,

Ra = [τa(d − a) + ac − e]/(τa − τb),

Rb = d − a − Ra,

Ca = τa/Ra,

Cb = τb/Rb,

(11)

Recursive least squares method can realize online iden-
tification, but as the amount of data increases during the
recursive process, too much old data will decrease the
convergence rate. To tackle this issue, FFRLS [43, 44] iden-
tification algorithm is employed which can identify the
dynamic model parameters online, and accelerate the esti-
mation speed by a forgetting factor. The main steps of
FFRLS are referred to Ref. [45].
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Improved H-infinity filter for SOC estimation

Dual polarizationmodel linearization

As shown in Fig. 1, the voltages of the two RC links under
Dual polarization model excitation are:
⎧
⎨

⎩

Ua,k = Ua,k−1e
− Δt

τa + [1 − e
− Δt

τa ]iL,kRa,

Ub,k = Ub,k−1e
− Δt

τb + [1 − e
− Δt

τb ]iL,kRb,

(12)

where Ua,k and Ub,k are voltages of the RC link a and b at
time k, respectively, iL,kRa and iL,kRb represents the final
steady-state voltages of RC link a and b. We have

UL = Uoc − Ua − Ub − IR0 (13)

By discretization of Eqs. (3), (12) and (13), the following
model can be derived:

⎛

⎝
Ua(k + 1)
Ub(k + 1)
SOC(k + 1)

⎞

⎠=
⎛

⎜
⎝

e
− T

τa 0 0

0 e
− T

τb 0
0 0 1

⎞

⎟
⎠

⎛

⎝
Ua(k)

Ub(k)

SOC(k)

⎞

⎠

+

⎛

⎜
⎜
⎝

Ra(11−e
− T

τa )

Rb(1−e
− T

τb )

− ηT
Qn

⎞

⎟
⎟
⎠ I (k)+ω(k)

(14)

UL(k) = ( −1 −1 ∂Uoc

∂SOC

)

⎛

⎝
Ua(k)

Ub(k)

SOC(k)

⎞

⎠

−R0I (k) + ν(k) (15)

where ω(k) and ν(k) are process noise and measurement
noise, respectively, and

Ak =
⎛

⎜
⎝

e
− T

τa 0 0

0 e
− T

τb 0
0 0 1

⎞

⎟
⎠

Bk =

⎛

⎜
⎜
⎝

Ra(1 − e
− T

τa )

Rb(1 − e
− T

τb )

− ηT
Qn

⎞

⎟
⎟
⎠

Ck = ( −1 −1 ∂Uoc

∂SOC

)
, Dk = −R0 (16)

Then, the model in Eqs. (14)–(15) can be simplified as
follows:
{

xk = Ak−1 · xk−1 + Bk−1 · uk−1 + ωk−1

yk = Ck · xk + Dk · uk + νk

(17)

where xk = [Ua(k), Ub(k), SOC(k)]T, uk−1 = I (k − 1),
yk = UL(k).

H-infinity filter

Because EKF can only estimate SOC under Gaussian
white noise with limited accuracy, H-infinite filter for
SOC estimation is proposed to overcome the problems
encountered by Kalman filter and obtain higher estimation
accuracy and better robustness. The standard linear time-
varying discrete system is as follows:
⎧
⎪⎨

⎪⎩

xk = Ak−1 · xk−1 + Bk−1 · uk−1 + ωk−1,

yk = Ck · xk + Dk · uk + νk,

zk = ιk · xk

(18)

where zk represents the vector to be estimated, ιk is a custom
matrix. The aim is to estimate the state at each working time,
in that case, ιk is the identity matrix which makes zk = xk .

The core idea of HIf is to seek a balance between the
disturbance and the estimator to achieve optimal estimation
witha cost function J defined as follows:

J =
∑N−1

k=0 ‖xk − x̂k‖2Sk

‖x0 − x̂0‖2
P −1

0
+ ∑N−1

k=0 (‖ωk‖2
Q−1

k

+ ‖νk‖2
R−1

k

)
(19)

where N represents total time of system sampling, xk

and x̂ represent true value and estimated value at time k,
respectively, P 0, Qk , Rk and Sk are symmetric positive
definite matrices,
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

N−1∑

k=0

‖ωk‖2
Q−1

k

< ∞

N−1∑

k=0

‖νk‖2
R−1

k

< ∞
(20)

By adding a performance boundary δ and rearranging the
Eq. (19), we have:

J1 = −1

δ
‖x0 − x̂0‖2

P −1
0

+
N−1∑

k=0

(‖xk − x̂k‖2Sk

−1

δ
(‖ωk‖2

Q−1
k

+ ‖νk‖2
R−1

k

)) < 0 (21)

The HIf algorithm is summarized as follows:

x̂k/k−1 = Ak−1x̂k−1/k−1 + Bk−1uk−1 (22)

P k/k−1 = Ak−1P k−1/k−1A
T
k−1 + Qk−1 (23)

H k = AkP k/k−1[I − δSkP k/k−1

+CT
k R−1

k CkP k/k−1]−1CT
k R−1

k (24)

x̂k/k = x̂k/k−1 + H k(yk − ŷk/k−1) (25)

P k/k = P k/k−1[I − δSkP k/k−1

+CT
k R−1

k CkP k/k−1]−1, (26)

where x̂k/k−1 and P k/k are updated state and updated
covariance matrix, respectively, H k is a filter which can
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adjust prior state estimation and Sk is a third-order matrix
which needs to be designed according to importance of each
state. The following condition must be satisfied to make
sure there’s a solution at each time:

P −1
k/k−1 − δSk + CT

k R−1
k Ck > 0. (27)

The HIf algorithm in Eqs. (22)–(26) can effectively
estimate SOC of time-varying nonlinear lithium-ion battery
system, and the estimation results are not affected by
initial values, however, higher accuracy is still required and
investigated. In this paper, a DSMO is integrated into the
H-infinity filter which guarantees the robustness and SOC
estimation accuracy.

DSMO-based H-Infinity Filter

A DSMO [46, 47] is added to the state equation in Eq. (17)
as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x̂k = Ak−1x̂k−1 + Bk−1uk−1 + L(yk−1 − ŷk−1)

+ Msat(
yk−1 − ŷk−1

φ
)

ŷk = Ckx̂k + Dkuk

(28)

sat(μ) =
{

μ, −1 < μ < 1

sgn(μ), μ < −1 or μ > 1
(29)

where L is the gain matrix of the observer, sat(·) is the
saturation function with gain M , φ as the boundary layer
and sgn(·) the symbolic function.

The error dynamics x̃ = x − x̂ can be described as
follows:

x̃k = [A − LC]x̃k−1 + ωk−1 + Lνk−1

−Msat(
Cx̃k−1 + νk−1

φ
) (30)

= [A − LC]x̃k−1 + Δk−1

−Msat(
Cx̃k−1 + νk−1

φ
) (31)

where Δk−1 = ωk−1 + Lνk−1.
The stability of HIf is improved by adding a DSMO

which provides a more accurate estimate for the estimated
state of the HIf. Equations (22)–(26) and (28) consist of
the improved HIf (IHIf) algorithm, and the Pseudo codes
are shown in Algorithm 1. The framework of IHIf with param-
eter identification algorithm FFRLS is shown in Fig. 2.
The stability analysis of the modified algorithm is shown in
Ref. [48].

Experiments and analysis

To verify the accuracy of the IHIf algorithm in SOC esti-
mation, two experiments of discharge test and DST are
conducted. DST is a simplified version of Federal Urban
Driving Schedule, which is one of the most commonly
operating conditions of the simulation vehicle. DST exper-
iments simulate the actual operation of electric vehicles
through load curves. The charge-discharge current of one
cycle is shown in Fig. 7(b) and the experiment cycle is
completed until the battery voltage drops to the cut-off volt-
age. Referring to Fig. 3, the battery experiment platform
is used to detect the Li(NiCoMn)O2 material LiBs cell at
room temperature (25 ◦C) which includes a host computer,
a multi-range battery tester (NEWARE CT-4008), Samsung
ICR18650 (2600 mAh) LiBs, and a battery clamp. The
details of the LiBs are shown in Table 1.

The structure and test flow chart of the battery test sys-
tem are shown in Fig. 4. Table 2 and Fig. 5 show the fitting
relationship between OCV and SOC, which can be identi-
fied by battery intermittent charging and discharging exper-
iments.

Consider the system stability analysis and computational
complexity, set the initial SOC is 1, δ is 104 and Sk is the
third-order identity matrix, respectively, φ =0.1, L = [2 ∗
10−5; -0.5; -0.5], M=[10−6; 0.001; 0.001], Q0 = 10−8I3,
and R = 0.1.

In the intermittent discharge experiment, the discharge
current is negative. Results under intermittent constant
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Fig. 2 Lithium-ion battery
identification and estimation
process

Fig. 3 The battery test platform

Table 1 Specification of
Samsung ICR18650 Capacity 2600mAh

Normal voltage 3.63V

Min/max voltage 2.75V/4.2V

Standard charge/rapid charge 1.3A/2.6A

Max charge current 2.6A

Max discharge current 5.2A

Discharge temperature − 20 ◦C/60 ◦C
Dimensions 18.00*65.00mm

5152 Ionics (2021) 27:5147–5157



Fig. 4 Flowchart of the battery tests

Table 2 The relation between OCV and SOC

SOC 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

OCV(Charge) 4.1905 3.9946 3.8950 3.8051 3.7379 3.6644 3.6328 3.6077 3.5773 3.4936 3.4058

OCV(Discharge) 4.1548 4.029 3.9211 3.8234 3.7419 3.6662 3.6272 3.5993 3.5667 3.4833 3.4000

0 0.2 0.4 0.6 0.8 1
SOC%

3.4

3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

O
C
V(

v)

Charge
Discharge

Fig. 5 The relation between OCV and SOC under charge and discharge test
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Fig. 6 The error of SOC
estimation under intermittent
discharge test

current condition are shown in Fig. 6, where the comparison
between the proposed method IHIf and other methods are
shown in Fig. 6(c) and (d) and the Mean Absolute Error
(MAE) and Root Mean Square Error (RMSE) of the EKF,
HIf and IHIf are in Table 3. From Fig. 6(c), (d) and Table 3,
the estimated SOC by IHIf is close to the true SOC and has
smaller error.

Consider the real operating environment of LiBs in
electric vehicles, the LiBs working condition of the test
data is sampled under DST conditions. It can be seen that
the terminal voltage and the state-of-charge curve fluctuate
with the multiple discharge and charging processes of
the incoming line current, and the stability is lower than
that under constant current conditions. The battery’s DST
current profile and voltage profile are illustrated in Fig. 7(a)
and (c). Figure 7(b) is a single cycle of DST. The error of

Table 3 Comparison on estimation error of SOC under discharge test

Algorithm EKF HIf IHIf

MAE 1.7955 1.5182 1.0031

RMSE 1.8213 1.5296 1.0257

the voltage estimation of the method is shown in Fig. 7(d).
The EKF, HIf and the IHIf algorithm are applied to SOC

estimation in Fig. 7(e) and (f). The MAE and RMSE of the
EKF, HIf and IHIf are listed in Table 4. Consider complex
charge and discharge condition in dynamic stress test, both
HIf and IHIf algorithm can estimate SOC under different
conditions; however, the latter has better robustness and
improves the estimation accuracy.

Although it is verified that the proposed algorithm
improves accuracy and stability, it does not bring extra com-
putations. A comparison of calculation cost was performed
on a 1.1GHz Intel Core i7-10710U processor and 16.0GB
memory. Since the execution process of the algorithm’s
Matlab script is affected by the state of the PC’s CPU
and memory, 50 experiments were carried out in the same
state of the computer to verify the time spent by the algo-
rithm. Table 5 shows the average computation times under
different methods.

From Table 5, the computational time of IHIf increases
by 14.4% and 2.8% under discharge test compared to that of
EKF and HIf and increases by 7.6% and 0.99% under DST,
which means that the IHIf has improved accuracy without
bringing in calculation burden.

5154 Ionics (2021) 27:5147–5157



Fig. 7 The SOC estimation
under DST

Table 4 Comparison on estimation error of SOC under DST

Algorithm EKF HIf IHIf

MAE 2.0546 1.6036 0.8615

RMSE 2.1282 1.6451 0.8856

Table 5 Computation time under different methods

Algorithm EKF HIf IHIf

Discharge test (s) 0.4374 0.4862 0.5002

DST (s) 0.9361 0.9973 1.0072

5155Ionics (2021) 27:5147–5157



Conclusions

In this paper, an H-infinite filtering combined with DSMO
is proposed to estimate SOC. The proposed method aims
to improve the robustness and accuracy of the estimation.
Discharge test and DST results prove that the IHIf algorithm
can accurately estimate SOC, and the accuracy is better than
EKF and HIf. To better estimate SOC, model selection and
algorithm improvement are the focus of future research.

Funding This work was supported by Natural Science Foundation of
Jangsu Province and the Natural Science Foundation of NJUPT under
Grant NY220217.

References

1. Zhang C, Yang F, Ke XY, Liu ZF, Yuan C (2019) Predictive
modeling of energy consumption and greenhouse gas emissions
from autonomous electric vehicle operations. Appl Energy
254:113597

2. Saha P, Dey S, Khanra M (2020) Modeling and State-of-Charge
Estimation of Supercapacitor Considering Leakage Effect. IEEE
Trans on Ind Electron 67:350–357

3. Berecibar M, Gandiaga I, Villarreal I, Omar N, Mierlo JV,
Bossche PVD (2016) Critical review of state of health estimation
methods of Li-ion batteries for real applications. Renew Sustain
Energy Rev 56:572–587

4. Hannan MA, Lipu MSH, Hussain A, Mohamed A (2017) A
review of lithium-ion battery state of charge estimation and
management system in electric vehicle applications: challenges
and recommendations. Renew Sustain Energy Rev 78:834–
854

5. Wang YB, Fang HZ, Zhou L, Wada T (2017) Revisiting the
state-of-charge estimation for lithium-ion batteries: A methodical
investigation of the extended Kalman filter approach. IEEE Contr
Syst 37:73–96

6. Li XY, Wang ZP, Zhang L (2019) Co-estimation of capacity
and state-of-charge for lithium-ion batteries in electric vehicles.
Energy 174:33–44

7. Xiong R, Tian JP, Mu H, Wang C (2017) A systematic model-
based degradation behavior recognition and health monitoring
method for lithium-ion batteries. Appl Energy 207:372–383

8. Zheng FD, Xing YJ, Jiang JC, Sun BX, Kim J, Pecht M (2016)
Influence of different open circuit voltage tests on state of charge
online estimation for lithium-ion batteries. Appl Energy 183:513–
525

9. Hu XS, Jiang HF, Feng F, Liu B (2020) An enhanced multi-
state estimation hierarchy for advanced lithium-ion battery
management. Appl Energy 257:114019

10. Ghalkhani M, Bahiraei F, Nazi GA, Saif M (2017) Electro-
chemicaleThermal model of pouch-type lithium-ion batteries.
Electrochim Acta 247:569–587

11. Wang QK, He YJ, Shen JN, Ma ZF, Zhong GB (2017) A unified
modeling framework for lithium-ion batteries: an artificial neural
network based thermal coupled equivalent circuit model approach.
Energy 138:118–132

12. Jiao M, Wang DQ, Qiu LJ (2020) GRU-RNN based momentum
optimized algorithm for SOC estimation. J Power Sources
459:228051

13. Chemali E, Kollmeyer PJ, Preindl M, Ahmed R, Emadi A (2018)
Long short-term memory networks for accurate state-of-charge

estimation of Li-ion batteries. IEEE Trans Ind Electron 65:6730–
6739

14. Sheng H, Xiao J (2015) Electric vehicle state of charge estimation:
nonlinear correlation and fuzzy support vector machine. J Power
Sources 281:131–137

15. Xia B, Cui D, Sun Z, Lao Z, Zhang R, Wang W (2018) State
of charge estimation of lithium-ion batteries using optimized
Levenberg-Marquardt wavelet neural network. Energy 153:694–
705

16. Moura S, Chaturvedi N, Krstic M (2012) PDE estimation
techniques for advanced battery management systems; Part I: SOC
estimation. Am Control Conf 2012:559–565

17. Klein R, Chaturvedi N, Christensen J, Ahmed J, Findeisen R,
Kojic A (2013) Electrochemical model based observer design for
a lithiumion battery. IEEE Trans Contr Syst Technol 21:289–301

18. Tran N, Vilathgamuwa D, Li Y, Farrell TW, Choi SS, Teague J
(2017) State of charge estimation of lithium ion batteries using an
extended single particle model and sigma-point Kalman1 filter. In:
IEEE southern power electronics conference, vol 2017, pp 624–
629

19. Yang JF, HuangW, Xia B,Mi C (2019) The improved open-circuit
voltage characterization test using active polarization voltage
reduction method. Appl Energy 237:682–694

20. Shen YQ (2018) A chaos genetic algorithm based extended
Kalman filter for the available capacity evaluation of lithium-ion
batteries. Electrochim Acta 264:400–409

21. Zhang LJ, Peng H, Ning ZS, Mu ZQ, Sun CY (2017) Comparative
research on RC equivalent circuit models for lithium-ion batteries
of electric vehicles. Appl Sci 7:1002

22. Dai HF, Wei XZ, Sun ZC, Wang JY, Gu WJ (2012) Online cell
SOC estimation of Li-ion battery packs using a dual time-scale
Kalman filtering for EV applications. Appl Energy 95:227–237

23. He HW, Qin HZ, Sun XK, Shui YP (2013) Comparison study
on the battery SoC estimation with EKF and UKF algorithms.
Energies 6:5088–5100

24. Ramadan H, Becherif M, Claude F (2017) Extended Kalman filter
for accurate state of charge estimation of lithium-based batteries:
a comparative analysis. Int J Hydrogen Energy 42:29033–29046

25. Xu J, Mi CC, Cao BG, Deng JJ, Chen ZZ, Li S (2014) The state of
charge estimation of lithium-ion batteries based on a proportional-
integral observer. IEEE Trans Veh Technol 63:1614–1621

26. Chen XP, Shen WX, Cao ZW, Kapoor A (2014) A novel approach
for state of charge estimation based on adaptive switching gain
sliding mode observer in electric vehicles. J Power Sources
2469:667–678

27. Chen S, Fu YH,Mi C (2013) State of charge estimation of lithium-
ion batteries in electric drive vehicles using extended Kalman
filtering. IEEE Trans Veh Technol 62:1020–1030

28. Wang YJ, Zhang CB, Chen ZH (2015) A method for state-
of-charge estimation of Li-ion batteries based on multi-model
switching strategy. Appl Energy 137:427–434

29. Perez G, Garmendia M, Reynaud JF, Crego J, Viscarret U (2015)
Enhanced closed loop State of Charge estimator for lithium-
ion batteries based on Extended Kalman Filter. Appl Energy
155:834–845

30. Li WQ, Yang Y, Wang DQ, Yin SQ (2020) The multi-innovation
extended Kalman filter algorithm for battery SOC estimation.
Ionics 26:6145–6156

31. Zhu Q, Li L, Hu XS, Xiong N, Hu G (2017) H∞-based nonlinear
observer design for state of charge estimation of lithium-ion
battery with polynomial parameters. IEEE Trans Veh Technol
66:10853–10865

32. Liu Z, Dang XJ (2018) A new method for State of Charge and
capacity estimation of lithium-ion battery based on dual strong
tracking adaptive H-infinity filter. Math Probl Eng :5218205

5156 Ionics (2021) 27:5147–5157



33. Farmann A, Waag W, Marongiu A (2015) Critical review of on-
board capacity estimation techniques for lithium-ion batteries in
electric and hybrid electric vehicles. J Power Sources 281:114–
130

34. Z Wei, C Zou, F Leng, BH Soong, KJ Tseng (2018) Online model
identification and state-ofcharge estimate for lithium-ion battery
with a recursive total least squares-based observer. IEEE Trans Ind
Electron 65:1336–1346

35. Chen XK, Lei H, Xiong R, Shen WX, Yang R (2019) A novel
approach to reconstruct open circuit voltage for state of charge
estimation of lithium ion batteries in electric vehicles. Appl
Energy 255:113758

36. Luo JY, Peng JK, HE HW (2019) Lithium-ion battery SOC
estimation study based on Cubature Kalman filter. Energy
Procedia 158:3421–3426

37. Lao ZZ, Xia BZ, WangW, SunW, Lai Y, Wang M (2018) A novel
method for lithium-ion battery online parameter identification
based on variable forgetting factor recursive least squares.
Energies 11:1358

38. Claude F, Becherif M, Ramadan HS (2017) Experimental
validation for Li-ion battery modeling using Extended Kalman
Filters. Int J Hydrogen Energy 42:25509–25517

39. Feng L, Ding J, Han YY (2020) Improved sliding mode based
EKF for the SOC estimation of lithium-ion batteries. Ionics
26:2875–2882

40. Chen QY, Jiang JC, Ruan HJ (2017) Simply designed and
universal sliding mode observer for the SOC estimation of lithium-
ion batteries. IET Power Electron 10:697–705

41. Hu XS, Li SB, Peng H (2012) A comparative study of equivalent
circuit models for Li-ion batteries. J Power Sources 198:359–367

42. Zhu R, Duan B, Zhang J, Zhang Q, Zhang Q (2020) Co-estimation
of model parameters and state-of-charge for lithium-ion batteries
with recursive restricted total least squares and unscented Kalman
filter. Appl Energy 277:115494

43. Constantin P, Jacob B, Silviu C (2008) A robust variable forgetting
factor recursive least-squares algorithm for system identification.
IEEE Signal Process Lett 15:597–600

44. Li XL, Zhou LC, Sheng J (2014) Recursive least squares param-
eter estimation algorithm for dual-rate sampled-data nonlinear
systems. Nonlinear Dyn 76:1327–1334

45. Sun F, Xiong R (2015) A novel dual-scale cell state-of-charge
estimation approach for series-connected battery pack used in
electric vehicles. J Power Sources 274:582–594

46. Thein MWL (2003) A discrete time variable structure observer
for uncertain systems with measurement noise. In: Proc. IEEE
conference on decision and control, vol 2003, pp 2582–2587

47. Harikumar K, Bera T, Bardhan R (2019) Discrete-time sliding
mode observer for the state estimation of a manoeuvring target. J
Syst Contr Eng 233:095965181982648

48. Thein MWL (2002) A discrete time variable structure observer
with overlapping boundary layers. In: Proc. Amer Control Conf,
pp 2633–2638

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

5157Ionics (2021) 27:5147–5157


	Sliding mode-based H-infinity filter for SOC estimation of lithium-ion batteries
	Abstract
	Introduction
	ECM for lithium-ion batteries
	Lithium-ion battery model
	Parameters estimation

	Improved H-infinity filter for SOC estimation
	Dual polarization model linearization
	H-infinity filter
	 DSMO-based H-Infinity Filter

	Experiments and analysis
	Conclusions
	References


