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Abstract
New NiMoO4/CoMoO4 composite materials on Ni foam were successfully synthesized by a facile hydrothermal method using
the mixture powers of Ni(NO3)2·6H2O and Co(NO3)2·6H2O as raw materials. The phase composition, microstructure, and
morphology of the as-prepared composites were investigated by XRD, FTIR, SEM, EDS, and XPS. The electrochemical
behaviors of the composites were tested by cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance
spectroscopy. The results indicated that the as-prepared composites are uniformly distributed on the surface of Ni foam with
diameters between 2 and 3 μm, and the NiMoO4/CoMoO4 composite displays the best electrochemical properties when the
molar ratio of Ni/Co is 1:1. In 3 mol L−1 KOH electrolytes with current densities of 1, 4, 7, and 10 A g−1, the discharge specific
capacitance of NiMoO4/CoMoO4 composite is 2221, 1868, 1678, and 1568 F g−1, respectively, indicating its promising appli-
cations for high electrochemical performance energy storage device.
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Introduction

Energy is the material basis of human activities, the core driv-
ing force for economic development, and the essential condi-
tion for a country’s core competitiveness and sustainable eco-
nomic and social development [1–7]. Supercapacitors (SCs),
also known as electrochemical capacitors, electrochemical
double-layer capacitors, pseudocapacitors, ultracapacitors,
power capacitors, and gold capacitors, etc. [8, 9], are devices
that store energy through a double electrical layer at the
electrode/electrolyte interface, or through the electrochemical
Faraday redox reactions [10, 11]. As a new type of energy
storage device with high efficiency and cleanness, SC has
higher energy density and power density than traditional

dielectric capacitor. Compared with traditional battery,
supercapacitor has the advantages of high power density, fast
charging and discharging speed, long cycle life, and wide
working temperature range [12]. It can be widely used in
backup batteries, energy storage, and auxiliary peak power
and so on. The situation has great market value and commer-
cial potential in industrial control, military, electric power,
new energy vehicles, etc. [13, 14]. However, the low energy
density of SCs is an important reason to limit their develop-
ment. At present, the main solution is to develop electrode
materials with high electrochemical performance. Previous
studies on electrode materials for SCs are mainly focused on
transition metal oxides or hydroxides with pseudocapacitive
properties, for example, NiO [15, 16], RuO2 [17], MnO2 [18],
Co(OH)2 [19], V2O5 [20], and Ni(OH)2 [21]. The RuO2 ex-
hibits the best electrochemical performance. However, its high
price and toxicity limit its wide commercial application [22].

In recent years, themulti-hybrid nanomaterials of SCs (such
as NiMoO4 [23–25], CoMoO4 [26], ZnCo2O4 [27], NiCo2O4

[28], MnMoO4 [29], NiO@CeO2 [30], NiO@MnO2 [31],
NiCo2O4@NiWO4 [32] , NiMoO4/CoMoO4 [33] ,
NiCo2S4@NiMoO4 [34], and CoMoO4-NiMoO4·xH2O [35])
have become a strong exploration trend due to their intrinsic
properties, such as low cost, natural abundance, reliable redox
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transformation, and synergistic effects [36]. It is worth men-
tioning that the good electrochemical activity of nickel ions
and the better conductivity of molybdenum elements can be
attributed to the excellent electrochemical capacitance of the
obtained bimolybdate [37, 38]. For examples, Huang et al. [39]
successfully prepared wall-like hierarchical metal oxide
MMoO4 (M = Ni, Co) nanosheet arrays electrode material by
a facile hydrothermal method, which exhibited a high specific
capacitance of 1483 and 452 F g−1 for NiMoO4 and CoMoO4

at a current density of 2 A g−1. Cai et al. [40] synthesized
NiMoO4 nanospheres and nanorods by a facile hydrothermal
method, which exhibited a high specific capacitance of
974.4 F g−1 at a current density of 1 A g−1. Furthermore,
Tian et al. [41] rationally designed porous worm-like
NiMoO4 by electrostatic spinning, which offered good rate
capability (860.3 F g−1 at a current density of 20 A g−1), high
specific capacitance (1088.5 F g−1 at a current density of
1 A g−1), and long cycle life with a capacity retention of
73.9% after 5000 cycles. Usually, NiMoO4 electrode material
can offer high capacitance and low cycle stability, while
CoMoO4 exhibits a lower capacitance and good rate capability
[33]. Zhao et al. [42] prepared CoMoO4 nanorod electrode,
which exhibited a specific capacitance of 89.5 F g−1 at a cur-
rent density of 1 mA cm−2. Veerasubramani et al. [43] synthe-
sized plate-like CoMoO4 nanostructures via a facile
sonochemical approach, which showed a specific capacitance
of 133 F g−1 at a current density of 1 mA cm−2, and the capac-
itance retention is about 84% after 1000 cycles. Zhang et al.
[44] prepared NiMoO4@CoMoO4 nanospheres on Ni foam,
which delivered a greatly enhanced specific capacitance of
1601.6 F g−1 at a current density of 2 A g−1, as well as better
cycling stability and rate capability than pure NiMoO4 or
CoMoO4 material. Therefore, a large number of scientists
trend to investigate composite electrode materials for SCs,
and use the synergistic effect between different components
to increase the rapid diffusion and transport of electrons and
ions, which illustrate that the electrochemical performance of
the composite material is superior to that of the single material.

However, most current NiMoO4 or CoMoO4 literatures
[33, 45–47] adopt cladding paste electrode, making its actual
discharge capacity much smaller than its theoretical value.
Based on the above considerations, an integrated NiMoO4/
CoMoO4 electrode (with binder-free) based on Ni foamed is
prepared by a simple hydrothermal method, which is helpful
to reduce the contact resistance between electrode materials
and collector, and to improve the capacitive performance. As
far as we know, the novel NiMoO4/CoMoO4 micron structure
has rarely been reported. And the excellent electrochemical
properties of the composites are attributed to the synergistic
effect of NiMoO4 and CoMoO4. What’s more, the unique
structure can provide channels for rapid diffusion process
and enrich active reaction sites; shorten electron/ion transport
pathways, improving the redox reaction of active material not

only on the surface of electrode but also in the electrolyte; and
then improve the utilization of active materials. Using these
advantages, the as-prepared NiMoO4/CoMoO4 electrode ma-
terials have great potential application value in the develop-
ment of electrochemical energy storage devices.

Experimental

Material preparation

Nickel foam was cleaned with acetone, deionized water, hy-
drochloric acid, and deionized water for 10 min through ultra-
sonic cleaning, and then completely dried in air. In the typical
hydrothermal synthesis process, all reagents are used as raw
materials without further purification. The molar ratios of Ni
and Co were controlled to be 1:2, 1:1, 2:1, 3:1, 4:1, and 5:1,
respectively. The mass of Ni(NO3)2·6H2O and Co(NO3)2·
6H2O at different nickel-cobalt ratios is calculated, and then,
0.4839 g Na2MoO4·2H2O and 0.1089 g Na acetate are
weighed. The volume ratio of water to ethanol is 2:1, that is,
40 mLwater and 20 mL ethanol are mixed evenly and divided
into 3 equal parts to dissolve the above substances. Then, the
Ni(NO3)2 solution, Co(NO3)2 solution, and Na acetate solu-
tion were added to Na2MoO4 solution drop by drop and stirred
fully under a magnetic stirrer. After that, the homogeneous
solution and the prepared nickel foam are transferred to the
Teflon-lined stainless steel autoclave. The hydrothermal reac-
tion was maintained at 150 °C for 6 h. After a reactor was
naturally cooled to room temperature, a precursor was washed
several times with distilled water and anhydrous ethanol, and
then dried completely in air at 60 °C throughout the night.
Finally, the NiMoO4/CoMoO4 composite material was obtain-
ed after annealing at 300 °C for 5 h.

Structure characterizations

The phase and crystal structure of the prepared samples were
examined by X-ray powder diffraction (XRD, D8, Bruker)
equipped with Cu Kα radiation in the 2θ range of 10–80° at
a scanning rate of 4° min−1. The chemical composition of the
samples were determined by Fourier transform infrared spec-
troscopy (FTIR). The morphology and microstructures of the
as-products were characterized by scanning electron micros-
copy (SEM; JSM 6490) and energy-dispersive spectrometry
(EDS). The surface chemical compositions of the obtained
sample were analyzed by X-ray photoelectron spectroscopy
(XPS, ESCALAB 250Xi) with an Al Kα source.

Electrochemical measurements

The electrochemical performance of the NiMoO4/CoMoO4

composites was examined by CHI 660E electrochemical
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workstation using three-electrode cell system in 3 mol L−1

KOH aqueous solution. The prepared NiMoO4/CoMoO4,
platinum foil, and Hg/HgO were used as a working electrode,
counter electrode, and reference electrode, respectively. The
electrochemical impedance spectroscopy (EIS) measurement
is also operated in the frequency range of 0.01~100 kHz with
AC amplitude of 5 mV. The specific capacitance (Cm, F g−1),
energy density (E, Wh kg−1), and power density (P, W kg−1)
were calculated using the following equations [48]:

Cm ¼ C=m ¼ i�Δt
m�Δu

ð1Þ

where i (A), m (g),Δt (s), andΔu (V) represent the discharge
current, the mass of active electrode material, the total dis-
charge time, and the potential window, respectively.

Results and discussion

Determination of the optimum ratio sample

Figure 1a displays the typical cyclic voltammetry (CV) curves
of NiMoO4/CoMoO4 composite electrodes with different Ni/
Co molar ratios at a scan rate of 5 mV s−1 recorded in a
potential window of 0–0.5 V. Apparently, the CV curves of
the resulting NiMoO4/CoMoO4 composite electrode supply
typical Faradaic capacitive behavior with a pair of well-
defined redox peaks are based on Ni and Co diffusion con-
trolled reversibly changing their oxidation states (Ni2+/Ni3+

and Co2+/Co3+) [49], which is distinct from that of EDLCs
characterized by nearly a rectangular shape. And the oxidation
peak potential and reduction peak potential of NiMoO4/
CoMoO4 composites are about 0.47 Vand 0.37 V, respective-
ly. Furthermore, although Mo is a transition metal, it does not

participate in the redox reaction directly, but rather enhances
the electrical conductivity, thus improving the electrochemical
performance of the electrode [50].

In order to further compare and analyze the electrochemical
properties of NiMoO4/CoMoO4 composite electrodes, a series
of experiments on Ni/Co molar ratio were carried out, and the
corresponding galvanostatic charge-discharge (GCD) curves
recorded in a potential window of 0–0.5 V at 1 A g−1 are
shown in Fig. 1b. The GCD curves of NiMoO4/CoMoO4

composite electrodes displayed lines with charge-discharge
platform rather than smooth lines, which indicates the
pseudocapacitive nature and consistent with the CV results.
The near symmetry of the GCD curves indicates that the
Faraday redox reaction is highly reversible. More importantly,
according to Eq. (1), the specific capacitance of the electrode
can be calculated using the charge-discharge curve. A maxi-
mum specific capacitance was observed for the composite
with a Ni/Co mass ratio of 1:1, which may be promising
candidates for the practical application of SCs.

The electrochemical impedance spectroscopy (EIS) is used
to investigate the internal resistance of the electrode material,
and the resistance between the electrode material and the elec-
trolyte. Figure 2 shows the EIS plots of NiMoO4/CoMoO4

composites with different Ni/Co molar ratios recorded from
0.01~100 kHz with a perturbation amplitude of 5 mV.
Figure 2a shows a semicircle section in the high-frequency
region and a slant line in the low-frequency region. All the
plots are almost the same, including semicircles and oblique
lines. High-frequency semicircles represent the induced resis-
tance caused by electron transfer of interfacial active sub-
stances. Diameter determines the resistance of electron trans-
fer on the surface of electrodes, and the sloped lines at the low
frequency region represent the Warburg impedance caused by
diffusion [51]. In addition, the intercepts of the semicircles
and the real axis at high frequency can also be obtained.

Fig. 1 a CV curves of NiMoO4/CoMoO4 composite electrodes with different Ni/Co molar ratios (1:2, 1:1, 2:1, 3:1, 4:1, and 5:1) at 5 mV s−1. b GCD
curves of NiMoO4/CoMoO4 composite electrodes with different Ni/Co molar ratios (1:2, 1:1, 2:1, 3:1, 4:1, and 5:1) at 1 A g−1
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Figure 2b shows the intercepts of NiMoO4/CoMoO4 compos-
ites with different Ni/Co molar ratios are approximately the
same. In other words, the equivalent series resistance does not
change much. The slope value of the composites with a Ni/Co
molar ratio of 1:1 is higher than that of other samples, which

indicates that the Warburg impedance is smaller and the dif-
fusion impedance of the active substance in the electrolyte is
smaller, which thus accelerates the diffusion of ions in active
substances and electrolytes, as well as the transfer of electrons
and ions, and improves the degree of the Faraday reaction

Fig. 2 a EIS plots of NiMoO4/CoMoO4 composite electrodes with different Ni/Comolar ratios (1:2, 1:1, 2:1, 3:1, 4:1, and 5:1). b The enlarged EIS at the
high-frequency region
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Fig. 3 a CV curves of NiMoO4/CoMoO4 composite electrode with Ni/
Co molar ratio 1:1 at various scan rates of 2, 5, 10, 15, and 20 mV s−1. b
GCD curves of NiMoO4/CoMoO4 composite electrode with Ni/Comolar

ratio 1:1 at various current densities of 1, 4, 7, and 10 A g−1. c Specific
capacitances of the electrode as a function of current densities
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Table 1 Comparison with previously reported supercapacitor electrode materials

Electrode materials Morphology

Specific capacitance (F 

g-1) (low current density)

Specific capacitance (F 

g-1) (high current density)

Reference

NiMoO4/CoMoO4 (this 

work)

2221 (1 A g-1) 1568 (10 A g-1)

MnO2 258.7 (0.1 A g-1) 165.3 (0.3 A g-1) [57]

NG/NiMoO4 1913 (1 A g-1) 1350 (10 A g-1) [58]

Ni1.4Co0.6P@C 1571.3 (1 A g-1) 1480 (10 A g-1) [59]

NiCo2S4 1130 (0.4 A g-1) 960 (5 A g-1) [60]

Co3O4 1060.0 (1 A g-1) 642.5 (10 A g-1) [61]

ZnCo2O4 843 (1 A g-1) 613 (3 A g-1) [62]

Co3O4/CdO 453.6 (2 A g-1) 366 (10 A g-1) [63]

NiCoFeO4 1263 (1 A g-1) 458 (11 A g-1) [64]

NaNi0.33Co0.67PO4·H2O 828 (1 A g-1) 734 (10 A g-1) [65]

PANI/NiO/SGO 1350 (1 A g-1) 775 (10 A g-1) [66]

NiMoO4/MWCNTs 805 (1 A g-1) 584 (10 A g-1) [67]

NCSs@Fe3O4 206 (1 A g-1) 90 (10 A g-1) [68]

NiCo-MOF@PNTs 1109 (0.5 A g-1) 957 (10 A g-1) [69]

NiCo2O4 790 (1 A g-1) 710 (10 A g-1) [70]

Ni2P2O7 772.5 (1 A g-1) 544 (8 A g-1) [71]

L-AC@MnO2 248 (1 A g-1) 184 (10 A g-1) [72]

NiO/Ni3S2@graphite 768 (1 A g-1) 549 (10 A g-1) [73]

Co9S8/S-doped rGO 708.3 (1 A g-1) 590 (10 A g-1) [74]

NiO/NiS@CNT 809.7 (1 A g-1) 765.1 (10 A g-1) [75]

Co3O4-PANI@ZIF-8NPC 1407 (1 A g-1) 742 (10 A g-1) [76]

NiMoO4/CoMoO4 740 (1 A g-1) 474 (10 A g-1) [77]
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[52]. As mentioned above, when the molar ratio of Ni/Co is
1:1, the obtained NiMoO4/CoMoO4 composite has the best
electrochemical performance.

Characterization of the optimum ratio sample

Figure 3a shows the CV curves of NiMoO4/CoMoO4 com-
posite with Ni/Co molar ratio 1:1 at various scan rates of 2, 5,
10, 15, and 20 mV s−1 in the potential range of 0–0.5 V. With
the increase of scanning rate from 2 to 20 mV s−1, the redox
peak potential almost remains unchanged, but the area of CV
curve and peak current gradually increased. Therefore, accel-
erating electron transport and optimizing electrode structure
can realize the rapid redox reaction process for energy storage.
The shape of CV curve changed slightly, which indicated that
the sample had good rate characteristics and excellent electro-
chemical properties [53–56].

Figure 3b shows the GCD curves of NiMoO4/CoMoO4

composite with Ni/Co molar ratio 1:1 at various current den-
sities of 1, 4, 7, and 10 A g−1, respectively. A well-defined
platform can be observed in the GCD curves, and the dis-
charge specific capacitance calculated according to Eq. (1) is
shown in Fig. 3c. When the discharge current densities are 1,
4, 7, and 10 A g−1, the excellent discharge specific capaci-
tances of the composite are 2221, 1868, 1678, and 1568 F g−1,
respectively. When the current density increases from 1 to
10 A g−1, the discharge time and discharge specific capaci-
tance decrease gradually. It is impressive that the highest dis-
charge specific capacitance is 2221 F g−1 at 1 A g−1. When the
current density increases to 10 A g−1, the discharge specific
capacitance (1568 F g−1) is 70.6% retention for 1 A g−1.
However, according to literature report [41], the specific ca-
pacitance of NiMoO4 is 1088.5 F g−1 at current density of
1 A g−1, which indicates that the synergistic effect of
NiMoO4/CoMoO4 composite makes it a high capacity and
excellent rate material [48].

To demonstrate the advantages of the material, in
Table 1, we compare the related properties (such as specific
capacitance at low and high current densities) of NiMoO4/
CoMoO4 electrode with other recently reported transition
metal oxide–based electrodes in the literature. Compared
with previous studies, the NiMoO4/CoMoO4 electrode re-
ported in this paper has higher specific capacitance and
bigger rate capability. This is due to the fact that NiMoO4

and CoMoO4 components exhibit good synergies, making
the composite exhibit better capacitive properties, indicat-
ing that NiMoO4/CoMoO4 composite is an ideal material
for building SCs.

Figure 4 shows the XRD results of the as-synthesized
NiMoO4/CoMoO4 composite with Ni/Co molar ratio 1:1.
The diffraction patterns of single NiMoO4 and pure
CoMoO4 are consistent with the standard spectra of
NiMoO4 (JCPDS card no. 33-0948) and CoMoO4 (JCPDS

card no. 25-1434), respectively. In addition, the present both
the characteristic diffraction peaks of NiMoO4 and CoMoO4

phases are appeared in the spectra of NiMoO4/CoMoO4 com-
posite, indicating the coexistence of NiMoO4 and CoMoO4.
For the hybrid composite, the diffraction peaks at 14.3°, 25.3°,
28.8°, 32.7°, 43.8°, and 47.5° are attributed to the reflections
of (110), (002), (220), (022), (330), and (204) planes, which is
in good agreement with the standard spectrum of NiMoO4

[51]. In addition, the other diffraction peaks occurring at
14.1°, 25.1°, 28.5°, 32.3°, and 43.2° can be readily indexed
to CoMoO4 [78–80]. Therefore, XRD analysis shows that we
have successfully synthesized NiMoO4/CoMoO4 composite
on Ni foams. Besides, there are still some weak peaks, show-
ing a lower crystallinity.

Figure 5 shows the FTIR spectra of the prepared samples.
Obviously, the typical peaks 958 cm−1, 873 cm−1, and

Fig. 4 XRD pattern of NiMoO4/CoMoO4 composite with Ni/Co molar
ratio 1:1

Fig. 5 FTIR spectra of NiMoO4/CoMoO4 composite with Ni/Co molar
ratio 1:1
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738 cm−1 were observed on the NiMoO4/CoMoO4 curve, cor-
responding to the absorption vibrations of Mo–O, Co–O, and
Ni–O bonds, respectively. The extra peak at 3423 cm−1 is due
to the stretching vibration of -OH. In addition, the bending
vibration of the FTIR peak at 1620 cm−1 is due to the physical
adsorption of water molecules in the sample, this can indicate
the presence of crystal water in the sample [81].

In order to further investigate the valence states of ele-
ments in the as-synthesized NiMoO4/CoMoO4 composite,
XPS experiments were performed, and the corresponding
results are shown in Fig. 6. In detail, the survey spectra
(Fig. 6a) of the composite sample exhibits the distinct peaks
of Co 2p, Ni 2p, Mo 3d, and O 1s peaks located at 781.2,
854.7, 231.2, and 530.1 eV, revealing the presence of Co,

Fig. 6 a Full XPS spectra and the deconvoluted b Co 2p, c Ni 2p, d Mo 3d, and e O 1s spectra of NiMoO4/CoMoO4 composite
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Fig. 7 a EDS pattern of NiMoO4/CoMoO4 composite with Ni/Co molar ratio 1:1. EDS distribution mapping of b Co, c Ni, d Mo, and e O
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Ni, Mo, and O elements, respectively. Figure 6b shows the
Co 2p core level spectrum; the two main fitted peaks at
796.7 and 780.6 eV, accompanied two diminutive satellite
peaks at 803.1 and 784.2 eV, are assigned to Co 2p1/2 and
Co 2p3/2 energy level, respectively. The primary peaks and
shakeup satellite peaks of Co 2p1/2 and Co 2p3/2 indicate the
Co2+ valence state [33]. As depicted in Fig. 6c, the Ni 2p
spectrum was fitted by four peaks. The major peak at
873.4 eV and its satellite peak at 879.9 eV are owning to
Ni 2p1/2 level, whereas those at 855.6 and 861.7 eV are
ascribed to Ni 2p3/2 level. Further, the gap in binding ener-
gy between the main peaks of Ni 2p1/2 and Ni 2p3/2 is
17.8 eV, proving the existence of the Ni2+ oxidation state
[44]. The deconvoluted Mo 3d spectrum (Fig. 6d) exhibits
two major peaks at 235.3 and 232.2 eV which can be
assigned to Mo 3d3/2 and 3d5/2 energy level, respectively.
The two peaks are separated by a binding energy of 3.1 eV,
confirming the existence of an oxidation state of Mo6+ [82],
which is consistent with the previous reports [83]. In addi-
tion, the O 1s spectrum (Fig. 6e) can deconvoluted into
three oxygen peaks, located at 529.9, 530.5, and 532.2 eV
of O1, O2, and O3 components, respectively. The O1 com-
ponent is related to metal–oxygen bond, while O2 compo-
nent is attributed to functional groups and defect sites, and
O3 component is ascribe to the surface physical adsorption
of H2O [84].

Figure 7a is the EDS spectrum of NiMoO4/CoMoO4 com-
posite, which shows the surface composition of the compo-
nent. The results show that the material is composed of Co, Ni,
Mo, and O elements, and the ratio of Co to Ni is close to 1:1,
suggesting that the sample is mainly composed of Co, Ni, Mo,
and O, which is consistent with the XRD results [44, 85]. As
shown in Fig. 7b–e, the element mapping images indicate the
uniform distribution of Co, Ni, Mo, and O in NiMoO4/
CoMoO4 composite sample, suggesting the coexistence of
NiMoO4 and CoMoO4.

Figure 8a and b show the SEM images of synthesized
NiMoO4/CoMoO4 composite with Ni/Co molar ratio 1:1.

SEM images of prepared composite show grain-like morphol-
ogy. The low-magnification SEM images in Fig. 8 depict the
as-prepared composites are uniformly distributed on the sur-
face of nickel foam after mild hydrothermal procedures. The
aggregation of these small particles forms a porous structure,
and their sizes are between 2 and 3 μm. This porous structure
composite material formed on nickel foam provides abundant
space and electroactive sites for electrochemical reaction, and
shortens the length of diffusion path, so that its electrochem-
ical properties can be significantly improved.

Conclusions

In summary, NiMoO4/CoMoO4 composite was successfully
synthesized by an affinity hydrothermal method, which have
the advantages of simplicity and cost-effectiveness. The re-
sults indicated that the as-prepared composite with the Ni/Co
molar ratio of 1:1 has the best electrochemical properties,
which are uniformly distributed on the surface of nickel foam
with diameters between 2 and 3 μm. The specific capacitance
of NiMoO4/CoMoO4 composite was 2221, 1868, 1678, and
1568 F g−1 at the current density of 1, 4, 7, and 10 A g−1 in
3 mol L−1 KOH electrolytes. In terms of specific capacitance,
rate capability, cost, and simple synthesis process, its excellent
electrochemical performance is satisfactory, even better than
that reported in the literature, indicating its broad application
prospect in high-performance SCs. The enhancement of elec-
trochemical performance can be mainly due to the introduc-
tion of CoMoO4 and the synergistic effect of cobalt molyb-
dates and nickel molybdates, which can provide channel for
quick diffusion and transport of electrons and ions and a large
number of active sites.
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Fig. 8 a, b Typical SEM images of NiMoO4/CoMoO4 composite with Ni/Co molar ratio 1:1
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