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Fabrication of hollow TiO2 nanospheres for high-capacity
and long-life lithium storage
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Abstract
Titanium dioxide (TiO2) is of great interest as anode material for lithium-ion batteries (LIBs) because of its safety, structure
stability, and low cost. However, the limitations of low conductivity and small theoretical capacity prevent its further applica-
tions. Herein, TiO2 nanospheres with a hollow structure (H-TiO2) were successfully synthesized via a hard-template method. The
resultant material used as LIBs anode with superior lithium storage properties in terms of high initial capacity (∼289 mA h g−1 at
0.1 A g−1), good rate capability (∼101 mA h g−1 at 2 A g−1), and excellent cycling stability (∼196mA h g−1 was retained over 300
cycles at 0.1 A g−1). The improved performances are attributed to the large specific area (~225 m2 g−1) and abundant mesoporous
of the hollow structure, which can not only promote the diffusion of Li+ and e− but also achieve an increase in the contact area
between electrodes and electrolyte.
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Introduction

Various energy storage devices have been developed to solve
the growing energy problem, such as supercapacitors, solar
cells, and sodium-ion batteries. Among them, lithium-ion bat-
teries are dominating the market due to their high-energy den-
sity, high cycle life, and eco-friendliness [1–5]. Titanium-
based materials are regarded as promising anode materials in
LIBs, among which titanium dioxide has drawn intensive in-
terest because of its low cost, non-toxicity, and small volume
change (< 4%) [6–8]. More importantly, titanium dioxide is
highly safe as anode for LIBs owning to is electrochemically
stable during Li+ insertion/extraction processes and can avoid
the occurrence of lithium electroplating [9, 10]. Nevertheless,
the practical application of TiO2 in LIBs has been severely
hindered by poor electronic conductivity and low theoretical
capacity [11, 12].

Fortunately, it has been demonstrated by many previous
studies that nanostructured materials possess better lithium
insertion/extraction kinetics and higher lithium storage capac-
ity, improving the electrochemical performance by reducing
the particle size of the electrode materials, has become a re-
search hotspot [13–15]. In addition, constructing the hollow
structure TiO2 materials has also been proposed to enhance
the lithium storage performance. As is known, hollow struc-
tures exhibit large specific area and abundant pores, which can
efficiently enhance the electrochemical properties of electrode
including specific capacity, rate capability, and cycling stabil-
ity [16, 17]. For example, Tian et al. [18] designed the TiO2

hollow nanowires with the diameter of 70 nm via chemical
method followed by the calcination in a muffle furnace. The
material shows the discharge capacity of 180 mA h g−1 at the
current density of 0.2 C after 50 cycles. Gao et al. [19] pre-
pared TiO2 microboxes by template-free method, and the ob-
tained material exhibits rate performance with the discharge
capacity of 150 mA h g−1 at the current density of 2 C.

In this work, TiO2 hollow nanospheres were successfully
fabricated by a hard-template method. Compared with the
solid TiO2 nanoparticles, it is suggested that the as-prepared
H-TiO2 has unique advantages. (1) The large specific area of
the H-TiO2 can not only provide more active sites for lithium
storage but also keep an increased contact area between the
electrodes and the electrolyte. (2) The hollow structure with
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abundant mesoporous of the H-TiO2 can efficiently promote
transport rate of Li+ and e− in the electrodes. As expected, the
HNS TiO2 used as anode materials for LIBs exhibit superior
rate ability with a capacity of 101mAh g−1 at a current density
of 2 A g−1 and an admirable discharge capacity of 196 mA h
g−1 at a current density of 0.1 A g−1 after 300 cycles.

Experimental sections

Synthesis of H-TiO2

A total of 5.8 ml of 28% ammonia solution and 2 ml of de-
ionized water were added into 60 ml of ethanol under mag-
netic stirring, and then 4 ml of tetraethyl orthosilicate (TEOS)
dispersed in 20 ml of ethanol was mixed into this solution.
After stirring for 5 h, the white precipitate (SiO2) was obtained
by centrifugation andwashed three times with deionizedwater
and ethanol, respectively. Then, the collected precipitate was
redispersed in 35 ml of ethanol, followed by the addition 0.1 g
of hydroxypropyl cellulose (HPC) and 0.5 ml deionized water.
Next, 1.2 ml of titanium butoxide (TBOT) dissolved in 15 ml
of ethanol was injected into above solution and reacted at 80
°C for 2.5 h. The resulting precipitate (TiO2@SiO2) was col-
lected by centrifugation and washed three times with deion-
ized water and ethanol, respectively. After that, the precipitate
was calcined under argon gas atmosphere, and then the cal-
cined powder was added into 15 ml of 0.1 M NaOH solution
stirring for 3 h. Finally, the H-TiO2 were obtained by centri-
fugation and washed three times with deionized water and
ethanol, respectively.

Synthesis of TiO2 nanoparticles

For comparison, TiO2 nanoparticles (N-TiO2) were also pre-
pared; 2 ml TBOT was mixed with 60 ml acetone stirring for
0.5 h at room temperature and then transferred to a PTFE-
lined reaction kettle and reacted at 200 °C for 2 h. Next, the
white precipitate (TiO2) was obtained by centrifugation and
washed three times with deionized water and acetone, respec-
tively, followed by dried at 60 °C for 12 h and calcined at 600
°C for 3 h.

Materials characterization

The morphology and microstructural were analyzed with the
scanning electron microscopy (SEM, Hitachi S4800) and
transmission electron microscope (TEM, Tecnai-G2-F30 FEI
with image corrector). The composition and crystal structure
were characterized by X-ray diffraction (XRD, Rigaku, D/
max-Rbusing Cu Ka radiation) measurement. The N2

adsorption/desorption isotherms were measured with
Micromeritics ASAP 2010 instrument.

Electrochemical measurements

Electrochemical tests were performed using CR2032-type
coin cells. The working electrodes were prepared by mixing
the active materials, acetylene black, and polyvinylidene fluo-
ride (PVDF) with a weight ratio of 7:2:1 in N-methyl-2-
pyrrolidone (NMP) to form a slurry. The slurry was uniformly
spread on a copper foil. Pure lithium foil was used as the
counter electrode. Celgard2400 was used as separator. A
1 M solution of LiPF6 dissolved in ethylene carbonate and
dimethyl carbonate (1:1 in volume ratio) was used as the elec-
trolyte. The lithium half-cells were assembled in an argon-
filled glovebox with both water and oxygen contents below
0.1 ppm. Cyclic voltammetry (CV) data were recorded using a
PGSTAT302N electrochemical workstation. Galvanostatic
discharge-charge curves were collected on a Neware battery
test system within a voltage range of 1–3 V (vs Li+/Li).
Electrochemical impedance spectra (EIS) were also carried
out on a PGSTAT302N electrochemical workstation in the
frequency range of 0.1 Hz–100 kHz.

Results and discussion

A brief schematic diagram of the preparation process of H-
TiO2 is shown in Fig. 1a. The as-prepared uniformly sized
SiO2 was used as template to synthesize the TiO2@SiO2 pre-
cursor, which was then etched with NaOH solution to remove
the SiO2, resulting in H-TiO2, and the detailed growth mech-
anism of H-TiO2 as shown in supplementary information (SI).
Fig. 2b shows the SEM image of the H-TiO2. It can be clearly
seen that these samples exhibit spherical structure with a uni-
form diameter of ∼200 nm. Interestingly, several broken
spheres can be observed, which reveals the hollow structure
of the obtained TiO2 materials. Their hollow interiors are fur-
ther elucidated by TEM. Fig. 3c reveals a clear inner cavity by
obvious comparison of the hollow inner cavity and the hollow
outer cavity, which indicating that TiO2@SiO2 precursor were
completely converted into TiO2 hollow spherical structure,
and the thickness of the H-TiO2 shell is about 15 nm. The
HRTEM image of the H-TiO2 is also provided in Fig. 3d, a
clear lattice with an interlayer spacing of 0.35 nm can be
observed, which coinciding well with the (101) crystal planes
of anatase TiO2. The phase purity and crystalline structure of
the H-TiO2 were tested by X-ray diffraction (XRD) measure-
ment, and the corresponding XRD pattern as shown in Fig. 2c.
As can be seen, all the intensive diffraction peaks were well
assigned to anatase TiO2 (JCPDS no.21-1272) [20, 21]. And
no peaks were observed for the other phases, indicating their
high purity. Nitrogen adsorption-desorption measurements
were used to investigate the specific surface area and pore size
distribution of the H-TiO2. The N2 adsorption/desorption iso-
therms in Fig. 2d depict typical Type IV curves,
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Fig. 2 SEM images of a N-TiO2, b H-TiO2; c XRD patterns of H-TiO2 and N-TiO2; d nitrogen adsorption–desorption isotherms of H-TiO2, the inset
shows the pore size distribution

Fig. 1 a Schematic illustrations of synthesized process of H-TiO2; SEM images of b SiO2, c TiO2@SiO2, and d H-TiO2
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corresponding to the characteristic isotherms of mesoporous
materials [11, 22]. The Brunner-Emmett-Teller (BET) specific
surface area of the H-TiO2 yields to be ∼225 m2 g−1. The pore
size distribution curve of the H-TiO2 (inset of Fig. 2d) con-
firms the existence of mesopores with size distribution center-
ing at ∼7.8 nm. It is worth noting that mesopores can further
facilitate Li+ diffusion in the electrodes and shorten the Li+

and e− transport length [23].
The H-TiO2 were evaluated as anode materials for lithium

storage properties in LIBs. The electrochemical properties of
the H-TiO2 were investigated by cyclic voltammetry (CV) in
the voltage range of 1–3 V vs Li+/Li. Fig. 4a shows the CV
curves of the H-TiO2 for the first three cycles at scan rate of
0.1 mV s−1. In the first cycle, a couple of current peaks located
at 1.68 V and 2.05 V can be observed, corresponding to the

insertion and extraction of lithium ions, respectively [24, 25].
In the second cycle, the reduction peak shifted to a higher
potential of 1.7 V and the peak current increased slightly,
indicating an activation process. Besides, both the reduction
and oxidation peaks of the third cycle almost overlap with the
second cycle, which implies that the H-TiO2 exhibits good
reversibility of electrochemical reactions.

The charge and discharge curves of the H-TiO2 at a current
density of 0.1 A g−1 are shown in Fig. 3b. The first discharge
and charge capacities are 289 and 225 mA h g−1, respectively,
and the initial coulombic efficiency (CE) was 77.9%; the loss
of capacity is caused by the formation of the solid electrolyte
interface (SEI) [26, 27]. And the subsequent charge and dis-
charge curves coincide very well, suggesting the excellent
electrochemical reversibility of the H-TiO2. In addition, the

Fig. 3 TEM images of a SiO2, b TiO2@SiO2, and c H-TiO2; d HRTEM image of H-TiO2
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curves exhibit two obvious voltage plateaus, 1.7 V for lithium
insertion and 2.1 V for lithium extraction, which is in good
agreement with the CV curves. Fig. 3c shows the cycling
performance of H-TiO2 and N-TiO2 at a current rate of 0.1
A g−1. It is obviously observed that the H-TiO2 exhibits higher
discharge capacity of 202 mA h g−1, and there is no rapid
capacity decay during the first 15 cycles, which suggesting
that H-TiO2 has a superior cycling performance than N-
TiO2. The cycling performance of the H-TiO2 electrode is also
superior to that of many similar TiO2-based electrodes, as
shown in Table 1. H-TiO2 and N-TiO2 were also investigated

for rate capability (Fig. 4d). As expected, the H-TiO2 shows
higher discharge capacities of 198, 180, 158, and 135 mA h
g−1 at current rates of 0.1, 0.2, 0.5, and 1 A g−1, respectively.
Even at a very high current rate of 2 A g−1, a capacity of
98 mA h g−1 can be still achieved. Compared with N-TiO2,
a discharge capacity of 197 mA h g−1 can be recovered when
the current rate reduces back to 0.1 A g−1. This demonstrates
the superior rate performance and structure stability of H-
TiO2, which could be ascribed to that the hollow structure
can shorten the diffusion path for Li+ and ensure increased
contact area between electrodes and electrolyte.

Fig. 4 a CV curves of the H-TiO2 at a scan rate of 0.1 mV s−1; b charge and discharge profiles of the H-TiO2 for the first three cycles at 0.1 A g−1; c
cycling performance of H-TiO2 and N-TiO2 at 0.1 A g−1; d rate performance of H-TiO2 and N-TiO2 at different current rates from 0.1 to 2 A g−1

Table 1 Performance comparison
of related TiO2-based materials Materials Specific capacity (mA h g−1) Cycles Current density (A g−1) Reference

TiO2 nanowires 153 50 0.34 [18]

TiO2 microboxes 187 300 0.17 [19]

TiO2 nanofibers 174 50 0.1 [28]

TiO2 microspheres 132 200 0.34 [29]

N-TiO2 123 300 0.1 This work

H-TiO2 196 300 0.1 This work
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The electrochemical impedance spectroscopy was per-
formed to study the resistance property of H-TiO2 and N-
TiO2. The Nyquist plots display a semicircle in high to medi-
um frequency and a slope line in the low frequency, attributing
to charge transfer resistances (Rct) and Li-ion diffusion resis-
tances, as shown in Fig. 5 [30, 31]. The corresponding Rct
values were obtained by measuring the diameter of semicircle
that H-TiO2 and N-TiO2 before and after cycling 100th show
the values of 78Ω/97Ω and 83Ω/112Ω, respectively. The H-
TiO2 presents lower Rct value than N-TiO2 before and after
cycling, indicating better Li-ion transfer ability of H-TiO2.
And the Rct values of H-TiO2 only slightly increase, demon-
strating a stable charge/discharge reaction [32, 33]. The basis
of lithium storage from the Li-ion diffusion of the two elec-
trodes was investigated by CV measurements at various scan
rates ranging from 0.1 to 5 mV s−1 (Fig. 6a and b). The linear
relationship between peak current density (Ip) and the square
root of scan rates is correlated to the corresponding Li-ion
diffusion. As can be observed from Fig. 6c, the H-TiO2 elec-
trode exhibits larger slope than N-TiO2 electrode, indicating
better Li-ion diffusion in the H-TiO2 electrode. In addition,
based on the classical Randles-Sevcik equation, the corre-
sponding Li-ion diffusion coefficient can be calculated [34]:

Ip ¼ 2:6� 105n1:5ADLi
0:5v0:5C

where Ip is the peak current density (A g−1), n is the number of
reaction electrons in LIBs, A is the electrode area (cm−2), v is
the scan rates (V s−1), DLi is the Li-ion diffusion coefficient
(cm2 s−1), and C is the Li-ion concentration (mol ml−1). The
corresponding Li-ion diffusion coefficients of H-TiO2 elec-
trode are larger than N-TiO2 electrode, which further suggest-
ing the superior Li-ion diffusion property in the H-TiO2 elec-
trode. This may be attributed to the hollow structure with
abundant mesoporous, which can not only provide more chan-
nels for Li-ion diffusion but also shorten the transport path-
ways for Li-ion.

Conclusion

In summary, the TiO2 hollow nanospheres have been effi-
ciently prepared via a hard-template method. Owning to large
specific area and rich mesoporous of the hollow spherical
structure, the as-obtained material used as anode for LIBs
exhibits high reversible capacity, superior rate capability,

Fig. 5 Nyquist plot of H-TiO2 and N-TiO2 a before and b after 100th cycles (inset is the equivalent circuit model)

Fig. 6 CV curves of a H-TiO2 and b N-TiO2 at different scan rates; c the cathodic reaction versus the square root of scan rates
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and excellent long-term cycling stability. The excellent elec-
trochemical performancemakes the H-TiO2 an ideal candidate
for high-energy anode materials in LIBs.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s11581-021-04098-7.
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