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Abstract
Hybrid membranes were prepared by incorporating silica with propyl-imidazoline groups in polybenzimidazoles (phthalide-contain-
ing PBI or PBI based on 2,6- or 2,5-pyridinedicarboxylic acids). The influence effects of the silica precursor hydrolysis conditions on
the conductivity of the hybridmembranes are studied. Ionic conductivity, water uptake, phosphoric acid doping, and gas permeability
of the obtained materials were found to depend on the preparation method and the silica loading. The materials with 10 wt% of
functionalized silica present the highest conductivity. A decrease of hydrogen permeability is observed for low silica loadings.
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Introduction

In the modern world, energy is an increasingly important is-
sue. Its consumption doubles every 30 years [1]. At the same
time, widely used methods of energy production lead to a
significant environmental impact. This forces the develop-
ment of sustainable pollution-less renewable energy sources
[2–4]. There is a growing interest in solar, wind, and tidal
power. However, all these sources operate intermittently
[5–7]. Consequently, there is a demand for energy storage
systems. In respect to long-term storage, the most promising
technology is a fuel cell (FC) [8–10]. Moreover, the fuel cells
are autonomous power sources. About 90% of conventional

fuel cells are the low-temperature proton-exchange membrane
FCs. A fast start-up and simplicity of operation are among
their main advantages. At the same time, a high humidity of
the supplied gas should be maintained, as well as the high-
purity hydrogen should be used [8]. This makes it impossible
to use cheaper hydrogen produced by conversion of the natu-
ral gas, alcohols, or biomass [11–13]. Therefore, it is neces-
sary to develop fuel cells able to operate at 120–200 °C and at
low humidities. Under these conditions, the platinum catalytic
activity is enhanced, its poisoning by carbon monoxide is
diminished, and the fuel cell management is simplified [14,
15].

In this context, there is a growing interest in the membranes
based on polybenzimidazoles (PBIs) doped with phosphoric
acid or with inorganic hydroxides [16, 17], which are able to
operate at elevated temperatures and have high chemical re-
sistance and thermal stability. A lot of works is devoted to the
development of new PBI-based polymers with different struc-
tures [18, 19], methods of their stabilization and properties
improvement [20, 21], as well as their application in FCs
[22, 23]. Stable performance during long-term operation up
to 18,000 h at 200 mAh and temperature up to 160°С was
achieved for a PBI/H3PO4-based hydrogen-air FC [24, 25].
However, further increase in the current density results in
membrane degradation or phosphoric acid leaching [26].

Stabilization of phosphoric acid in the polymer matrix is
one of the challenges in the development of PBI-membranes.
The main approach is associated with incorporation of organic
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or inorganic materials with a high sorption activity [27–32]. In
addition, the conductivity of PBI membranes usually corre-
lates with the phosphoric acid content, as the latter acts both as
a charge carrier and conduction medium.

Previously, we have investigated the hybridmaterials based
on PBI membranes with sulfonated silica [33, 34]. The incor-
poration of 2–5 wt% of silica nanoparticles leads to an in-
crease in the membrane conductivity. Moreover, it was shown
that the degree of conductivity increase depends on the prep-
aration method and the microstructure of the hybrid mem-
brane [33, 34]. At the same time, the incorporation of sulfonat-
ed silica did not promote the phosphoric acid retention, which
provided the higher conductivity. Therefore, incorporation of
the particles with basic surface should be more favorable
[35–37].

In this regard, the aim of the present paper is to study
hybrid PBI membranes containing silica particles with a sur-
face modified by groups containing basic N-atoms.
Commercially available triethoxy-3-(2-imidazolin-1-
yl)propylsilane with a structure similar to PBI was used for
this purpose.

Experimental

Th e s yn t h e s i s p r o c e du r e s o f t h e PB I -O - PhT
polybenzimidazoles and polybenzimidazoles obtained from
2,6- or 2,5-pyridinedicarboxylic acids (PBI-2,6Py and PBI-
2,5Py) are described elsewhere [34, 38]. In this study, the
composite membranes were prepared by casting the solution
with the pre-synthesized silica particles (the 1st method) or
with a precursor for their synthesis (the 2nd method).

Preparation of the 3-(2-imidazolin-1-yl)propyl
modified silica

Surface modified silica (SiO2Im-ex) was synthesized by si-
lanes co-condensation. A mixture of tetraethoxysilane
(TEOS, Aldrich) and triethoxy-3-(2-imidazolin-1-
yl)propylsilane (IPTES, Aldrich) (Fig. 1) in a molar ratio 4:1
was dissolved in isopropanol (Chimmed) and heated to 50 °C
under constant stirring. Afterward, the hydrolysis by a mixture
of ammonium hydroxide (1.3 mL), de-ionized water
(13.6 mL), and isopropanol (35 mL) was performed. The re-
action mixture was kept at 50°С under stirring for 3 h. The
obtained silica SiO2Im-ex was washed with deionized water
and dried in air.

Preparation of hybrid membranes

The hybrid membranes were obtained by casting the PBI so-
lutions in N-methylpyrrolidone (4 g of polymer/100 mL). In
the 1st method, the SiO2Im-ex particles were prepared by

mixing PBI solution with the SiO2Im-ex particles. In the 2nd
method, a mixture of TEOS and IPTES in a molar ratio 4:1
was used as a silica precursor. The polymer solution with a
fixed amount of the SiO2Im-ex oxide or its precursor was first
homogenized by ultrasonication for 5 min and then dried on a
glass plate at 50–60°С for 3 days. To remove the residual
solvent, the obtained films were kept at 120°С under vacuum.
According to the 2nd method, the hydrolysis of the introduced
silanes was carried out at the next step. The films with silica
particles formed directly within the polymer matrix (SiО2Im-
in) were thus obtained. In both cases, the silica content varies
from 0 to 20 wt%. The polymer type, the silica type, its load-
ing is indicated in the sample name, for example, PBI-O-PhT/
SiO2Im-ex-15 or PBI-2,6Ру/SiO2Im-in-10.

To increase the conductivity, all the obtained samples were
treated by phosphoric acid at 25°С for 7 days. Its concentra-
tion was 75% and 60% for PBI-O-PhT and PBI-2,5Py (PBI-
2,6-Py), respectively. After the treatment, the weight of the
membranes increased by 2–3 times. Finally, the samples were
dried under vacuum at 70°С for 4 h and kept in a desiccator
over Р2О5.

Material characterization

Infrared absorption spectra were recorded using the Nicolet
iS5 Fourier Transform Infrared Spectrometer in the 4000–
400 cm −1 range.

The phosphoric acid doping degree (the number of Н3РО4

molecules per PBI repeat unit) was determined from the
weight of the absorbed acid as reported previously [33].

The membrane morphology was studied by scanning elec-
tron microscopy (SEM) using the Carl Zeiss NVision 40

N N
H

NON

N
H

N
H

NON

N
H

N

N
H

N
H

O

O

N

O

N

O

O

O

Si

N

N

n

n

n

PBI-O-PhT

PBI-2,5Py

PBI-2,6Py

IPTES

Fig. 1 Chemical structures of polybenzimidazoles and triethoxy-3-(2-
imidazolin-1-yl)propylsilane

Ionics (2020) 26:1853–18601854



scanning electron microscope equipped with Oxford X-Max
EDS detector. The microstructure of the samples was studied
using the Jeol JEM 2100 transmission electron microscope
(TEM).

CHN-analysis was carried out using the EuroVector
ЕА3000 elemental analyzer.

X-ray powder diffraction was carried out using the Rigaku
D/MAX 2200 diffractometer, CuKα radiation.

Specific surface of the samples was determined by
capillary nitrogen adsorption (BET method) at − 196 °С
using the Sorbtometer-M system (“Katakon” LLC,
Russia). The samples were preliminary degassed at
200°С for 1 h.

The membrane water uptake was determined by thermo-
gravimetric analysis (TGA) using the Netzsch TG 209
thermobalance in aluminum crucibles using a heating rate of
10°/min from 25 to 300°С in air. The oxide content in the
membranes casted with the precursor was determined by an-
nealing the sample at 800 °С, followed by the oxide residue
weighing.

The membrane conductivity was studied using the
Z500 PRO impedancemeter (Elins, Russia) in the frequen-
cy range of 10–2∙106 Hz in the potentiostatic mode with a
sinusoidal excitation voltage of 80 mV with graphite elec-
trodes. The temperature dependence of the conductivity

was investigated in a range from 25°С to 160°С with a
step of 10–15°С. The conductivity measurements at dif-
ferent relative humidities (RH) and constant temperature
of 90°С were carried out in the Binder MKF115 climatic
chamber. Prior to the measurements, the membranes were
kept at each RH for 1 h. The ionic conductivity was cal-
culated by extrapolation of the semicircle corresponding
to the bulk conductivity to the real axis.

The gas permeability of the samples was studied using the
Crystallux-4000 M gas chromatograph, according to the pro-
cedure reported previously [39].

Results and discussion

According to the SEM data, the SiO2Im-ex sample consists of
spherical agglomerates (about 200–700 nm in diameter). The
IR-spectrum of the obtained oxide, along with the Si-O bands,
shows a band at 1650 cm−1 attributed to the C=N bond vibra-
tions. According to the CHN-analysis, the atomic carbon/
nitrogen ratio in the obtained silica is 2.7, which is close to
the calculated value (3.0). These data confirm the presence of
the grafted propyl-imidazoline group on the SiO2Im-ex oxide
surface.

According to the X-ray diffraction analysis, all the com-
posite membranes are amorphous, and the silica incorporation
does not change their crystallinity.

Influence of the precursor hydrolysis conditions
on the membrane properties

The influence of the hydrolysis conditions (temperature,
medium acidity, treatment time) on the size of silica par-
ticles and proton conductivity of the obtained composite
membranes was investigated. For this purpose, the hybrid
membranes were casted from the mixture of PBI-O-PhT
and TEOS solutions with a designed silica loadings (5
and 10 wt%). Hereafter this silica is denoted as SiO2-in.

Fig. 2 TEMmicrographs of the PBI-O-PhT/SiO2-in-5 samples obtained by hydrolysis with 18%HCl solution at 25 °С (a) and 12%NH4OH solution at
25 (b) and 50 °C (c)

Table 1 The silica content in the PBI/SiO2Im-in membranes according
to TGA

Designed silica
loading, wt%

Silica content according to TGA, wt%

PBI-O-PhT PBI-2,5Ру PBI-2,6Ру

2 1.0 1.9 1.6

5 3.5 4.2 3.9

10 6.7 7.0 7.1

15 10.0 10.4 9.8

20 13.4 13.8 14.9
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Each sample was divided into several equal parts, which
were hydrolyzed with either 12% NH4OH solution or
18% HCl solution at different temperatures for different
time.

As seen in the TEM micrographs in Fig. 2, hydrolysis
in the acidic medium yields to the formation of the iso-
lated silica particles of 15–20 nm, whereas in the alkaline
medium, their size is reduced to 2–5 nm. At higher tem-
peratures in the alkaline medium, the particle size in-
creases up to 6–8 nm (Fig. 2c). The membranes with
larger particles were found to have somewhat lower con-
ductivity. Therefore, in further studies, the hydrolysis of
the silanes within the PBI matrix was carried out by the
ammonium hydroxide solution at 25°С.

Hybrid membranes with functionalized silica

The real silica content in the membranes obtained by the 2nd
method was lower compared with the designed values
(Table 1). It can be attributed to a partial precursor leaching
during hydrolysis. According to the EDX analysis, the silicon
concentration in the membrane surface layer (up to 10 μm) is
slightly lower than that in the membrane bulk (Fig. 3). As in
the previously reported composite PBI membranes with
sulfonated silica [34], after annealing of hybrid membranes,
fused nanoparticles with the Si/Omolar ratio of 1:2 are formed
(EDX microanalysis).

Incorporation of the silica nanoparticles with basic nitrogen
atoms on the surface leads to an increase in the doping degree

Fig. 3 SEM-micrograph of a
cross-section of the PBI-O-PhT/
SiO2-in-10 membrane (a), the Si
mapping (b) and Si distribution
across the membrane cross sec-
tion (c)

Table 2 The phosphoric acid
doping degree for the PBI hybrid
membranes

Designed silica loading, wt% The phosphoric acid doping degree for the PBI-

-O-PhT -2,5Py -2,6Py -O-PhT -2,5Py -2,6Py
SiO2Im-ех SiO2Im-in

0 9.3 6.4 5.2 9.3 6.4 5.2

2 9.4 6.5 5.3 9.7 6.4 5.3

5 9.5 6.5 5.4 9.9 6.6 5.4

10 9.8 6.7 5.5 10.2 7.0 5.6

15 10.2 6.8 5.7 10.6 7.2 5.8

20 10.5 7.0 5.8 10.7 7.7 6.0
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of phosphoric acid for all the studied polymers (Table 2). The
most pronounced increase is observed in the case of mem-
brane modification with SiO2Im-in (the 2nd method). It is
probably due to its smaller particle size compared with that
of SiO2Im-ex or a higher sorption ability. The interactions
between 3-(2-imidazolin-1-yl)propyl group of silica and nitro-
gen atoms of PBI can also play a role in packing of PBI chains
and lead to an increase in the distance between them [40]. As a
result, the grafted functional groups of silica and the nitrogen
atoms of the PBI itself become more accessible to the acid.
Probably, the same factors provide the discrepancy in the
phosphoric acid doping degree between the PBI-2,5Py and
PBI-2,6Py membranes, the composition of which is identical,
and the only difference is the relative position of imidazole
fragment and the nitrogen atom of the pyridine ring to each
other in the monomer.

The presence of the silica precursor during membrane for-
mation results in increase in both the phosphoric acid doping
degree and the water uptake. Thus, the modification with
SiO2Im-in results in increased water uptake for all the studied
membranes (Table 3). In the case of the SiO2Im-ex incorpo-
ration, the water uptake of the PBI-O-PhT and PBI-2,6Py
membranes is almost independent on the silica content.

Whereas for the PBI-2,5Py membranes, the water uptake even
decreases at high silica loadings (Table 3). Incorporation of
the pre-synthesized silica particles is apparently less efficient
due to their large size. This leads to a contraction of the poly-
mer free volume which can be occupied by water. The in-
crease in the phosphoric acid doping degree in this case is
mostly due to the interaction of Н3РО4 with the grafted basic
groups of silica.

With relative humidity increase, the conductivity growth is
observed for all the PBI-based hybrid membranes (Fig. 4).
This effect is most pronounced in the case of PBI-Py mem-
branes. For the membranes obtained by the 1st method, the
highest conductivity increase is 26% for the PBI-O-PhT/
SiO2Im-ex-15 membrane (at RH = 50%) and 43% for the
PBI-2,6Ру/SiO2Im-ex-10 membrane (at RH = 85%). For the
membranes obtained by the 2nd method, the conductivity in-
creases up to 32% for the PBI-2,6Ру/SiO2Im-in-10 membrane
(at RH = 50%) and 40% for the PBI-O-PhT/SiO2Im-in-10 (at
RH = 50%). The reason for the conductivity enhancement is
the increase in charge carrier concentration due to a larger
dissociation degree of phosphoric acid in a more dilute solu-
tion within the pores. In addition, the increase in relative hu-
midity leads to decrease of the viscosity of the “solution”

Fig. 4 Plots of conductivity versus relative humidity at 90°С for the PBI-O-PhT (1), PBI-2,5Py (2), PBI-2,6Py (3) membranes containing 15 wt% of
SiO2Im-ex (a) and 15 wt% of SiO2Im-in (b)

Table 3 The water uptake of the
PBI hybrid membranes doped
with phosphoric acid

Designed silica loading, wt% Water uptake (%) for the PBI-

-O-PhT -2,5Py -2,6Py -O-PhT -2,5Py -2,6Py
SiO2Im-ех SiO2Im-in

0 9.7 17.0 14.9 9.7 17.0 14.9

2 10.1 17.1 15.6 9.7 17.2 15.0

5 10.3 17.0 15.9 9.8 17.7 15.1

10 10.2 17.1 15.7 9.9 18.0 15.2

15 10.2 16.5 15.7 10.0 18.2 15.3

20 9.9 16.0 15.4 10.1 18.4 15.6
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within the membrane (due to an increased water uptake), thus
promoting an increase in ion mobility and consequently in
conductivity.

The temperature dependence of the conductivity in
composite membranes without additional wetting shows
a conductivity enhancement with the modified silica in-
corporation regardless of the membrane preparation meth-
od (Fig. 5). For the hybrid membranes obtained by the 1st
method, the maximum in the conductivity-composition
curves appears to be at 5–15 wt% of SiO2Im-ex (Fig.
5a). Further increase in its content leads to a decrease in
the hybrid membrane conductivity. For the membranes
modified by the 2nd method, the highest conductivity in-
crease is observed for the PBI-2,5Py-based samples (Fig.
5b). The difference in the structure of the obtained hybrid
membranes (relative position and packing of polymer
chains) has a significant impact on the observed compo-
sition effect.

The conductivity of the polybenzimidazole-basedmembranes
is due to the absorbed phosphoric acid. The most likely mecha-
nism of proton transfer in such systems is the Grotthuss mecha-
nism, which assumes that the imidazole groups of PBI mem-
brane, phosphoric acid, and its dissociation products are all in-
volved in the proton transport [41]. The incorporation of the
surface-functionalized silica leads to a binding of additional
Н3РО4 by the grafted imidazole groups and to the expansion of
the inner polymer volume.Moreover, silica particles and nitrogen
atoms of the grafted functional groups can serve as additional
proton transfer centers, which should increase the transfer rate.

In [42, 43], the PBI membranes with different SiO2-based
fillers were investigated. Similarly, it was shown an increase in
the conductivity at low silica content (5 wt%) and conductivity
decrease for higher filler contents. The authors attribute this to
the formation of more favorable pathways for the proton trans-
port around the silica particles at low filler content, whereas at a
higher silica loading, there is a physical barrier for the H+ trans-
fer due to the intrinsic resistivity of the filler phase [42].

Such a result is similar to that in the composite proton-
exchange perfluorinated membranes used in low-
temperature fuel cells. Тhe conductivity increase for them is
usually observed at low filler content. In the framework of the
model of limited elasticity of the membrane pore walls, this is
due to the expansion of the channels connecting the pores and
an increase in the pore volume [44]. With the further increase
in the content and the size of filler particles, the pore can no
longer be deformed and additional barriers for ion transfer
appear in the membrane [44]. This analogy is not strict, since
there are no pores and channels in the pristine PBI mem-
branes. However, they appear after doping with phosphoric
acid, which is introduced between the polymer chains.
Moreover, another model of the perfluorinated membranes
structure in which the pore system is replaced by the comb-
shaped channels [45, 46] makes this analogy more reasonable.

The gas permeability plays an important role in the mem-
brane operation in fuel cells. Incorporation of small amounts of

Fig. 5 Plots of conductivity versus composition at 120°С for the PBI-O-PhT (1), PBI-2,5Py (2), PBI-2,6Py (3) hybrid membranes containing SiO2Im-ex
(a) and SiO2Im-in (b)

Fig. 6 Hydrogen permeability (cm2/s) at 30 and 50°С for the PBI-based
composite membranes doped with Н3РО4
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surface-modified silica results in a decrease of hydrogen per-
meability (Fig. 6). In most cases, a higher decrease was found
for the SiO2Im-ex-based membranes. The increase in the
SiO2Im-еx concentration leads to a considerable enhancement
of gas permeability, whereas in the case of SiO2Im-in, an op-
posite effect is observed. According to the classic Maxwell
model, the gas permeability should decrease upon incorpora-
tion of impermeable particles. However, this effect is usually
observed at a high filler content [47]. In contrast, nanoparticles
can prevent the tight packing of rigid polymer chains and thus
promote the formation of pores which increase gas permeabil-
ity. The less is the particle size, the smaller the effect can be. For
the composite membranes filled with 2 wt% of SiO2-in, the
described effect is larger, which is confirmed by the data on
the phosphoric acid doping degree and water uptake. As a re-
sult, the gas permeability is higher compared to the PBI/SiO2-
ex-2 membrane. On the contrary, incorporation of small parti-
cles often prevents gas permeation through ion-exchange poly-
mers with solution-filled pores. In particular, this effect is typ-
ical for the membranes used in fuel cells [8].

Conclusion

In summary, the membrane modification by silica with grafted
basic groups increases the conductivity at low dopant content
regardless of the hybrid membranes preparation method. The
in situ method makes it possible to obtain membranes with
nanoparticles uniformly distributed over the membrane. The
higher composite effect is observed for the PBI-2,5Py mem-
branes obtained by casting the polymer with the precursor.
Incorporation of small amounts of the dopant promotes the
reduction of gas permeability of the membranes. The method
of silica incorporation has a significant impact on transport
properties of the obtained materials.
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