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Abstract
For a lithium battery, a second-order equivalent circuit model is adopted by studying the battery characteristic, and a state space
equation with state of charge (SOC) being one state is constructed. To promote the SOC estimation precision of the extended
Kalman filter (EKF) method for a lithium battery, this paper explores a multi-innovation extended Kalman filter (MI-EKF)
algorithm to estimate the battery SOC by expanding a single innovation at current instant to multi-innovations containing
information from current and previous instants. The aim is to increase the amount of information, and to get the more accurate
estimated SOC. In addition, based on the battery difference equation, a stochastic gradient algorithm with a forgetting factor
(FFSG) is used to identify the battery parameters. Finally, a lithium battery test bench is set up to sample charge-discharge data
and to implement MATLAB simulation experiment; the experiment results confirm that the MI-EKF algorithm can accurately
and effectively estimate the battery SOC.
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Introduction

The research for battery performance reflects in several as-
pects [1–4]. Among them, the SOC estimation is one of re-
search hotspots due to its accurate prediction deciding the
effective use of battery and playing a vital role in the battery
management system.

The SOC estimation methods

The general classification for SOC estimation

Due to SOC being unable directly measured, it can only be
computed by using the battery operating voltage and current
[5–8], etc. At present, well-known methods for SOC estima-
tion include the following:

& The traditional SOC estimation methods contain the
ampere-hour (AH) integration method [9] and the OCV
method [10–12].

& The data-driven model-based methods [13–19] mainly in-
clude the fuzzy logic method [13, 14], the neural network
model-based method [15–17], the support vector machine
[18], and the difference equation model [19], mostly do
not have a physical significance.

& The mechanism model-based SOC estimation methods
[20, 21] contain the electrochemical model methods [22,
23] and the equivalent circuit model (ECM) methods
[24–26], etc.

The comparison of SOC estimation methods

The traditional SOC estimation methods

The traditional methods are simple in theory and easy to im-
plement. However, the AH integration method is difficult to
precisely get the initial SOC, and easy to cause cumulative
errors. The OCV method must be in the case of a broken
circuit, after the battery is rest for a period of time; this re-
quirement makes online measurement impossible.
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The data-driven model-based methods

The neural network and fuzzy model are twomain branches of
artificial intelligence [13–17] that belong to the data-driven
model-based methods. Their corresponding SOC estimation
methods do not rely on accurate battery models, but infer the
characteristics or mechanism of the battery by analyzing the
sampled input-output data of the battery according to the
black-box principle. The disadvantage is that they do not give
a clear physical meaning.

The mechanism model-based methods

The mechanism model-based methods continuously catch at-
tentions in the lithium battery modeling field due to the defi-
nite physical meaning of the battery model. The electro-
chemical model is accurate, but the parameters in the model
are fairly difficult to obtain.

Among them, the equivalent circuit model (ECM) method
is more popular due to its simple and definite physical mean-
ing, and easy to be expressed into a state space equation with
SOC being a state [24–26]. In all the SOC estimationmethods,
the ECM method takes a compromise between model preci-
sion and complexity; thus it is the most appropriate SOC on-
line estimation technique.

The ECM-based Kalman filter (KF) method

The Kalman filter is the mainstream mean to solve state esti-
mation with SOC being one state in a state space equation
formed from the ECM. The basic KF method is a popular
linear state identification technique which recursively esti-
mates the state of a linear state space equation by seeking
the minimum of the mean square error between the practical
state and the optimal estimated state [27, 28]. Because the
process and measurement models of the lithium battery are
nonlinear functions, the linear KF does not suitable; the ex-
tension of a linear KF algorithm becomes necessary.

The extended Kalman filter (EKF) algorithm

The EKF is a well-known nonlinear version of the linear KF
algorithm [29]; it adopts the linearization method of the non-
linear function which takes the Taylor expansion to approxi-
mate the battery nonlinear function into a linear function
[30–32], so as to use the KF algorithm to estimate the battery
SOC [33]. The limitation is that the error caused by taking the
first-order in the Taylor expansion would accumulate with the
recursion increasing. The drawback of ignoring higher order
terms in Taylor expansion leads to the search of a novel EKF
technique. The adaptive EKF algorithm adaptively updates
the covariance matrices in Kalman filter estimation method

[34]. In addition, the robust EKF could effectively promote
the SOC estimation precision caused by the error from incor-
rect initial SOC values [35].

The unscented Kalman filter (UKF) algorithm

Different from the EKF algorithm, the UKF adopts the un-
scented transformation (UT) for linearization, introduces sig-
ma points to catch the state posterior mean and covariance
without using Taylor expansion for the linearization of the
nonlinear battery equation [36–39], and achieves the precision
of second-order Taylor series expansion. Huang et al. evalu-
ated the performance between the EKF and the UKF algo-
rithms [29] to verify the high precision and fast convergence
speed of the UKF algorithm. He et al. used the self-adjust
UKF to compute the SOC with high precision [40]. But the
EKF and UKF algorithms exist problems of dimensionality
and divergence. To adapt the high-dimensional state estima-
tion, Arasaratnam et al. presented the cubature Kalman filter
technique in 2010 [41].

The cubature Kalman filter (CKF) algorithm

By adopting the radial-spherical cubature rule, the CKF algo-
rithm in SOC estimation is more stable and accurate than the
EKF and UKF algorithms [42–44]. In addition, the computa-
tion of the CKF is more efficient than that of the UKF, espe-
cially for high-dimensional system [45]. The comparison
among the CKF, the EKF, and the UKF algorithms is carried
out in Ref. [46], with the highest accuracy result of the CKF.
To promote the CKF performance, Xia et al. explored an
adaptive CKF (ACKF) algorithm to estimate SOC [47], com-
pared it with the CKF and EKF algorithms, and verified that
the ACKF is the most accurate and robust against measure-
ment error. But the ACKF needs more computation time than
that of the CKF and the EKF.

The dual extended Kalman filter (DEKF) algorithm

The thought of the DEKF is to simultaneously estimate the
battery SOC and the equation parameters through two filters
[48, 49]. By using a state filter and a parameter filter, the
DEKF performs online estimation of the equation states and
parameters, so as to overcome the influence of measurement
and system noises and to provide superior SOC estimation
results [50, 51].

The Kalman filtering method introduces the truncation er-
ror in the local linearization process for nonlinear battery sys-
tems which causes an increase in the error between the esti-
mated value and the real value. In a strong nonlinear system,
the filteringmay even cause a divergence phenomenon, which
seriously affects the SOC estimation accuracy.Most improved
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Kalman filter algorithms promote SOC estimation accuracy to
some extent, but still need further improvements.

The estimation influence under noise
corruption

The effect of noises on battery parameter identification is
much more dominant due to noises often causing the biased
battery parameter estimation in some cases. Wei et al. inves-
tigated a recursive total least squares (RTLS)-based observer
to effectively attenuate the model identification bias caused by
noise destruction, and studied an adaptive forgetting RTLS to
compensate the influence of noise and reduce the identifica-
tion deviation of model parameters [52, 53]. Li et al. explored
a bias compensation RLS and EKF co-estimation algorithm
for battery SOC estimation under noise corrupted measure-
ments [54].

The Kalman filter type algorithms usually are unbiased. As
described in [55], the smaller the value of noise variances, the
smaller the estimation error will be. Zhang et al. adopted the
cubature Kalman (CKF) filter algorithm to generate the pro-
posal distribution of the particle filter algorithm order, and
used the state and measurement residuals to adaptively adjust
the weight of sigma points so as to reduce the influence of
noise on the CKF algorithm [56]. He et al. adopted an adaptive
extended Kalman filter algorithm to estimate battery SOC by
continuously using the observation data to estimate and mod-
ify the filter under unknown system noise and the observation
noise [57]. Dong et al. studied an adaptive anti-interference
extended Kalman filter by using an innovation-based adaptive
estimator [32].

The multi-innovation method

The multi-innovation theory is originated in 2007 [58], and is
used in gradient identification of a linear regression model.
The thought of the multi-innovation theory is to extend a
scalar innovation at current instant to an innovation vector
with current and previous innovations, so as to enhance the
error information and promote the estimation accuracy. This
paper investigates the multi-innovation EKF (MI-EKF) algo-
rithm [58–61] to improve the SOC estimation accuracy of the
EKF algorithm. The principle is, at each filtering step, to ex-
pand the single innovation at current instant to multi- innova-
tions containing information from current and previous in-
stants, to increase the amount of information, and to get the
more accurate estimated SOC.

The motivation of this paper is to explore multi-innovation
extended Kalman filter (MI-EKF) algorithm to estimate the
battery SOC by expanding a single innovation at current in-
stant to multi-innovations containing more information from

current and previous instants. The purpose is to increase the
amount of information, and to get the more accurate estimated
SOC, so as to decrease the SOC estimation error caused by the
Kalman filtering method.

The features of this research list are as follows:

1. For a lithium battery, an equivalent circuit model is
adopted by analyzing the battery characteristic, and a state
space equation with SOC being one state is constructed.

2. State estimates of the MI-EKF algorithm are corrected by
multi-innovations containing current and previous inno-
vations rather than the single innovation at only current
instant, which improves the SOC estimation accuracy.

3. Simulation experiment results verify that the MI-EKF al-
gorithm can effectively and accurately compute battery
SOC by using data sampling from a lithium battery test
device.

This research is arranged as follows. The next section de-
scribes the lithium battery circuit, constructs a state space
equation for the lithium battery and identifies the battery pa-
rameters; Section 3 investigates the MI-EKF-based SOC esti-
mation method; Section 4 sets up an experimental platform to
collect data and carry out simulation experiment by using the
classical EKF algorithm and the investigated MI-EKF algo-
rithm and analyze the results; Finally, the conclusion is eval-
uated in Section 5.

The modeling of the battery

This section introduces a suitable battery equivalent circuit
and constructs a nonlinear battery state space equation.

The circuit model of the battery

Common battery equivalent circuits have the Thevenin equiv-
alent circuit, the PNGV circuit, the fourth-order dynamic cir-
cuit, and the second-order RC circuit [62–64]. This research
chooses a second-order RC circuit, which is simple in struc-
ture, easy to implement, easy to calculate, and easy to combine
with battery estimation algorithms. Refer to Fig. 1; the circuit

Fig. 1 The battery equivalent circuit
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contains UOC, the internal resistance R0, and the equivalent
resistances R1C1 and R2C2.U is the battery terminal voltage, I
is the terminal current, and the specified current direction is
stipulated as discharge being positive and charge being
negative.

According to the Kirchhoff law, the sum of voltage around
the entire circuit equals to zero, and then at k instant, we have:

U k ¼ UOC;k SOCkð Þ−IkR0−UR1C1
k −UR2C2

k ð1Þ

The zero-state voltage responses of the R1 and R2 are:

UC1R1
k;zerostate ¼ I k−1R1 � 1−exp −Ts=τ1ð Þð Þ

UC2R2
k;zerostate ¼ I k−1R2 � 1−exp −Ts=τ2ð Þð Þ

(
ð2Þ

where the time constant are τ1 = R1C1 and τ2 = R2C2, respec-
tively; Ts is the sampling period.

The zero-input voltage responses of the R1 and R2 are:

UC1R1
k;zeroinput ¼ exp −Ts=τ1ð Þ � UC1R1

k−1

UC2R2
k;zeroinput ¼ exp −Ts=τ2ð Þ � UC2R2

k−1

(
ð3Þ

The full voltage responses of the R1 and R2 are:

UC1R1
k ¼ UC1R1

k;zerostate þ UC1R1
k;zeroinput

¼ Ik−1R1 � 1−exp −Ts=τ1ð Þð Þ þ exp −Ts=τ1ð Þ � UC1R1
k−1

UC2R2
k ¼ UC2R2

k;zerostate þ UC2R2
k;zeroinput

¼ Ik−1R2 � 1−exp −Ts=τ2ð Þð Þ þ exp −Ts=τ2ð Þ � UC2R2
k−1

8>>><>>>:
ð4Þ

Circuit parameter estimation

The stochastic gradient algorithm with forgetting factor
(FFSG) is used to identify the battery parameters. The param-
eters to be identified include R0, R1, R2, C1, C2. The transfer
function of the system can be obtained from Fig. 1:

G Sð Þ ¼ U Sð Þ
I Sð Þ ¼ UOC Sð Þ−UL Sð Þ

I Sð Þ
¼ R0 þ R1

1þ R1C1S
þ R2

1þ R2C2S

ð5Þ

Using bilinear transformation to discretize continuous
functions, let:

S ¼ 2 1−Z−1� �
T 1þ Z−1� � ð6Þ

Fig. 2 The procedures of the MI-EKF algorithm
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where T is the sampling period. The transfer function is
discretized as:

G Zð Þ ¼ U Zð Þ
I Zð Þ ¼ b0 þ b1Z−1 þ b2Z−2

1þ a1Z−1 þ a2Z−2 ð7Þ

where:

a1 ¼ 2T2−8τ1τ2
T þ 2τ1ð Þ T þ 2τ2ð Þ

a2 ¼ T−2τ1ð Þ T−2τ2ð Þ
T þ 2τ1ð Þ T þ 2τ2ð Þ

b0 ¼ R0 þ R1T
T þ 2τ1

þ R2T
T þ 2τ2

b1 ¼
R0 2T2−8τ1τ2

� �þ 2 R1 þ R2ð ÞT2

T þ 2τ1ð Þ T þ 2τ2ð Þ
b2 ¼ R0 T−2τ1ð Þ T−2τ2ð Þ þ R1T T−2τ2ð Þ þ R2T T−2τ1ð Þ

T þ 2τ1ð Þ T þ 2τ2ð Þ

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:
The corresponding difference equation derived from the

discretized transfer function is:

U tð Þ ¼ −a1U t−1ð Þ−a2U t−2ð Þ þ b0I tð Þ þ b1I t−1ð Þ þ b2I t−2ð Þ þ v tð Þ
¼ φT tð Þθþ v tð Þ ð8Þ

where:

1. a1, a2, b0, b1, b2 are coefficients to be determined;
2. {U(t)} and {I(t)} are the output and input sequence of the

model respectively;
3. {v(t)} is a random noise sequence with zero mean and no

correlation.

Let:

φ tð Þ ¼ −U t−1ð Þ;−U t−2ð Þ; I tð Þ; I t−1ð Þ; I t−2ð Þ½ �T ð9Þ
θ ¼ a1; a2; b0; b1; b2½ �T ð10Þ
where φ(t)is the information vector; θis the parameter vector.

Then we get the FFSG algorithm as follows [65–68]:

bθ tð Þ ¼ bθ t−1ð Þ þ φ tð Þ
r tð Þ U tð Þ−φT tð Þbθ t−1ð Þ

h i
ð11Þ

r tð Þ ¼ λr tð Þ þ φT tð Þ�� ��2; r 0ð Þ ¼ 1; 0 < λ < 1 ð12Þ

v tð Þ ¼ U tð Þ−φT tð Þbθ tð Þ ð13Þ
where bθ tð Þ represents the estimated parameter vector. By
using the FFSG algorithm and the equation (7), we can get
the estimates of R0, R1, R2, C1 and C2, shown in Table 1.

The nonlinear battery equation

The circuit model includes three energy storage elements, so
the state variable of the lithium battery is set to:

xk ¼ SOCk UR1C1
k UR2C2

k

� �T ð14Þ

According to the definition of SOC, we have

SOCk ¼ SOCk‐1‐
ηTs
CN

ik‐1 ð15Þ

where

1. ηindicates the charge and discharge efficiency, acquired
by charge and discharge test. Generally, when charging
η = 1, when discharging η < 1

2. CN indicates the rated battery capacity.

From eqs. (4), (14), and (15), the state space equation for a
Lithium battery with noises can be written as:

xk ¼
SOCk

UR1C1
k

UR2C2
k

24 35 ¼
1 0 0

0 e
−Ts=

τ1 0

0 0 e
−Ts=

τ2

264
375�

SOCk−1
UR1C1

k−1
UR2C2

k−1

24 35

þ

−ηTs=CN

R1 1−e
−Ts=

τ1

� �
R2 1−e

−Ts=
τ2

� �
266664

377775� ik−1 þ wk−1

ð16Þ

Uk ¼ UOC;k SOCkð Þ−ikR0−UR1C1
k −UR2C2

k þ vk ð17Þ

where

1. wk ‐ 1indicates the system process noise with 0 mean and
the covariance matrix Qk ‐ 1, i.e., wk ‐ 1~(0,Qk ‐ 1)

2. vkindicates the measurement noise with 0 mean and the
covariance matrix Rk, i.e., vk~(0, Rk).

Let:

f xk‐1; ik‐1;wk‐1ð Þ ¼
1 0 0

0 e
−Ts=

τ1 0

0 0 e
−Ts=

τ2

264
375� xk‐1

þ

−ηTs=CN

R1 1−e
−Ts=

τ1

� �
R2 1−e

−Ts=

τ2

� �
266664

377775� ik‐1 þ wk‐1 ð18Þ
Table 1 Parameter estimates of the FFSG algorithm.

R0 R1 R2 C1 C2

0.0366 Ω 0.0226 Ω 0.0210 Ω 1575.7F 2815.8 F
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h xk ; ik ; vkð Þ ¼ UOC;k xk 1½ �ð Þ−ikR0−xk 2½ �−xk 3½ � þ vk ð19Þ

where xk 1½ � ¼ SOCk; xk 2½ � ¼ UR1
k C1; xk 3½ � ¼ UR2

k C2.
Then eqs. (18) and (19) can be simply expressed as

xk ¼ f xk‐1; ik‐1;wk‐1ð Þ ð20Þ
U k ¼ h xk; ik; vkð Þ ð21Þ

The MI-EKF method for SOC estimation

The classical EKF algorithm

The Taylor expansions of xk and Uk are, respectively,

ð22Þ

ð23Þ

According to the EKF principle, Jacobian matrices of f(•)
and h(•) are given by:

Ak ¼ ∂ f xk−1; ik−1;wk−1ð Þ
∂xk

				
xk−1¼bxk−1

¼
1 0 0

0 e
−Ts=

τ1 0

0 0 e
−Ts=

τ2

264
375

Lk ¼ ∂ f xk−1; ik−1;wk−1ð Þ
∂wk−1

				
wk−1¼bwk−1

¼
1 0 0
0 1 0
0 0 1

24 35
Hk ¼ ∂h xk; ik; vkð Þ

∂xk

				
xk¼bxk−1 ¼ dUOC

dSOCk

				
SOC¼SOCk−1

−1 −1

 �

M k ¼ ∂h xk; ik; vkð Þ
∂vk

				
vk¼bvk ¼ 1

Fig. 3 The battery test platform

Fig. 4 The configuration diagram
of the battery test system
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Thus, the EKF algorithm can be expressed as:

bxk;k−1 ¼ 1 0 0

0 e
−Ts=

τ1 0

0 0 e
−Ts=

τ2

264
375� bxk−1 þ

−ηTs=CN

R1 1−e
−Ts=

τ1

� �
R2 1−e

−Ts=

τ2

� �
266664

377775� ik−1 ð24Þ

Pk;k−1 ¼ AkPk−1AT
k þ LkQk−1L

T
k ð25Þ

Kk ¼ Pk;k−1HT
k

HkPk;k−1HT
k þMkRkMT

k

ð26Þ

bxk ¼ bxk;k−1 þ Kk Uk−UOC;k bxk 1½ �
� 

þ ikR0 þ bxk 2½ � þ bxk 3½ �
n o

ð27Þ
Pk ¼ I−KkHk½ �Pk;k−1 ð28Þ

The investigated MI-EKF algorithm

For nonlinear battery systems, the standard EKF algorithm
uses a single innovation to update the state estimates, while
the MI-EKF algorithm uses multi-innovations to correct the
state estimates, so as to promote the estimation precision
[58–61].

The specific approach is to expand the single inno-
vation:

ek ¼ Uk−UOC;k bxk 1½ �
� 

þ ikR0 þbxk 2½ � þ bxk 3½ � ð29Þ

to an innovation vector Eg, k (i.e., multi-innovations):

Eg;k ¼
ek
ek−1
⋮

ek−gþ1

2664
3775

¼

Uk−UOC;k bxk 1½ �
� 

þ ikR0 þbxk 2½ � þ bxk 3½ �
Uk−1−UOC;k−1 bxk−1 1½ �

� 
þ ik−1R0 þbxk−1 2½ � þ bxk−1 3½ �
⋮

Uk−gþ1−UOC;k−gþ1 bxk−gþ1 1½ �
� 

þ ik−gþ1R0 þbxk−gþ1 2½ � þ bxk−gþ1 3½ �

2666664

3777775
ð30Þ

where g is the innovation length.
Correspondingly, expand the KF gain Kk to a gain matrix

Kg, k.

Kg;k ¼ Kk Kk−1 ⋯ Kk−gþ1½ � ð31Þ

Then replacing the single innovation ek and the gain Kk in
the state estimation equation bxk ¼ bxk;k−1 þ Kk ek with the in-
novation vector Eg, k and the gain matrix Kg, k gives the opti-
mized state:
xk ¼ bxk;k−1 þ Kg;kEg;k

¼ bxk;k−1 þ ∑
g−1

j¼0
Kk− jþ1e k− jð Þ j ¼ 1; 2;⋯; g−1ð Þ ð32Þ

In the equation bxk ¼ bxk;k−1 þ Kk ek , the state corrected
term Kkek is obtained by Kk multiplying a single innovation
ek. Through expanding ek to Eg, k and KktoKg, k, the optimized
statebxk ¼ bxk;k−1 þ Kg;k Eg;k is achieved, and the term Kg, kEg,

k is obtained by Kg, k multiplying an innovation vector Eg,

k(i.e., multi-innovations). The innovation vector Eg, kcontains
multiple innovations (more error corrected information); thus
the multi-innovation EKF algorithm is more accurate than the
EKF algorithm in SOC estimation.

Summarizing the above derivation yields the multi- inno-
vation EKF (MI-EKF) algorithm as follows:

bxk;k−1 ¼ 1 0 0

0 e
−Ts=

τ1 0

0 0 e
−Ts=

τ2

264
375� bxk−1 þ

−ηTs=CN

R1 1−e
−Ts=

τ1

� �
R2 1−e

−Ts=

τ2

� �
266664

377775� ik−1 ð33Þ

Pk;k−1 ¼ AkPk−1AT
k þ LkQk−1L

T
k ð34Þ

Kk ¼ Pk;k−1HT
k

HkPk;k−1HT
k þMkRkMT

k

ð35Þ

Table 2 General parameters of the battery.

Battery Type NCR-18650PF

Rated voltage 3.7 V

Operating voltage 2.7 V–4.2 V

Capacitance 2900 mAh + 10%

Rated charge current 1.45A (0.5C)

Max. discharge current 8.7A (3C)

Table 3 Cyclic intermittent discharge experiment with different discharge rates.

Discharge rate Current value (A) Discharge completion time Discharge stage setting Experiment time

0.5C 1.45 2 h Discharge the battery for 10 min and left it for 30 min 8 h

1C 2.9 1 h Discharge the battery for 5 min and left it for 30 min 7 h

2C 5.8 0.5 h Discharge the battery for 2.5 min and left it for 30 min 6.5 h
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ek ¼ Uk−UOC;k bxk 1½ �
� 

þ ikR0 þ bxk 2½ � þbxk 3½ � ð36Þ

Eg;k ¼
ek
ek−1
⋮

ek−gþ1

2664
3775

¼

Uk−UOC;k bxk 1½ �
� 

þ ikR0 þbxk 2½ � þ bxk 3½ �
Uk−1−UOC;k−1 bxk−1 1½ �

� 
þ ik−1R0 þ bxk−1 2½ � þ bxk−1 3½ �
⋮

Uk−gþ1−UOC;k−gþ1 bxk−gþ1 1½ �
� 

þ ik−gþ1R0 þbxk−gþ1 2½ � þ bxk−gþ1 3½ �

2666664

3777775
ð37Þ

Kg;k ¼ Kk Kk−1 ⋯ Kk−gþ1½ � ð38Þ

bxk ¼ bxk;k−1 þ Kg;kEg;k ð39Þ
Pk ¼ I−KkHk½ �Pk;k−1 ð40Þ

The steps of the MI-EKF algorithm in eqs. (33)–(40) are
listed as follows:

Experiment and simulation

The battery test platform

Referring to Fig. 3, take an actual battery charging and
discharging system as an example. Its configuration diagram
is displayed in Fig. 4. The battery experiment platform in-
cludes a battery tester (NEWARE BTS-4008-5V12A-TB), a
median machine, a battery holder, 18,650 (2900 mAh) lithium
batteries, and a host computer. The battery specifications are
shown in Table 2.

The OCV-SOC relation

The OCV-SOC curve is obtained through a battery static test.
The battery static test refers to a method of measuring the
OCV in a stable state after stopping charging and discharging

Table 4 The OCV and SOC relation.

SOC 1.0000 0.9167 0.8333 0.7500 0.6667 0.5833 0.5000 0.4167 0.3334 0.2500 0.1667 0.0834 0.0050

OCV (0.5C) 4.1328 4.0014 3.9995 3.8430 3.7286 3.5971 3.4068 3.3147 3.1761 3.0081 2.8276 2.6329 2.5542

OCV (1C) 4.0997 4.0209 3.9071 3.7940 3.6749 3.5491 3.4195 3.2840 3.1364 2.9687 2.7842 2.5762 2.5000

OCV (2C) 4.1176 3.9670 3.8510 3.7397 3.6232 3.5007 3.3742 3.2418 3.0961 2.9299 2.7461 2.5511 2.5003

Fig. 5 The OCV-SOC curve of the battery

Fig. 6 The estimated/measured SOC by the EKF and the AH methods
Fig. 7 The SOC/terminal voltage estimation by the MI-EFK (g = 2) and
the AH methods
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for a period of time. The length of the static time determines
the accuracy of the OCV measurement.

The principles of the static experiment are as follows:

1) The SOC measurement: the SOC of the battery is
unable to get by direct measurement, so the princi-
ple of the AH integration method is used for com-
puting SOC.

2) The OCV measurement: it can be seen from the eq. (1)

(i.e., Uk ¼ UOC;k SOCkð Þ−I k R0−UR1
k C1−UR2

k C2 ) that
during the battery discharging, if the current is turned off
and rests for a period of time, the voltages across R0, R1,
and R2 become zero as the discharging ends, and the
terminal voltage measured at this time can be used as
the OCV value.

The steps of the static experiment are as follows:

1. Use different constant current to fully charge the battery
for 2 h, and left it for 60 min.

2. The discharge experiment process is shown in Table 3, the
sampled data is shown in Table 4.

By using the MATLAB curve fitting toolbox to fit
the data of the OCV and SOC calculated by the AH

integration method, the OCV-SOC curve is obtained,
referring to Fig. 5. The static experiment shows that
the OCV measurement accuracy can be improved under
the smaller discharge current.

Considering the actual use of lithium batteries in
electric vehicles, the lithium battery discharge experi-
mental data is sampled under urban dynamometer driv-
ing schedule (UDDS) conditions. Apply the AH meth-
od, the EKF technique, and the explored MI-EKF tech-
nique to compute SOC based on MATLAB simulation.
The simulation results are displayed in Figs. 6, 7, 8,
and 9; for the convenience of observation, a partial en-
largement map is drawn in the graph.

Fig. 8 The SOC/terminal voltage estimation by the MI-EFK (g = 3) and
the AH methods

Fig. 9 Comparison of the SOC estimation by the MI-EFK algorithm
under different g

Fig. 10 SOC estimation error under different σ values
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Figure 6 displays the estimated SOC of the EKF (i.e., the
MI-EKF, g = 1) algorithm and the AH method.

Figure 7 displays the SOC and terminal voltage computed
by the MI-EKF algorithm (g = 2) and the AH method.

Figure 8 displays the SOC and terminal voltage computed
by the MI-EKF algorithm (g = 3) and the AH method.

Figure 9 displays the SOC computed by the MI-EKF algo-
rithm under different g and the AH method, and displays the
SOC error of the MI-EKF algorithm and the AH method.

From Fig. 6, 7, 8, and 9, we can get that the SOC estimation
error by using the EKF algorithm (i.e., the MI-EKF g = 1) is
much larger than the SOC estimation error by using the MI-
EKF algorithm (g = 2 and g = 3). Generally, when taking the
innovation length g = 3 in the MI-EKF algorithm, the estimat-
ed SOC is the most accurate and the SOC error is the smallest.

Noise influence on SOC estimates

The MI-EKF algorithm is unbiased estimation method under
random noises corruption, especially under white noise cor-
ruption, but the SOC estimation accuracy varies under differ-
ent variances.

Add an uncorrelated white noise sequence {v(t)} with zero
mean and variance σ2 = 0.12, 0.32, 0.52, respectively. The
SOC estimation errors under different σ2by using the MI-
EFK algorithm are shown in Fig. 10. The following can be
seen from the figure:

1) The parameter estimation errors given by the MI-EFK
algorithm are generally smaller and approach zero which
shows the effectiveness of the proposed algorithms.

2) The estimated SOC errors change small under different
white noises. Generally, the estimated SOC errors by the
MI-EFK algorithm are close to the true SOC as the noise
variance becomes small.

Conclusion

According to the characteristics of lithium battery, an
equivalent battery circuit is adopted and further a non-
linear state space equation is constructed. Through the
linearization of the nonlinear battery equation, the EKF
technique and the MI-EKF technique are carried out and
are compared with the AH method. The experiment re-
sults prove that the MI-EKF algorithm can compute the
SOC of the lithium battery more accurate and effective
than that of the EKF algorithm, and as the innovation
length increasing, the errors of the estimated SOC get
smaller and smaller. Adding an uncorrelated white noise
can slightly influence the SOC estimation error which
will be small under small noise.

Due to the increase of the matrix dimension, the
computation load of the MI-EKF algorithm is larger
compared with that of the standard EKF algorithm, but
the calculation precision of the MI-EKF algorithm is
much improved compared with that of the EKF algo-
rithm. The proposed method can be extended to study
remaining useful life prediction for supercapacitors in
Refs. [69, 70], and can apply to model block-oriented
dynamic systems in Refs. [71–73].

Funding information This work was supported by the National Natural
Science Foundation of China under Grant Nos. 61873138.
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