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Abstract
This paper combines the discrete sliding mode observer with the weighted innovation extended Kalman filter to improve the
accuracy of the SOC estimation. The main work of this paper can be divided into two parts: (1) The proposed algorithms
utilize the previous information and the current innovation by choosing proper weights to estimate the SOC accurately. (2)
The improved discrete sliding mode observer is introduced into the weighted innovation extended Kalman filter to solve the
chattering problem. The experimental results show that the accuracy of the SOC estimation is improved effectively.
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Introduction

Energy storage system plays an important role in electric
vehicle and micro-grid smooth power supply. Lithium-ion
batteries have advantages of high energy density, long life,
and environmental protection, and are considered as one of
the most promising and dominant energy storage options
[1]. An excellent battery management system (BMS) can
increase battery efficiency and prolong battery life [2]. One
of the key issues of BMS is to find an effective method for
the SOC estimation since SOC cannot be measured directly
under dynamic operation conditions. In this case, the SOC
can be estimated by using some model-based linear param-
eter and nonlinear parameter identification methods such
as the gradient algorithms [3], the least squares algorithms,
and Newton recursive or iterative algorithms [4, 5] for linear
models [6, 7] and nonlinear models [8–10]. Some methods
are based on the input-output representations and the others
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are based on the state space models [11–13]. The SOC
defines the remaining charge as the percentage of the battery
stored in a fully charged battery [14]. The accurate estima-
tion of SOC can avoid the over-discharge or over-charge of
the battery and help to protect the battery from explosion or
fire and improve the battery performance [15].

Many methods have been proposed to estimate SOC,
such as the Coulomb counting method and the open-circuit
voltage (OCV) method [16, 17]. Some shortcomings may
occur when using a single estimation method. The Coulomb
counting method will be more accurate with well-chosen
initial value; however, the accumulation of measurement
errors will lead to inaccurate estimation as time increases
[18, 19]. The OCV method requires a long period of battery
rest and is not suitable for online identification [20]. A third
choice falls on model-based method which builds proper
mathematical models for battery circuit and many state esti-
mation algorithms can be used to improve the accuracy of
the SOC estimation. Extended Kalman filter (EKF) is one
of the popular algorithms that can estimate SOC effectively
which takes the minimum mean square error as the best
criterion [21, 22]. However, the EKF may fail to reduce
violation of the local linear assumption, resulting in diver-
gence for strongly nonlinear systems. In that case, adaptive
extended Kalman filter and fading Kalman filter have been
proposed [23–25]. Furthermore, the artificial neural net-
work algorithm [26–28] is suitable for complex nonlinear
systems which does not require detailed structure of battery
systems. However, large sample size of data and multiple
data training methods are a challenge for battery test [29].
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The sliding mode observer based state of the charge
estimation technique which diminished the modeling error,
interference, and measurement noise was introduced in [30].
The introduction of the sliding mode observer inevitably
brings about the chattering problem and affects the accuracy
of estimation [31]. To decrease the chattering effects and
improve the estimation performance, an adaptive sliding
mode observer is proposed to estimate SOC based on the
established battery model with uncertainties [32]. With the
switching characteristic, the choice of different parameters
also affects the accuracy and convergence of the estimation
[33]. By adjusting the sliding mode gain, adaptive gain
sliding mode observer can reduce the chatter to a lower level
when estimating SOC [34].

Inspired by the data filtering [35, 36] and the particle fil-
tering [37], the different weights are added to the innovation
terms to modify the EKF filter, resulting in the merits of
the sliding mode observer, this paper proposes an algorithm
which combines the weighted innovation extended Kalman
filter with the discrete sliding mode observer (DSMO) to
solve two problems. (1) The abilities of minishing noise
interference and estimating SOC are enhanced by construct-
ing equivalent circuit model, taking advantage of the knowl-
edge of parameter identification, and introducing DSMO
to EKF. (2) An improved discrete sliding mode observer
with a saturation function is introduced to remit the chat-
tering problem to better estimate SOC when applying a
general one.

The rest of this paper is organized as follows.
Section “The battery model and parameter identification”
introduces the establishment of equivalent circuit model and
the process of model parameter identification. Section “The
weighted innovation extended Kalman filtering estima-
tion algorithm” proposes the SOC estimation algorithm
based on the strength of EKF. Section “The modified
WI-EKF algorithm with DSMO” proposes a sliding mode
based EKF algorithm to estimate SOC. The effective-
ness of the method is validated in Section “Experimental
results and analysis”. Finally, some conclusions are given in
Section “Conclusions”.

The battery model and parameter
identification

A reasonable circuit model with accurate parameters is
beneficial to improve the accuracy of the SOC estimation
[38].

The establishment of the battery model

To accurately estimate the SOC, the second-order RC
model which can describe the electrochemical polarization

and concentration polarization processes is utilized as
shown in Fig. 1 in consideration of the complexity and
accuracy, where Uo is the open-circuit voltage, UT is the
terminal voltage of battery, U1 and U2 are the polarization
voltages and concentration voltages respectively in the
circuit model. Romc is the ohmic resistance. R1 and
R2 are the electrochemical polarization resistance and
concentration polarization resistance, respectively. C1 and
C2 are the electrochemical polarization capacitance and
concentration polarization capacitance, respectively. I is the
current flowing through the battery.

From Fig. 1, Kirchhoff’s law and differential criterion
show that output can be expressed as follows:

UT = Uo − U1 − U2 − IR0 (1)

U̇1 = −U1

R1C1
+ I

C1
(2)

U̇2 = −U2

R2C2
+ I

C2
(3)

Equations (1)–(3) can be transformed by frequency domain
transformation,

UT (s) − Uo(s)=−I (s)

(
Romc+ R1

1+R1C1s
+ R2

1+R2C2s

)

(4)

The actual SOC value can be obtained by Coulomb-
counting method,

SOC(t) = SOC(t1) −
∫ t
t1

ξi(t)dt

Cn

(5)

where Cn is the rated capacity of the battery, ξ is coulomb
efficiency which refers to the ratio of the discharge
capacity of the battery to the charging capacity in the same
cycle.

Fig. 1 The second-order RC equivalent circuit model
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The discrete state space expressions of the battery model
are obtained by discretizing (1)–(5) as follows:
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−RomcI (k) + ν(k) (7)

where �T is the sampling period, τ1 = R1C1, τ2 = R2C2.
ω(k − 1), and ν(k − 1) are process noise and measurement
noise at time k−1, respectively.Uo is the estimated function
with respect to SOC.

Model parameter identification

The parameters of the model are affected by aging of the
battery, self-discharge factors, and ambient temperature. To
identify variable parameters and estimate the experimental
results accurately, the recursive least squares method with a
forgetting factor (FFRLS) method is selected.

By bilinear transformation s = 2
T

· 1−z−1

1+z−1 in Eq. 4, we
have

G
(
z−1

)
= UT

(
z−1

) − Uo

(
z−1

)
−I

(
z−1

) = ϑ3 + ϑ4z
−1 + ϑ5z

−2

1 − ϑ1z−1 − ϑ2z−2

(8)

ϑ1, ϑ2, ϑ3, ϑ4, and ϑ5 are unknown coefficients. A dis-
cretized recursive form of the Eq. 4 is given as follows:

�U(k) = ϑ1�U(k − 1) + ϑ2�U(k − 2) + ϑ3I (k)

+ϑ4I (k − 1) + ϑ5I (k − 2) (9)

where �U(k) = UT (k) − Uo(k).
Equation 9 can be expressed as:

�U(k) = ϕT (k)θ(k) (10)

where

ϕ(k) = [�U(k−1), �U(k−2), I (k), I (k−1), I (k−2)]T,

θ(k) = [ϑ1, ϑ2, ϑ3, ϑ4, ϑ5]T. (11)

It is difficult for the new data to play a correction role
with the accumulation of old data and the time-varying
characteristics of battery when employing the recursive least
square method. The forgetting factor λ which makes the

identification algorithm respond quickly and converge to the
actual value with the changes of the system is introduced.

The FFRLS method is summarized as follows:

θ̂ (k) = θ̂ (k − 1) + L(k)
[
�U(k) − ϕT(k)θ̂(k − 1)

]

L(k) = P(k − 1)ϕ(t)
(
λ + ϕT (k)P (k − 1)ϕ(k)

)−1

P(k) =
[
I − L(k)ϕT (k)

]
P(k − 1)λ−1 (12)

where θ̂ represents the estimation of θ at time k, L(k)

is innovation vector, ϕ(k) is covariance matrix. UT (k)

and Uo(k) can be measured by experimental equipment.
Considering ϑi(i = 1, 2, 3, 4, 5) which are related to
battery model and can be identified by the FFRLS method.
Thus, the resistance and capacitance of the second-order RC
equivalent circuit model can be obtained.

The weighted innovation extended Kalman
filtering estimation algorithm

The EKF algorithm is widely used in state estimation of
nonlinear systems. The core idea of the EKF algorithm is
to expand the nonlinear function into Taylor series at the
filter value x to obtain an approximate linear model [39].
Consider the state space model as follows:
{

x(k)=A(k − 1)x(k − 1)+B(k − 1)u(k − 1)+ω(k − 1)
y(k)=C(k)x(k) + D(k)u(k) + ν(k)

(13)

where x(k) = [U1(k), U2(k), SOC(k)]T is three-
dimensional state vector, u(k) = I (k) and y(k) = UT (k)

are the input current and output terminal voltage of bat-
tery system, respectively. {A(k), B(k), C(k), D(k)} can be
derived from Eqs. 6 and 7. Process noise ω(k) and measure-
ment noise ν(k) are treated as Gaussian white noise with
a mean of 0 and covariances of Q and R, respectively. The
recursive EKF algorithm is summarized as follows:

x̂(0|0) = E[x(0)] (14)

P(0|0) = E{[x(0)−E[x(0)]][x(0)−E[x(0)]]T} (15)

x̂(k|k − 1) = A(k − 1)x̂(k − 1|k − 1)

+B(k − 1)u(k − 1) (16)

P(k|k − 1) = A(k − 1)P (k − 1|k − 1)AT(k − 1)

+Q(k − 1) (17)

G(k) = P(k|k − 1)CT(k)[C(k)P (k|k − 1)CT(k)

+R(k)]−1 (18)

x̂(k|k) = x̂(k|k − 1) + G(k)(y(k)−ŷ(k|k−1)) (19)

P(k|k) = [I − G(k)C(k)]P(k|k − 1) (20)

where P(k|k − 1) is a third-order prediction covariance
matrix, P(k|k) is a third-order updated covariance matrix,
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and G(k) which adjusts priori state estimation as a
conditioning factor is a three-dimensional Kalman filter
gain vector.

To improve the estimation accuracy of SOC, weighted
innovation extended Kalman filter (WI-EKF) is proposed
which makes full use of the data of the previous time and
assigns weights according to the importance of innovation
at different time in Eq. 19. The innovation term o(k) :=
y(k) − ŷ(k|k − 1) which affects the size of G(k) does not
contain information about previous moments. By extending
innovation o(k) and the filter gain vector G(k), the
innovation vector O(m, k) and the gain matrix G(m, k) can
be defined as follows:

O(m, k) = [o(k), o(k − 1), · · · , o(k − m + 1)]T ∈ R
m,

(21)

G(m, k) = [G(k), G(k − 1), · · · , G(k − m + 1)] ∈ R
3×m

(22)

Then Eq. 19 can be expressed as:

x̂(k|k) = x̂(k|k − 1) + G(m, k)O(m, k) (23)

The weight β̄ is introduced to calculate the weights to
the innovations because the importance of innovation at
different times is different. The weighted innovation vector
Ō(m, k) is as follows:

Ō(m, k) = [β̄(k)o(k), β̄(k − 1)o(k − 1), · · · ,

β̄(k − m + 1)o(k − m + 1)]T ∈ R
m (24)

The weight of each innovation can be computed by
Gaussian function of o(k) when considering the innovations
as particles. The weight β(k − j + 1) (j = 1, 2, · · · , m) is
computed as follows:

o(k− j + 1) = y(k − j + 1) − ŷ(k − j + 1|k − j) (25)

β(k− j + 1) = 1√
2πσ

e
−(e(k−j+1))2

2σ2 , j = 1, 2, · · · , m. (26)

where o(k − j + 1) is the j th innovation in the innovation
vector O(m, k), β(k−j +1) is the weight of j th innovation,
and σ 2 is the noise variance.

Normalizing β(k − j + 1) yields:

β̃(k−j+1) = β(k − j + 1)∑m
j=1 β(k − j + 1)

, j =1, 2, · · · , m. (27)

Since the weight of each innovation in the standard
algorithm is equal to 1, we can consider the sum of the
weights of all innovations as the innovation length m, so it
is more reasonable to take the innovation weight as:

β̄(k − j + 1) = mβ̃(k − j + 1), j = 1, 2, · · · , m. (28)

The WI-EKF algorithm can be as follows:

G(k) = P(k|k − 1)CT(k)[C(k)P (k|k − 1)CT(k)

+R(k)]−1 (29)

O(m, k) = [o(k), o(k − 1), · · · , o(k − m + 1)]T ∈ R
m

(30)

G(m, k) = [G(k), G(k − 1), · · · , G(k − m + 1)] ∈ R
3×m

(31)

x̂(k|k) = x̂(k|k − 1) + G(m, k)Ō(m, k) (32)

P(k|k) = [I − G(m, k)C(k)]P(k|k − 1) (33)

ThemodifiedWI-EKF algorithmwith DSMO

The slidingmodeobserver is a nonlinear state observer.Com-
pared with other state observers, the sliding mode observer
has better robustness and estimation accuracy. Standard
form of first-order sliding mode observer is as follows:

x(k + 1) = A(k)x(k) + B(k)u(k) + H(y(k) − ŷ(k))

+J sgn

[
y(k) − ŷ(k)

χ

]
(34)

y(k) = C(k)x(k) + D(k)u(k) (35)

where ŷ(k) is the predicted value at time k, H is the
gain matrix, J is the saturation gain function, sgn(·) is the
symbolic function, and χ is the boundary layer. The sliding
mode observer can filter the signal noise, but also brings
the chattering problem into the algorithm; thus, a saturation
function sat(x) is introduced.

sat(x) =
{

x, −1 � x � 1
sgn(x), x < −1 or x > 1

(36)

The iterative process of sliding mode observer based on
WI-EKF is shown below:

x̂(k|k − 1) = A(k − 1)x̂(k − 1|k − 1) + B(k−1)u(k−1)

+H
(
y(k − 1) − ŷ(k − 1)

)

+J sat

[
y(k) − ŷ(k)

χ

]
(37)

P(k|k − 1) = A(k − 1)P (k − 1|k − 1)AT(k − 1)

+Q(k − 1) (38)

G(k) = P(k|k − 1)CT(k)[C(k)P (k|k − 1)CT(k)

+R(k)]−1 (39)

O(m, k) = [o(k), o(k − 1), · · · , o(k − m + 1)]T
∈ R

m (40)

G(m, k) = [G(k), G(k − 1), · · · , G(k − m + 1)]
∈ R

3×m (41)

x̂(k|k) = x̂(k|k − 1) + G(m, k)Ō(m, k) (42)

P(k|k) = [I − G(m, k)C(k)]P(k|k − 1) (43)
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Table 1 IFP36130155D-36Ah battery parameters

Nominal capacity Nominal voltage Discharge cut-off voltage

36 Ah 3.2 V 2.5 V

The estimation of the SOC of lithium-ion batteries by
sliding mode observer based on the extended Kalman filter
is divided into online part and offline part. The offline part
mainly includes the acquisition of the OCV-SOC curve and
the design of the DSMO parameters. The OCV-SOC curve
is obtained by open-circuit voltage test, and the parameters
H and J in Eq. 37 are assumed by authors’ experience. The
online part mainly includes online parameter identification
of the second-order RC model and state estimation of
lithium-ion batteries.

The advantage of online parameter identification is that
the model parameters can change with the change of exter-
nal environment, and the accuracy is high. The disadvantage
lies that the algorithm is a little complicated. Based on
extended Kalman filter, this section uses the sliding mode
observer to recursively estimate the SOC of lithium-ion
batteries. In fact, one may use other iterative identification
schemes [40–47], and the recursive identification schemes
[48–52] to design the state observers and state filtering
algorithms. These deserve further study.

Experimental results and analysis

In our experiment, IFP36130155D-36Ah lithium-ion bat-
tery is tested with rated voltage 3.2 V and rated capacity
36 Ah. The main parameters of the lithium-ion battery are
shown in Table 1. Lithium ions embedded in the carbon
layer of the negative electrode come out and move back
to the positive electrode when discharging the battery. The
more lithium ions return to the positive electrode, the higher
the discharge capacity.

Fig. 2 The OCV-SOC curve under intermittent discharge test
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Fig. 3 The SOC estimation under intermittent discharge test

In order to verify the effectiveness of the proposed
algorithm, it is necessary to obtain the real value of SOC
by combining the function relationship between open-
circuit voltage and SOC with the ampere hour integration
method. The battery is discharged for 18 min with a
discharge rate of 0.3 C (12 A), and then internally stabilized
for 40 min, during which the open-circuit voltage reaches
to the terminal voltage. This process is repeated until
the SOC reaches to 0%. Figure 2 shows the OCV-SOC
curve in the discharging process. Considering the accuracy
of curve fitting, a seven-order polynomial equation which
derives from Curve Fitting Toolbox in MATLAB is as
follows:

Uocd = 142.3903SOC7 − 503.4641SOC6

+721.6340SOC5 − 540.5293SOC4

+227.4628SOC3 − 53.7642SOC2

+6.8097SOC + 2.471 (44)

Intermittent discharge test with negative discharge
current is used to verify the accuracy of the proposed SOC
estimation algorithm at the 25 ◦C environment temperature.
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Fig. 4 The error of SOC estimation under intermittent discharge test
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Table 2 Comparison of algorithms

Algorithm EKF WI-EKF WI-EKF-DSMO

Maximum absolute error 0.8274 0.1605 0.1276

Root mean square error 0.3122 0.1058 0.0968

The fully charged battery experienced 11 discharge cycles.
The battery is discharged at a discharge rate of 0.3 C (12
A) for 18 min, and then placed for 40 min to a steady
state in each cycle. At the 12th cycle time, the battery is
discharged to the discharge cut-off voltage and the whole
test is completed.

In the SOC estimation experiment, EKF, WI-EKF,
and the combination of DSMO and WI-EKF are used
for the experiment. From the system stability analysis,
ϕ = 0.1, H = [0.000015; 0.000015; 0.000015], J =
[0.000015; 0.000015; 0.000015]. The comparison between
the experimental results and the real results is shown in
Fig. 3. The error of SOC estimation is shown in Fig. 4 and
Table 2. Figures 3 and 4 indicate that the improved algo-
rithm can make SOC estimation more accurate and acquire
smaller estimation error. Figure 5 manifests that SOC can
converge to the actual value eventually in spite of the
selected initial SOC. Process noise and observation noise
should be set according to experience, not too large or too
small. Thus, the initial SOC value is 1, the process noise
is 10−7, and the observation noise is 0.1 in the experiment.
The discharge low current which reduces external interfer-
ence and prolongs the lifetime of the battery is 0.3 C (12 A)
to improve the stability and safety of the experiment when
estimating SOC.

The experimental results show that the addition of the
sliding mode observer into WI-EKF makes SOC estimation
closer to the real value and improves the accuracy of SOC
estimation compared with WI-EKF.
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Fig. 5 The comparison of different initial SOC by EKF under
intermittent discharge test

Conclusions

In this paper, an effective SOC estimation method is
proposed by combining the second-order RC equivalent
circuit model of lithium-ion battery with the combination
of WI-EKF and DSMO. The proposed method improves
the accuracy of estimation by introducing DSMO into
the WI-EKF. Experimental results show that the proposed
algorithm is effective and can improve the accuracy of
SOC estimation. To better suppress the chattering problem
and improve the stability, the second-order or multi-order
sliding mode observer is the focus of future research.
Selecting more suitable saturated gain function is also one
of the key points in the future research. The basic idea of
the proposed algorithm in this paper can be extended and
applied to other fields.

Funding information This work is financially supported by the
Natural Science Foundation of China (Nos. 61833011 and 61873326)
and the Natural Science Foundation of NJUPT (No. NY217063).

References

1. Hu XS, Xiong R, Egardt B (2014) Model-based dynamic power
assessment of lithium-ion batteries considering different operating
conditions. IEEE Trans Indust Inform 10(3):1948–1959

2. Xiong R, Sun F, He H (2012) State-of-charge estimation of
lithium-ion batteries in electric vehicles based on an adaptive
extended Kalman filter. Chinese High Technol Lett 22(2):198–204

3. Ding F, Lv L, Pan J et al (2020) Two-stage gradient-based
iterative estimation methods for controlled autoregressive systems
using the measurement data. Int J Control Autom Syst, 18.
https://doi.org/10.1007/s12555-019-0140-3

4. Ding F, Liu XP, Liu G (2011) Identification methods for Hammer-
stein nonlinear systems. Digital Signal Process 21(2):215–238

5. Xu L, Chen L, Xiong WL (2015) Parameter estimation and
controller design for dynamic systems from the step responses
based on the Newton iteration. Nonlin Dyn 79(3):2155–2163

6. Ding F, Liu G, Liu XP (2011) Parameter estimation with scarce
measurements. Automatica 47(8):1646–1655

7. Xu L (2016) The damping iterative parameter identification
method for dynamical systems based on the sine signal
measurement. Signal Process 120:660–667

8. Ding F, Liu XG, Chu J (2013) Gradient-based and least-squares-
based iterative algorithms for Hammerstein systems using the
hierarchical identification principle. IET Control Theory Appl
7(2):176–184

9. Ding F (2013) Hierarchical multi-innovation stochastic gradient
algorithm for Hammerstein nonlinear system modeling. Appl
Math Model 37(4):1694–1704

10. Xu L, Xiong WL, Alsaedi A, Hayat T (2018) Hierarchical
parameter estimation for the frequency response based on the
dynamical window data. Int J Control Autom Syst 16(4):1756–
1764

11. Ding F (2014) Combined state and least squares parameter
estimation algorithms for dynamic systems. Appl Math Model
38(1):403–412

12. Liu YJ, Ding F, Shi Y (2014) An efficient hierarchical
identification method for general dual-rate sampled-data systems.
Automatica 50(3):962–970

2880 Ionics (2020) 26:2875–2882

https://doi.org/10.1007/s12555-019-0140-3


13. Ding F (2014) State filtering and parameter estimation for
state space systems with scarce measurements. Signal Process
104:369–380

14. Verbrugge M, Frisch D, Koch B (2005) Adaptive energy
management of electric and hybrid electric vehicles. J Chem Soc
152(2):333–342

15. Lee J, Nam O, Cho BH (2007) Li-ion battery SOC estimation
method based on the reduced order extended Kalman filtering. J
Power Sources 174(1):9–15

16. Ng KS, Moo CS, Chen YP (2009) Enhanced coulomb counting
method for estimating state-of-charge and state-of-health of
lithium-ion batteries. Appl Energy 86(9):1506–1511

17. Barai A, Widanage WD et al (2015) A study of the open circuit
voltage characterization technique and hysteresis assessment of
lithium-ion cells. J Power Sources 295:99–107

18. Saeed S, Reza G, Liaw BY (2015) Inline state of health estimation
of lithium-ion batteries using state of charge calculation. J Power
Sources 299:246–254

19. Lu LG, Han XB et al (2013) A review on the key issues for
lithium-ion battery management in electric vehicles. J Power
Sources 226:272–288

20. Xing YJ, He W et al (2014) State of charge estimation of lithium-
ion batteries using the open-circuit voltage at various ambient
temperatures. Appl Energy 113:106–115

21. UrbainM, Rael S, Davat B (2007) State estimation of a lithium-ion
battery through Kalman filter. IEEE Power Electron Specialists
Conf, 2804–2810

22. Wang Q, Feng XY, Zhang B et al (2019) Power battery state
of charge estimation based on extended Kalman filter. J Renew
Sustain Energy 11:1

23. He HW, Xiong R, Zhang XW (2011) State-of-charge estimation
of the lithium-ion battery using an adaptive extended Kalman filter
based on an improved thevenin model. IEEE Trans Veh Technol
60(4):1461–1469

24. Guo YF, Zhao ZS, Huang LM (2017) SoC estimation of lithium
battery based on AEKF algorithm. Energy Procedia 105:4146–
4152

25. Lim KC, Bastawrous HA, Duong VH (2015) Online SoC
estimation of lithium ion battery for EV/BEV using Kalman
filter with fading memory. IEEE Consum Electron Mag, 476–
477

26. Chen C, Xiong R, Shen W et al (2019) State-of-charge estimation
of lithium-ion battery using an improved neural network model
and extended Kalman filter. J Clean Prod 234:1153–1164

27. Wu ZQ, Shang MY, Shen DD (2019) SOC estimation for batteries
using MS-AUKF and neural network. J Renew Sustain Ener
11:2

28. Li JH, Liu MS (2018) SOC estimation for lithium batteries based
on the full parallel nonlinear autoregressive neural network with
external inputs. J Renew Sustain Ener 10:6

29. Ephrem C, Phillip J, Matthias P et al (2018) State-of-charge
estimation of Li-ion batteries using deep neural networks. J Power
Sources 400:242–255

30. Zhang F, Liu GJ, Fang LJ (2008) A battery state of charge
estimation method using sliding mode observer. In: Proceedings
of the 7th World Congress on intelligent control and automation,
989–994

31. Ma Y, Li BS, Xie YQ et al (2016) Estimating the state of
charge of lithium-ion battery based on sliding mode observer.
IFAC-PapersOnLine 49(11):54–61

32. Shen YQ (2018) Adaptive extended Kalman filter based state of
charge determination for lithium-ion batteries. Electrochim Acta
283:1432–1440

33. Dadras S, Momeni H (2011) Fractional sliding mode observer
design for a class of uncertain fractional order nonlinear systems.

In: 50th IEEE Conference on decision and control and European
control conference (CDC-ECC), pp 6925–6930

34. Chen XP, Shen WQ, Cao ZW (2013) Adaptive gain sliding
mode observer for state of charge estimation based on combined
battery equivalent circuit model in electric vehicles. In: 8th IEEE
Conference on industrial electronics and applications (ICIEA), pp
601–606

35. Han YY, Ding J, Chen JZ, Sun P (2019) SOC estimation method
for lithium-ion batteries: extended Kalman filter with weighted
innovation. In: The 31th Chinese control and decision conference,
June 3-5, Nanchang, China, pp 5143–5147

36. Pan J, Jiang X, Wan XK et al (2017) A filtering based
multi-innovation extended stochastic gradient algorithm for
multivariable control systems. Int J Control Autom Syst 15(3):
1189–1197

37. Ding J, Chen JZ, Lin JX, Jiang GP (2019) Particle filtering-
based recursive identification for controlled auto-regressive
systems with quantised output. IET Control Theory Appl 13(14):
2181–2187

38. Hu XS, Li SB et al (2012) A comparative study of equivalent
circuit models for Li-ion batteries. J Power Sources 198:
359–367

39. Zheng LF, Zhu JG et al (2018) Differential voltage analysis
based state of charge estimation methods for lithium-ion batteries
using extended Kalman filter and particle filter. Energy 158:
1028–1037

40. Ding F, Liu XP, Liu G (2010) Gradient based and least-squares
based iterative identification methods for OE and OEMA systems.
Digital Signal Process 20(3):664–677

41. Ding F, Liu YJ, Bao B (2012) Gradient based and least squares
based iterative estimation algorithms for multi-input multi-output
systems. Proc. Instit. Mech. Eng. Part I: J. Syst. Control Eng.
226(1):43–55. https://doi.org/10.3390/math7060558

42. Ma H, Pan J, Ding F et al (2019) Partially-coupled least squares
based iterative parameter estimation for multi-variable output-
error-like autoregressive moving average systems. IET Control
Theory and Appl, 13. https://doi.org/10.1049/iet-cta.2019.0112

43. Ding F, Pan J, Alsaedi A et al (2019) Gradient-based iter-
ative parameter estimation algorithms for dynamical systems
from observation data. Mathematics 7(5):Article Number: 428.
https://doi.org/10.3390/math7050428

44. Li MH, Liu XM, Ding F (2019) Filtering-based maximum
likelihood iterative estimation algorithms for a special class of
nonlinear systems with autoregressive moving average noise using
the hierarchical identification principle. Int J Adapt Control Signal
Process 33(7):1189–1211

45. Liu SY, Ding F, Xu L et al (2019) Hierarchical principle-
based iterative parameter estimation algorithm for dual-frequency
signals. Circ Syst Signal Process 38(7):3251–3268

46. Ding F (2013) Decomposition based fast least squares algorithm
for output error systems. Signal Process 93(5):1235–1242

47. Ding F (2013) Two-stage least squares based iterative estimation
algorithm for CARARMA system modeling. Appl Math Model
37(7):4798–4808

48. Ding F, Xu L, Meng DD et al (2020) Gradient estimation
algorithms for the parameter identification of bilinear systems
using the auxiliary model. Journal of Computational and Applied
Mathematics. https://doi.org/10.1016/j.cam.2019.112575

49. Zhang X, Ding F, Yang EF (2019) State estimation for bilinear
systems through minimizing the covariance matrix of the state
estimation errors. Int J Adapt Control Signal Process 33(7):1157–
1173

50. Wang YJ, Ding F, Wu MH (2018) Recursive parameter estimation
algorithm for multivariate output-error systems. J Franklin Inst
355(12):5163–518

2881Ionics (2020) 26:2875–2882

https://doi.org/10.3390/math7060558
https://doi.org/10.1049/iet-cta.2019.0112
https://doi.org/10.3390/math7050428
https://doi.org/10.1016/j.cam.2019.112575


51. Ma JX, Xiong WL, Chen J et al (2017) Hierarchical identification
for multivariate Hammerstein systems by using the modified
Kalman filter. IET Control Theory Appl 11(6):857–869

52. Ding F, Wang FF, Xu L, Wu MH (2017) Decomposition based
least squares iterative identification algorithm for multivariate

pseudo-linear ARMA systems using the data filtering. J Franklin
Inst 354(3):1321–1339

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

2882 Ionics (2020) 26:2875–2882


	Improved sliding mode based EKF for the SOC estimation of lithium-ion batteries
	Abstract
	Introduction
	The battery model and parameter identification
	The establishment of the battery model
	Model parameter identification

	The weighted innovation extended Kalman filtering estimation algorithm
	The modified WI-EKF algorithm with DSMO
	Experimental results and analysis
	Conclusions
	References




