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Abstract

The amorphous ZnO particles encapsulated in porous nitrogen-doped carbon nanofibers (ZnO@PN-CNFs) are synthesized by
electrospinning process and heat treatment. The enhanced electrochemical properties of ZnO@PN-CNFs are based on the porous
nanostructure, high length/diameter (L/D) ratio, doped nitrogen, and uniform distributed amorphous ZnO nanoparticles. The
results show amorphous ZnO particles in carbon nanofibers avoid the pulverization and alleviated the volume expansion, as well
as make the cycling of the anode quickly reach stable. Furthermore, the nitrogen-doped carbon improves electron conductivity
while one-dimensional (1D) nanofibers with high L/D ratio own a short diffusion path and high electronic transportation
efficiency along the longitudinal direction. Meanwhile, the porous nanostructure from urea pyrolysis produces thinner wall
and further shortens the ionic transport distance. Therefore, high capacity and long-cycling life are achieved. And the
ZnO@PN-CNF electrode shows a high discharge capacity (1073.2 mAh g ' at 0.1 A™") after 100 cycles. Moreover, the
ZnO@PN-CNF electrode presents a high discharge capacity of 703.1 mAh g ' even at 1 A™" after 400 cycles. In this work,
urea not only stops the ZnO from crystallization, leading to uniform distributed amorphous small ZnO particles, but also makes
numerous pores in the carbon nanofibers, enlarging the touching area with electrolyte and shortening the transport distance to
ZnO particles. It is a promising way by adding urea to alleviate volume expansion and pulverization of the crystal particles and
then enhance the performance of electrode.
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Introduction

Lithium-ion batteries (LIBs) already widely used in consumer
electronic equipment and grid-scale storage systems. Aiming
to the desired energy storage, high power density and energy
density are eager to be developed for high-performance LIBs
[1-5]. However, the commercial graphite anode has a low
theoretical capacity (372 mAh g_l), which places restrictions
on the application of LIBs [6—8]. Transition metal oxides
(TMOs, M = Mn, Zn, Cr, Ni, etc.) are attractive because of
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their high reversible capacities [9—15]. Among these, ZnO is
supposed to be a promising candidate of anode materials for
LIBs on account of its large theoretical capacity of 978 mAh
g . However, the pulverization issue caused by the severe
volume changes (228%) of crystal ZnO in LIBs hindered its
practical application, resulting in a loss of electric contact,
rapid capacity fading during cyclic process, and poor rate
performance [16-19].

Many strategies have been applied to suppress the effect of
crystal ZnO pulverization, such as morphological design of
nanostructures [20, 21], hybridizing with other materials [6,
17, 18], and introduction of carbon materials [7, 16, 19, 22].
And one of the most effective strategies is to reduce ZnO size,
which could decrease the mechanical stress produced by re-
dox reaction with Li-ions, and thus restrained the inclination
to fracture and crack [23, 24]. The one-dimensional (1D)
nanostructure can shorten the lengths of Li-ion transport path
to provide a superior rate capability [25, 26]. Furthermore, the
presence of carbon could improve conductivity and mitigate
volume changes so as to improve long-cycle stability [27-29].
Therefore, 1D nanostructure carbon compounded with ZnO
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had been widely studied because the nanostructure provides
conductive network and transmission channels, which is ben-
eficial to improve electrochemical performance [23, 30].
Electrospinning is an efficient way to prepare 1D nanostruc-
ture [12, 31, 32]. For instance, Zhao et al. prepared the ZnO/
carbon nanofibers composited by petroleum asphalt—derived
carbon. The composite anode possessed a reversible capacity
of 702 mAh g ' at 0.2 A" after 200 cycles [30]. Despite these
achievements, the ZnO size in carbon is not small enough to
avoid the pulverization. With the decrease of the particle size,
the crystal ZnO particles are gradually transformed into amor-
phous particles.

Amorphization is considered to be advantageous to im-
prove electrochemical performance. For crystal materials,
the change from crystal state to amorphous state is electro-
chemically driven during the process of lithium ion insertion
[33, 34]. In addition, the contact between crystals becomes
worse, and then the conductive property becomes worse,
resulting in a bad reaction performance with lithium ions.
For amorphous materials, the volume expansion is effectively
alleviated. Therefore, minimizing the pulverization process
could stabilize the cycling faster [35-37]. Moreover, amor-
phous materials have superior performance during discharge/
charge processes because of active sites on their surface [26,
36]. Therefore, it is an efficacious pathway to enhance elec-
trochemical properties by improving amorphous level of ZnO
particles.

Herein, we proposed an approach to make the
electrospinning of nitrogen-doped carbon nanofibers generate
both mesopores in carbon nanofibers and uniform distributed
amorphous ZnO particles by introducing urea as pore former.
The porous nitrogen-doped carbon nanofibers encapsulated
ZnO (ZnO@PN-CNFs) were successfully prepared by
electrospinning process and heat treatment. It was demonstrat-
ed that the amorphous ZnO particles that disperse uniformly in
the porous carbon nanofibers could obtain a high discharge
capacity of 1073.2 mAh g ' after 100 cycles at 0.1 A™'. And
the ZnO @PN-CNF electrode showed an excellent rate perfor-
mance and high specific capacity compared with crystallite
ZnO encapsulated in carbon nanofibers (ZnO @N-CNFs).

Experimental section
Preparation of the ZnO@PN-CNFs

First, 0.45 g polyacrylonitrile (PAN, AR, M,, 150 000, Sigma-
Aldrich) was dissolved into 3 mL N, N-dimethylformamide
(DMF, AR, Sinopharm), subsequently stirred (at 60 °C) for
1 h to form solution A. A total of 0.4 g zinc acetate dihydrate
(Zn(CH3COO0),-2H,0, AR, Sinopharm) and 0.07 g urea (AR,
Sinopharm) were dissolved into 3 mL DMF and upon 1 h
stirring to get solution B. Next, solution B was gradually
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added to solution A, stirred for 24 h at 25 °C to form a uniform
solution and then it was transferred into a plastic injector.
During electrospinning, the distance between the aluminum
collector and the injector needle was 20 cm. A positive voltage
of 10—12 kV was conducted between the aluminum collector
and the injector needle. The obtained precursor nanofibers
were dried at 60 °C for 12 h and subsequently stabilized at
220 °C in air for 3 h. After cooling to room temperature, the
precursor nanofibers were calcinated at 650 °C in Ar for 2 h.
And finally, the ZnO @PN-CNFs were synthesized. For com-
parison, the same procedures were applied to synthesize
ZnO @N-CNFs without urea.

Material characterization

X-ray diffraction (XRD, Rigaku Dmax/2550VB+18KW) was
used to characterize the crystal structure of the samples. The
morphology of the samples was observed by scanning electron
microscopy (SEM, FEI Nova Nano SEM230) and transmission
electron microscopy (TEM, JEOL JEM-2010). X-ray photo-
electron spectroscopy (XPS, Thermo ESCALAB 250XI) was
employed with Al Ko (hv = 1486.8 ¢V) as the excitation
source. The Quadrasorb SI surface characterization analyzer
with nitrogen adsorption-desorption isotherms was used for
evaluating the specific surface areas of samples as well as pore
size distribution. The thermogravimetric analysis of ZnO @PN-
CNFs was conducted with a Netzsch STA 409EP TGA-DSC
apparatus. The Raman spectrum was obtained by using a
Raman spectrometer (Horiba, LabRAM Aramis).

Electrochemical measurements

To obtain the electrodes, mix prepared nanofibers, acetylene car-
bon black, and polyvinylidene fluoride at mass ratios of 7:2:1,
dissolved in N-methyl-2-pyrrolidinone to form slurry. After that,
the slurry was casted onto Cu foil and dried at 60 °C overnight
under vacuum then cut into circular pieces. The loading active
material density on Cu foil was 0.8-1.0 mg cm 2. Thereafter, the
CR2032 coin-type half-cells were assembled in an argon-filled
glove box with polypropylene film (Celgard 2400) as separator,
Li metal as the reference electrode, and LiPFg (1M, EC: DMC =
1:1) as electrolyte. The electrode capability was measured by a
battery testing system (LANDCT2001A) within a voltage area of
0.005-3.0 V. The electrochemical workstation (CHI760E) was
employed on the tests of cyclic voltammetry (CV) within 0.005—
3.0 V and the EIS measurements with the frequency range of
100 kHz to 0.01 Hz.

Results and discussion

The fabrication process of ZnO@PN-CNFs is illustrated in
Fig. 1. The samples were divided to two groups: one was
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Fig. 1 Schematic illustration of the synthesis process and changes during cycling of ZnO@PN-CNFs and ZnO@N-CNFs

ZnO@N-CNFs as the contrast samples and the other was
ZnO@PN-CNFs with urea addition in the precursor solution.
The electrospinning precursor nanofibers were transformed
into ZnO @N-CNFs and ZnO @PN-CNFs after the subsequent
stabilization and carbonization. It was believed that the pres-
ence of carbon can alleviate the volume change of zinc oxide
during Li* insertion and extraction processes [38]. Although
compounded with carbon, crystalline ZnO in ZnO @N-CNFs
will pulverize after repeated Li* insertion and extraction, and
then the crystal state was transformed into an amorphous state.
However, amorphous ZnO in ZnO@PN-CNFs could still
maintain amorphous state even after many cycles.

The PAN-derived nitrogen-doped carbon fibers could im-
prove the electron conductivity, provide ion transport

Fig. 2 SEM image of a
ZnO@PN-CNFs precursor, b
ZnO@PN-CNFs, ¢ ZnO@N-
CNFs precursor, d ZnO@N-
CNFs

channels, and shorten the ion diffusion path during
lithiation/delithiation processes [39, 40]. Figure 2 a and b
show the SEM images of the ZnO@PN-CNFs precursor and
ZnO@PN-CNFs, respectively. The precursor nanofibers had
uniform nanostructure with smooth surface. However, the ad-
dition of urea significantly enlarged the diameters of the
ZnO@PN-CNF precursor. After stabilization and carboniza-
tion, the ZnO@PN-CNFs became a twisted and crooked
structure like noodles without crystalline ZnO on the surface
in Fig. 2b. And Fig. 2 ¢ and d show the SEM images of the
ZnO@N-CNF precursor and ZnO@N-CNFs, respectively.
As the contrast sample, many crystalline ZnO particles were
mounted on the surface of the ZnO @N-CNFs, as revealed in
Fig. 2d. The average diameter of the ZnO@PN-CNFs was

500 nm

500 nm
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about 130 nm while that of ZnO @N-CNFs is about 100 nm.
The thicker diameters of ZnO @PN-CNFs are attributed to the
effect of urea pore former.

To further investigate the microstructure of ZnO@PN-
CNFs, TEM was employed. As shown in Fig. 3, ZnO crystal-
lite was observed neither on the nanofibers surface nor inside
the nanofibers. The crystal lattice fringe of ZnO was not found
in Fig. 3b of the high-resolution TEM (HRTEM) images of
ZnO@PN-CNFs either, which indicates the amorphous state
of ZnO. Amorphous ZnO helps to achieve higher insertion
and extraction rates of Li ions and accelerates to equilibrium
as soon as possible without the pulverization of the ZnO in the
oxidation reduction reactions (ORR), which simultaneously
improves the electrical conductivity, cycling stability, and in-
terfacial contact property [25, 36]. Thereafter, element map-
ping identified the elemental distribution of ZnO @PN-CNFs.
Figure 3 c—f present elemental mapping results revealing the
distribution of C, Zn, O, and N elements. The images of Zn
and O elements indicated that ZnO was homogeneously dis-
tributed in the nanofibers, which was conducive to avoid the
pulverization and alleviate the volume expansion. The pres-
ence of C and N indicated the formation of nitrogen-doped
carbon from carbonized PAN, which was confirmative to en-
hance the conductivity as well as provide many active sites
[23,41]. The TEM and HRTEM of ZnO @N-CNFs are shown
in Fig. S1.

The composition and crystallographic structure of
ZnO@PN-CNFs had been further investigated. Figure 4 a
shows the XRD patterns of ZnO@PN-CNFs and
ZnO @CNFs, respectively. For the XRD patterns of
ZnO@N-CNFs, all the characteristic peaks of ZnO@N-
CNFs can be well corresponding to ZnO (JCPDS 36-1451)

Fig. 3 a TEM image of
ZnO@PN-CNFs. b HRTEM
image of ZnO@PN-CNFs. c—f
Corresponding elemental
mapping images of ZnO @PN-
CNFs
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[42]. The XRD patterns of both materials showed a broad
diffraction peak at about 23°, attributed to the (002) lattice
planes of carbon [23]. The XRD patterns of ZnO@PN-
CNFs only showed a broad diffraction peak at 23°, and no
obvious peaks related to ZnO were detected while that of
ZnO@N-CNFs indicated the ZnO was well crystallized cor-
responding to the SEM image of Fig. 2d. This can be attrib-
uted to the coexistence of urea (as a porogen) and zinc acetate
suppressing the crystallization of ZnO, forming an amorphous
state or transforming into smaller nanosized particles [23, 43].
The XRD result also confirmed the amorphous state of ZnO in
ZnO @PN-CNFs, which was consistent with TEM
observation.

To determine the content of ZnO in ZnO @PN-CNFs, TGA
analysis was conducted from 25 to 1000 °C in air (Fig. 4b).
The slight weight loss occurred in 25-200 °C, which is corre-
sponding to evaporation of absorbed water. And an apparent
weight loss occurred in 200-900 °C due to the combustion of
carbon. The calculated ZnO content of ZnO@PN-CNFs from
the TGA data was 35.54 wt%.

The BET-specific surface area and related pore-size distri-
bution were studied by N, adsorption-desorption isotherms
(Fig. 4c, d). The BET-specific surface area of the ZnO@PN-
CNFs and ZnO@N-CNFs is 30.72 m”> g ' and 29.28 m* g ',
respectively. Both isotherms display noticeable uptake at a
relative pressure of P/Py < 0.01, revealing the existence of
microporous structure [44]. The hysteresis loop of isotherms
suggested the existence of mesopores [39, 44]. The pore size
distribution was obtained by DFT method, as displayed in Fig.
4 ¢ and d. Compared to ZnO @N-CNFs, the specific surface
area of ZnO@PN-CNFs was not significantly improved,
which occurred because urea plays a role during the
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Fig. 4 a XRD patterns of ZnO@PN-CNFs and ZnO@N-CNFs. b TG analysis of ZnO@PN-CNFs. ¢, d N, isotherms and pore size distribution

ZnO@PN-CNFs and ZnO@N-CNFs

stabilization and carbonization in making difference for nano-
fiber structure; the mesopores were increased and micropores
were decreased. The presence of mesopores is beneficial for
the transmission of Li ions [45]. Proper pore size can shorten
the transport pathway, increase the transport rate of lithium
ions, and mitigate the volume change of ZnO during the pro-
cesses of lithiation and delithiation [44, 46, 47].

Figure 5 a displays the Raman spectra of ZnO@PN-CNFs
and ZnO@N-CNFs; two dominant peaks located at 1327
ecm ' and 1575 cm™' were related to D-band and G-band,
respectively [3, 48]. The D-band was assigned to disordered
(sp”), while G-band was associated with crystalline graphite
(sz)_ The intensity ratio (Ip/Ig) of ZnO@PN-CNFs and
ZnO@N-CNFs is 1.41 and 1.07, respectively. The Ip/Ig rep-
resented the carbon of composites with disordered structures
[49]. ZnO@PN-CNFs showed a more disordered structure.

To further identify the surface chemical states of
ZnO@PN-CNFs, XPS was carried out. As revealed in Fig.
Sb, the characteristic peaks in the XPS spectrum indicated
the presence of C, N, O, and Zn elements in ZnO@PN-
CNFs. As shown in Fig. 5c, there were three characteristic
peaks in the C s spectrum fitted at 284.1, 284.8, 286.3, and
288.7 eV that corresponded to C—C, C—N, C=N, and C=0
bonds, respectively [23, 44, 50, 51]. According to the O 1s
spectrum in Fig. 5d, the peaks at 530.9 eV and 533.8 eV were

indicative of the Zn—O bond, and the peak at 532.1 eV
corresponded to C—O bond [50, 52, 53]. The high-resolution
spectrum of N 1s displayed three characteristic peaks (Fig.
5e). The peak located at 398.4 eV was corresponding to
pyridinic N and the peak at 400.0 eV evidenced the presence
of the pyrrolic N, while the peak of 400.5 eV corresponded to
graphitic N [53, 54]. Pyridinic N and graphitic N were found
to be the most highly active sites for the ORR [55]. As shown
in Fig. 51, the Zn 2p spectrum of ZnO @PN-CNFs contained a
peak at 1022 eV (Zn 2p;),) and another peak at 1045.1 eV (Zn
2p1p) [23, 54].

The electrochemical properties of the ZnO @PN-CNFs and
ZnO@N-CNFs were evaluated in coin cells (CR2032). The
CV curves of ZnO@PN-CNFs electrode were tested at a
sweep rate of 0.2 mV s ' in Fig. 6a. In the initial cathodic
process, the well-defined peak at around 0.76 V, which is
ascribed to the conversion reaction of ZnO to Zn and Li,O,
and the formation of a solid-electrolyte interface (SEI) film
due to electrolyte decomposition [30, 56]. The weak peak
located at 0.26 V resulted from the alloying reaction of the
Zn-Li alloy [23]. The peak near 0 V corresponded to the Li*
intercalate reaction into carbon [10]. In the anodic process, the
peaks appear at 0.53, 0.8, 1.76, and 2.1 V. The peaks at 0.53
and 0.8 V are corresponding to the multistep dealloying reac-
tion of the Zn-Li alloy [56, 57]. The peaks appearing at 1.76 V

@ Springer
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and 2.1 V corresponded to the regeneration ZnO (the reaction
of Zn and Li,O) [9, 58]. After one cycle, the CV curve almost
overlaps without significant change, indicating the ZnO @PN-
CNF electrode possesses excellent reversibility. The electro-
chemical reactions can be described as follows [23]:

ZnO + 2 Lit 4 2¢ Zn° + 2 Li,O (1)
Zn + xLit + xe Li,Zn (2)
6C + LiLiCg (3)

Figure 6 b displays the charge/discharge profiles during
Ist, 2nd, 5th, 50th, and 100th cycles at 0.1 A" Tt can be
observed that there is a long slope region below the 1V volt-
age in the initial cycle, which is attributed to the conversion
reaction of ZnO, the generation of SEI film, and the alloying
reaction of Zn-Li alloy. The initial discharge and charge ca-
pacities of the ZnO@PN-CNF electrode are 1836 mAh g '
and 1448.1 mAh g ', respectively. The capacity loss of 397.1
mAh g ! in first cycle is ascribed to the irreversible loss of
electrolyte and the generation of SEI film [27, 28].

Figure 6 ¢ shows the cycling properties of the ZnO@PN-
CNF and ZnO@N-CNF electrodes at 0.1 A™'. The ZnO@PN-
CNF electrode exhibits higher initial charge and discharge
capacity than the ZnO @N-CNF electrode. The initial coulom-
bic efficiency of the ZnO @PN-CNF electrode is 78.87% and
quickly stabilizes above 98% after the third cycle, indicating
its excellent cycle stability. In the 100th cycle, the discharge
capacities of the ZnO @PN-CNF and ZnO @N-CNF electrode
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maintain at 1073.2 mAh g ' and 816.3 mAh g, respectively.
The capacity of ZnO @PN-CNF electrode is higher than that
of ZnO@N-CNF electrode, which is attributed to amorphous
ZnO and the special structure. The amorphous phase has more
Li ions storage sites than Crystal phase. Moreover, amorphous
ZnO particles that disperse uniformly in carbon nanofibers can
provide more interface, which can lead to additional capacity.

The rate performance of the ZnO@PN-CNF and ZnO@N-
CNF electrodes was tested in the range of 0.1 to 3 A" every 10
cycles, as shown in Fig. 6d. The reversible discharge capacities
of ZnO@PN-CNFs are 1047, 955, 804.3, 653.7, 485.6, and
3742 mAh g ' at 0.1, 0.2, 0.5, 1, 2, and 3 A™", respectively.
Upon returning the current density to 0.1 A™", the reversible
discharge capacity maintains 1029.2 mAh g ' while that of
ZnO@CNFs electrode is 722 mAh ', which indicates that
the ZnO@PN-CNF electrode has a higher stability and more
excellent reversibility. The mesoporous structure increases the
contact area between electrolyte and the ZnO@PN-CNF elec-
trode, resulting in increased transport rate of lithium ions and
therefore enhances the electrochemical performance.

Figure 6 e displays the cycling characteristics of the
ZnO@PN-CNF and ZnO@N-CNF electrodes at 1 A™".
After 400 cycles, the ZnO@PN-CNF electrode delivers a re-
versible capacity of 703.1 mAh g, and its coulombic effi-
ciency is nearly 100%. The discharge capacity of the
ZnO@N-CNF electrode only maintains at 550.4 mAh g .
At first 200 cycles, the ZnO @N-CNF electrode has a capacity
increase process. This phenomenon is due to the
amorphization process during the charge and discharge could
provide more interface between ZnO and carbon, resulting in
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Fig. 6 a CV curves of the ZnO@PN-CNFs electrode at a scan rate of
0.2mV s~'. b Discharge/charge profiles of the ZnO@PN-CNFs electrode
ata current density of 0.1 A g~ '. ¢ Cycling performance of the ZnO@PN-

increased capacity. As for ZnO@PN-CNF electrode, there is
no capacity increase process, because amorphous ZnO in the
electrode could maintain amorphous state even after many
cycles, which will not bring more interface. Moreover, the flat
and straight cycling curve of ZnO @PN-CNF electrode in Fig.
6e indicates that the ZnO@PN-CNF electrode has an out-
standing cyclic stability and excellent reversibility.
Uniformly distributed amorphous ZnO effectively alleviates
the volume expansion and avoids pulverization effect, giving
the ZnO@PN-CNF electrode more excellent cyclic stability
compared to ZnO@N-CNF electrode.

CNFs and ZnO@N-CNFs electrode at 0.1 A g . d Rate capability of the
ZnO@PN-CNFs and ZnO@N-CNFs electrode. e Cycling performance
of the ZnO@PN-CNFs and ZnO@N-CNFs electrode at 1 A g!

To analyze the reaction kinetics of ZnO@PN-CNF elec-
trode, the CV curves in a scan range of 0.2—1 mV s ! were
conducted (Fig. 7a). The relation of the peak current (i) to the

scan rate (v) is shown in the following formulas [59]:
I=aV’ (4)

log(i) = b log(v) + log(a) (5)

Here, a is a variable, and b value is a parameter calculated
from the linear relation between log(i) and log(v). The
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calculated results of three peaks are shown in Fig.7b.
Generally, if b = 0.5, electrochemical storage process is
diffusion-controlled process, while b = 1 is capacitance-
controlled process [60]. The b-values of peaks 1, 2, and 3
are 0.777, 0.848, and 0.988, respectively. The b-values of all
peaks are close to 1, indicating the coexistence of the capac-
itance and the diffusion processes [61, 62].

According to the following formula, the contribution of
capacitance to the ZnO@PN-CNF electrode can be deter-
mined [53]:

i =kv+k'/?

(6)

In Eq. (5), the relationship can be separated into k;v and
kov'?, where k;v is corresponding to capacitive effect and
kov'"? is corresponding to diffusion-controlled effect. Figure 7
¢ shows that the contribution ratio of the capacitance effect is
around 68% for the total charge storage at the scan rate of
0.8 mV s . Figure 7 d indicates the contribution value of
capacitance and diffusion at different scanning rates (0.2—
1 mV s™"). As the scan rate gradually increases, the capacitance

@ Springer

0.2
(b) 0.1
0.0 1
T 0.1
£ -0.21
g -0.31
3 041
D
= 054
= 0.6
:eﬂ 0.7 ® Pcak 1, h=0.77
® Peak 2, b=0.84
-0.8 v Peak 3, b=0.98
-0.9 -
'1-0 T T T T T T T T
-0.8 -0.7 -0.6 -05 -04 -03 -02 -0.1 00 0.1
log (v,scan rate)
120
I Diffusion I Capacitive
&
S
=
S
=}
=
2
=
s
=
)
Q
0.2 0.4 0.6 0.8 1

Scan rate(mV s'l)

contributions at a scan rate of 0.8 mV s ~!. d Contribution ratio of
capacitance and diffusion at different scan rate

contribution value increases progressively. The fast reaction
kinetic results in excellent rate performance.

To further investigate the transport kinetics of materials,
the electrochemical impedance spectra were measured.
Figure S2 shows the equivalent circuit diagram, the Nyquist
plots and the corresponding fitting line of ZnO @PN-CNF and
ZnO@N-CNF electrode [38, 63]. The electrolyte resistance
(Re) of ZnO@PN-CNF and ZnO@N-CNF electrode is 2.73
Q and 1.38 2, respectively. The SEI layer resistance (Ry) of
ZnO@PN-CNF and ZnO@N-CNF electrode is 76.8 ) and
85.4 Q, respectively. The charge-transfer resistance (R of
the ZnO@PN-CNF electrode (55.6 2) is lower than the
ZnO@N-CNF electrode (R = 61 2), because nitrogen-
doping carbon and active sites of amorphous ZnO improve
the electronic conductivity of ZnO@PN-CNF electrode.

Unique 1D porous nanostructure is the reason why
ZnO@PN-CNFs show an excellent electrochemical perfor-
mance. The structure shortens the time to reach stability and
does not need to undergo the process of cracking and pulver-
ization to form an amorphous state during the reaction of ZnO
crystals and Li ions. The transport interfaces of nanoparticles
are almost unchanged before and after the reaction under the
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coating of carbon. The existence of mesopores leads to further
shortening the distance of the insertion and extraction of Li
ions, which is conducive to large current charge and dis-
charge. This is why the capacity of ZnO @PN-CNFs is higher
than the comparative sample and the reversible performance is
excellent.

Conclusion

In summary, the ZnO @PN-CNFs were successfully prepared
by facile urea-assisted electrospinning followed by stabiliza-
tion and carbonization. The addition of urea changes the mor-
phology of the nanofibers, resulting in the formation of amor-
phous ZnO. The resulting special structure provides good
electron and ion transport capabilities and alleviates the vol-
ume change of ZnO@PN-CNFs. The ZnO@PN-CNF elec-
trode delivered a superior reversible capacity of 1073.2 mAh
g ' at 0.1 A™! for 100 cycles. Besides, the ZnO@PN-CNF
electrode displayed a discharge capacity of 703.1 mAh g
at 1 A" after 400 cycles. The synthesis of zinc oxide is facile
and scalable and can be used as a reference for the design of
superior-performance anode materials for LIBs.
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