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Crystal doping of K ion on Na site raises the electrochemical
performance of NaTi2(PO4)3/C anode for sodium-ion battery
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Abstract
Sodium-ion battery is a rocking chair battery similar to lithium-ion battery and is considered to have a promising future due to low
cost and extensive resources. As anode for sodium-ion battery, NaTi2(PO4)3 has attracted lots of attention due to its thermal
stability and three-dimensional channels. In this work, we employed crystal doping of K ion on Na site to raise electrochemical
performance of NaTi2(PO4)3/C composites. NaTi2(PO4)3/C doped with K was synthesized and used as anode for sodium-ion
battery. XRD and SEM results imply that introduction of K ion has no significant change in the main crystal form and
morphology of materials. Among Na1-xKxTi2(PO4)3/C (x = 0, 0.01, 0.03, 0.05) composites, Na0.97K0.03Ti2(PO4)3/C (NC/K-3)
shows the best rate property, outstanding cycling performance, and the lowest charge transfer resistance. It delivers capacities of
206.65, 139.14, and 94.45 mAh g−1 at 0.1, 1.2, and 3 A g−1, severally. Besides, even after 1000 cycles at 1.2 A g−1, NC/K-3 keeps
the discharge capacity at 89.5 mAh g−1 and 39.2 mAh g−1 higher than that of bare NaTi2(PO4)3/C. In conclusion, K doping on Na
site by sol-gel route is a viable modification method to improve performance of NaTi2(PO4)3/C composite as anode for sodium-
ion batteries.
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Introduction

Fossil fuels bring a range of environmental pollution prob-
lems, and more and more new energy sources are being used
in response to sustainable development requirements [1–5].
Wind and solar energy is limited by time and location and
requires continuous and efficient energy storage systems to
provide a sustainable energy supply [6–9]. Secondary electro-
chemical battery is a pivotal technology for large-sized energy

storage systems [10–13]. Among them, lithium-ion batteries
are suitable for a variety of electronic devices and large-sized
energy storage, such as smart phones, electric bicycles, and so
on [14–18]. In addition, the demand of power storage systems
such as electric vehicles and hybrid vehicles is also increasing
[19, 20]. Lithium resources are being consumed more and
more, leading to its high price and resource lack [21, 22].
Therefore, it makes sense to research and develop other new
battery systems [23].

Sodium-ion batteries are expected to buffer excessive de-
mand for lithium-ion batteries [24–26], which have attracted
widespread attention from battery researchers. The cost of
sodium-ion batteries is low due to abundant sodium reserves
and wide range of sources [27]. Low-cost batteries also con-
tribute to the further application and development of energy
storage systems [28]. As a result, reports on sodium-ion bat-
teries have increased incredibly in last decades [29, 30]. Many
electrode materials have been studied, such as carbon mate-
rials [31, 32], TiO2 [33], SnS2 [34], Na2Ti3O7 [35], NaVO2

[36], LiTi2(PO4)3 [37], and NaTi2(PO4)3 [38] as anode mate-
rials and NaxMnO2 [39], NaxCoO2 [40], Na3V2(PO4)3 [41],
and NaFePO4 [42] as cathode materials. The working process
of sodium-ion batteries is realized by transfer of electrons and
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the intercalation/deintercalation of sodium ions. They are
“rocking chair type” batteries [43, 44] like lithium-ion batte-
ries. But in terms of ionic radius, Na is larger than Li, which
tends to cause greater expansion in volume during insertion
process, further resulting in unsatisfactory cycling stability
and inferior specific capacity [45]. Hence, to meet increasing
demand, the development of suitable electrode materials for
sodium storage remains a huge challenge.

NaTi2(PO4)3 possesses Na superionic conductor
(NASICON) structure and is a class of fast ion conductor
material [46, 47]. The [TiO6] octahedron and [PO4] tetra-
hedron in the NaTi2(PO4)3 crystal are interconnected by
oxygen atoms at the apex to form a [Ti2(PO4)3]

− polyanion
structure [48, 49]. It has large channels inside, which are
very suitable for the rapid transmission of lithium ions and
sodium ions. However, its intrinsic conductivity is low, and
this shortcoming is usually improved by combining with
conductive additives or carbon [50, 51]. For instance, Zuo
et al. [52] have proposed and manufactured reduced
graphene and carbon co-modified NaTi2(PO4)3 sample by
hydrothermal process and high-temperature calcination.
Graphene and coated carbon can form a conductive net-
work in this composite, which effectively improves the
conductivity and sodium storage performance. At 0.1 C,
the corresponding discharge capacity of modified
NaTi2(PO4)3 can reach 129 mAh g−1. Another way to im-
prove conductivity is ion doping [53], including anion
doping and cation doping. Su et al. [54] have proposed a
novel nanostructured Na1-2xTi2(PO4)3-xFx anode for
sodium-ion batteries. Appropriate fluorine doping in-
creases the ion/electron transport speed, resulting in ultra-
long cycle life. Capacity decay of Na2.9Ti2(PO4)2.95F0.05/C
at 10 °C is only 10% after 1000 cycles.

In this paper, crystal doping strategy was employed to raise
the sodium storage performance of NaTi2(PO4)3/C com-
pounds for sodium-ion battery. We used potassium instead
of sodium partially and phenolic resin as carbon resource to
construct Na1-xKxTi2(PO4)3/C anode materials. An easy sol-
gel approach was utilized to prepare composites, roughly as
depicted in Fig. 1. And the electrochemical behavior of all
samples is reported in this paper.

Experimental

Synthesis

Na1-xKxTi2(PO4)3/C (x = 0, 0.01, 0.03, 0.05) compounds were
designed and compounded as following the steps. By stirring
to form initial solution, 1.7202 g Ti(OC4H9)4 and 15 mL eth-
anol were mixed. H3PO4, CH3COONa ∙3H2O, and
CH3COOK with stoichiometric ratio were added to the solu-
tion. After that, 2-mL concentrated hydrochloric acid and
0.17-g phenolic resin were added successively and then stirred
for 3 h at 55 °C in closed condition and dried for 10 h at 80 °C
in open condition. Each precursor was calcined for 5 h at
750 °C in argon-filled tube furnace. Na1-xKxTi2(PO4)3/C
(x = 0, 0.01, 0.03, 0.05) compounds were abbreviated as NC,
NC/K-1, NC/K-3, and NC/K-5, respectively.

Characterizations

Crystal type of four samples were examined by X-ray diffrac-
t ion (XRD), conducted on X-ray di ff rac tometer
(D/MAX2500PC) with the radiation of Cu-Kα. Morphology
features of as-prepared samples and electrodes after cycling
testing were investigated through S-4800 scanning electron
microscopy (SEM) manufactured in Hitachi. Each cycled
electrode was obtained by disassembling the cell. And the
electrode was rinsed by absolute ethanol a few times. Then
it was dried for 8 h at 80 °C.

Electrochemical measurements

Composite powder, polyvinylidene fluoride (PVDF), and su-
per P were blended based on a mass ratio of 7:1.5:1.5 and then
dissolved in N-methyl-2-pyrrolidone (NMP). The liquid mix-
ture was coated on Cu foil. After drying for 6 h at 80 °C,
working electrode was got after cutting Cu foil into small
wafer with diameter of 14 mm. The mass load of electrode
was 1.5–2.0 mg cm−2. CR2016 half cell used metallic sodium
as counter electrode, glass fiber as membrane, and prepared
electrode as working electrode. Electrolyte was 1 M NaClO4

dissolved in mixed organic solvents, including DMC, EC, and

Fig. 1 Schematic diagram of the
synthesis process of Na1-
xKxTi2(PO4)3/C composites
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EMC with volume ratio of 1:1:1. In addition, 5% FEC was
added to the electrolyte to make it more stable. All cells were
assembled in the glove box with oxygen and water < 0.1 ppm.
Chenhua electrochemical workstation (CHI660E) was
employed to conduct electrochemical impedance spectrosco-
py (EIS) and cyclic voltammetry (CV) tests for cells. The scan
rate and voltage window for CV tests were 0.2 mV s−1 and
0.01–3 V, respectively. The frequency and amplitude for EIS
tests were 0.01–100,000 Hz and 5 mV, severally. EIS tests for
cells were performed after activating at 0.04 A g−1 for 5 cycles
and then charging to 2.1 V for 2 h. Rate and cycling perfor-
mance were conducted on Neware battery testing system (CT-
3008W), which were tested by galvanostatic charge-discharge

mode. The rates for rate performance varied from 0.04 to 3 A
g−1. Cycling performance was tested at current of 1.2 A g−1 for
1000 cycles.

Results and discussion

Figure 2 displays XRD pattern of all samples. Clear diffrac-
tion peaks reflect crystal form characteristics of NASICON-
type NaTi2(PO4)3. Four sets of similar diffraction peaks indi-
cate similar crystal structure of four samples, all of which are
ascribed to the rhombohedral structure of NaTi2(PO4)3
(JCPDS No. 01–084-2008). The obvious diffraction peaks
of impurity do not appear, indicating that each synthesized
complex has the pure phase.

As seen in Fig. 3, SEM images exhibit the surface
morphology comparison of NC and NC/K-3. It can be
seen that the overall morphology of two materials is
loose, with some agglomeration. As shown in high-
magnification images, nano-sized particles exist in both
materials. Small nanoparticles and loose structure can
help the transport of Na ions between electrolyte and crys-
tal. Pristine and K-doped NaTi2(PO4)3 demonstrate no ob-
vious difference on the dispersion and particle size. It
shows that the doping of K ion on Na site does not have
a momentous influence on morphology of composite.
Good stability of morphology is beneficial to get the rea-
son of improved performance of K-doped sample.

Cyclic voltammetry tests of NC and NC/K-3 were conduct-
ed on half cells, and cyclic voltammetry curves are shown in
Fig. 4. Two sharp redox peaks indicate that both NC and NC/

Fig. 2 XRD patterns of all samples

Fig. 3 SEM images for NC (a, b)
and NC/K-3 (c, d) at different
magnifications
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K-3 electrodes can realize the reversible intercalation/
deintercalation of sodium ions. The peaks located at 1.89–
2.35 V and 0.13–0.61 V correspond to redox reactions of
Ti4+/Ti3+ and Ti3+/Ti2+, respectively. From Fig. 4a, oxidation
and reduction peak current densities at about 2.1 V for NC are
0.21 and 0.19 A g−1, severally. And those for NC/K-3 are 0.29
and 0.28 A g−1 (Fig. 4b). Peak current densities increase ob-
viously for NC/K-3, demonstrating that the K-doping strategy
is effective. Furthermore, peak current densities at around
0.4 V for NC/K-3 are also higher than those of NC. Cyclic
voltammetry data illustrate that sodium storage properties of
NC/K-3 are better than those of NC coming from the efficient
crystal doping, as K doping cannot affect the morphology of
composites, which is confirmed by the SEM results.

Aiming at discussing the kinetic process of charge trans-
fer in electrode, EIS tests are carried out on half cells, and
spectra are displayed in Fig. 5. As seen from Nyquist plot,
the low-frequency line means Warburg impedance (Zw),
and middle-frequency semicircle means charge transfer re-
sistance (Rct). The larger slope of line for NC/K-3 indicates
that sodium ions diffuse faster in the NC/K-3 electrode

than NC electrode [55]. It is noted that Rct for NC and
NC/K-3 are 201.31 Ω and 106.27 Ω, severally. The smaller
Rct data illustrate that NC/K-3 electrode has a faster
intercalation/deintercalation kinetics of sodium ions. This
may be due to the increase in unit cell volume of NC/K-3
after K doping, which provides a wider intercalation/
deintercalation channel for sodium ions and accelerates
the migration of sodium ions [56]. At high frequency,
two curves both have an intercept on Z-axis, corresponding
to ohmic resistance (Rs). Two composites exhibit the sim-
ilar Rs, which implies that K doping has no obvious effect
on electrical conductivity.

The rate performances of four samples are given in
Fig. 6. Three samples with K doping have a significant
increase in discharge capacity, and NC/K-3 reaches the
highest discharge capacity in four samples. NC/K-3 de-
livers discharge capacities of 206.65, 139.14, and
94.45 mAh g−1 at 0.1, 1.2, and 3 A g−1, severally, which
are 118.54, 100.09, and 69.53 mAh g−1 higher when com-
pared with the bare NC. When current density goes from 3
to 0.1 A g−1, NC/K-3 can keep discharge capacity at
197.75 mAh g−1. This value almost reaches 95.8% of its
original value, indicating excellent reversibility of NC/K-3
electrode. The improved properties of K-doped composite
are probably attributed to that K doping can lead to the
increase in unit cell volume. This can also be seen in pre-
vious reports . Xia et al . [57] prepared K-doped
Na3Fe2(PO4)3 cathode materials for sodium-ion battery
and found lattice parameters indeed increase after K dop-
ing. The unit cell volume of K-doped samples increases
slightly compared with blank Na3Fe2(PO4)3. Excessive
doping may cause slight damage to the lattice structure,
resulting in poor electrochemical performance. Charge-
discharge profiles at different current densities for NC
and NC/K-3 are given in Fig. 6b and c. All profiles exhibit
planus plateaus for charging and discharging at 2.1 and

Fig. 4 Cyclic voltammetry curves of NC (a) and NC/K-3 (b) composites
at scan rate of 0.2 mV s−1

Fig. 5 Electrochemical impedance spectra for NC and NC/K-3
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0.4 V approximately, which correspond with two pairs of
redox peaks in CV tests. All plateaus for NC/K-3 are lon-
ger and more stable, and this advantage is more pro-
nounced for plateaus around 0.4 V. With the increase of
current, the stable existence of the charging and

discharging plateaus indicates good rate performance for
NC/K-3.

Figure 7 displays long-term cycling performance of
two samples and coulombic efficiency for each cycle.
The initial discharge capacity and coulomb efficiency of
NC/K-3 are higher than those of NC. Moreover, after
charge-discharge process for 1000 cycles, NC/K-3 de-
livers discharge capacity of 89.5 mAh g−1. In contrast,
NC releases lower discharge capacity with value of
50.3 mAh g−1. Discharge capacities of NC/K-3 are always
higher than those of NC. Apparently, NC/K-3 demon-
strates excellent cycling performance at high current den-
sity. This is in accord with the rate results. From Fig. 7b,
coulombic efficiency for NC and NC/K-3 is about 100%
after increasing in first few cycles, implying stable and
high-efficient nature of cells.

In order to investigate the structure stability of NC/K-3, we
compared the morphology of NC/K-3 after 100 and 1000 cy-
cles at 1.2 A g−1. SEM images of NC/K-3 after different cycles
are shown in Fig. 8. As can be seen from Fig. 8, there is no
significant etching and structural comminution on the

Fig. 6 Rate performance of four samples (a), charge-discharge profiles
for NC (b), and NC/K-3 (c) at different rate

Fig. 7 Cycling performance (a) and coulombic efficiency (b) for NC and
NC/K-3 at 1.2 A g−1
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electrode surface. The stable structure helps to output stable
capacity. This also explains the outstanding cycle performance
of NC/K-3.

Conclusion

Na1-xKxTi2(PO4)3/C (x = 0, 0.01, 0.03, 0.05) compounds were
synthesized by simple sol-gel way. A small amount of doped
K does not change crystal form of NASICON NaTi2(PO4)3
and surface morphology of composites. However, doping of
K on Na site for NaTi2(PO4)3 has obvious effect on its elec-
trochemical performance and has been shown to be positive.
NC/K-3 delivers the highest discharge capacity at different
rates in four composites (206.65, 139.14, and 94.45 mAh
g−1 at 0.1, 1.2, and 3 A g−1). As comparison, NC delivers
88.11, 39.05, and 24.92 mAh g−1 at 0.1, 1.2, and 3 A g−1,
severally. Moreover, NC/K-3 also has long cycling life and
high capacity (89.5 mAh g−1 after 1000 cycles at 1.2 A g−1).
These elementary electrochemical data imply that K-doped
NaTi2(PO4)3 is a potential competitive anode material in
sodium-ion battery.
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