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Abstract
3D flower-like Li0.36V6O13 has been fabricated via a facile solvothermal method using C2H5OH, V2O5, and LiNO3 as raw
materials. The microstructure of the sample was characterized by XRD, FESEM, TEM, and XPS. The lithium storage perfor-
mance of the sample was investigated by CV, EIS, and charge/discharge test. The results demonstrated that the Li0.36V6O13

sample exhibited greatly improved electrochemical performance as compared with the pristine V6O13. For example, when cycled
at 0.1 C for 50 cycles, the capacity retention of the Li0.36V6O13 is 97% much higher than that (57%) of the pristine V6O13. The
improvement of the cycle performance of Li0.36V6O13 is attributed to its superior structural reversibility, fewer number of phase
transitions during the discharge/charge process, improved electrical conductivity, and enhanced Li+ diffusivity.
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Introduction

Rechargeable lithium-ion batteries (LIBs) are considered
one of the most suitable candidates applied for portable
electronics because of their high energy density and long-
term stability [1–3]. Cathode materials are of great impor-
tance for determining the performance of LIBs [4].
Vanadium oxides have been considered to be promising
cathode materials for LIBs due to their advantages of high
theoretical capacity, high energy density, and wide avail-
ability. Vanadium can exist in various valence states (from
+ 2 to + 5) in vanadium oxides. For example, V6O9,
V6O13, V4O6, and V5O7 have a mixed valence states,
while VO2, V2O5, and V2O3 have a single valence oxide
state [5]. V6O13 has a high theoretical specific capacity of
420 mAh/g, and shows a better electrochemical perfor-
mance compared with the well-known V2O5 [6]. V6O13

consists of alternating layers of single and double vanadi-
um oxide. V5+ occupies only the double-layer sites of the
V atoms, while V4+ occupies the single-layer and double-

layer positions of the V atom [7]. The alternating single
and double layers provide more lithium intercalation sites
[8, 9]. The maximum lithium accommodation is up to
eight Li+ per formula unit theoretically, corresponding to
a high theoretical specific capacity and energy of 420
mAh/g [10]. As a mixed-valence vanadium oxide, the
preparation of V6O13 is very difficult. On the other hand,
the intercalation of lithium into V6O13 lattice leads to
volume expansion and structural instability of V6O13,
which would interrupt the electronic and ionic transport
paths in the electrodes, and therefore results in rapid ca-
pacity decay upon cycling. Moreover, the number of con-
ductive electrons in V6O13 crystal is limited, so its con-
ductivity falls rapidly [11–13]. Pre-lithiation can effec-
tively supplement the consumption of lithium ions during
the sealed formation, and improve the capacity and cycle
performance of LIBs. Pre-lithiation of cathode material is
a very convenient and feasible process. By enriching cath-
ode materials with lithium, the lithium ion can be
replenished during the sealed formation, which can con-
trol the amount of lithium intercalation and reduce the
complexity of the operation, and has important value in
actual production [14].

In order to improve its electrochemical properties and elec-
tronic conductivity while maintaining its crystal structure, we
use a simple solvent-thermal method to obtain pre-lithiated
V6O13 cathode materials. The effects of pre-lithiation on the
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microstructure and electrochemical performance of V6O13

were investigated by XRD, XPS, SEM, TEM, CV, EIS, and
charge/discharge tests.

Experimental

Material preparation

The pre-lithiated V6O13 was prepared by a facile solvent-
thermal method. In a typical synthesis, 0.4 g of V2O5 was
added to a mixed solution of 25 mL C2H5OH and 20 mL
deionized water under strong stirring until V2O5 was thor-
oughly mixed. Then, 0.02 g of LiNO3 was dissolved into the
mixed solution. The mixed solution was transferred to a
100-mL autoclave, sealed, and kept at 160 °C for 24 h, and
then cooled to room temperature. After centrifugation (4000
rpm, 5 min) with deionized water, the sample was freeze-dried
for 24 h, ground to a powder, and finally calcined at 350 °C for
1 h at 3 °C/min in argon to obtain the pre-lithiated V6O13. For
comparison, pristine V6O13 was also prepared by the same
procedure but without adding LiNO3.

Electrochemical test

The electrochemical performances were measured in coin
cells. The working electrodes were prepared by mixing
polyvinylidene fluoride (PVDF, 10 wt%), acetylene black
(20 wt%), and active materials (70 wt%) in N-methyl-2 pyr-
rolidone (NMP) solvent on an aluminum foil (20 μm in

thickness) which was used as the current collectors. The coat-
ed electrode was dried in vacuum at 90 °C for 12 h. Both the
counter and reference electrodes were commercial Li metal
and the separator was the Celgard 2300membrane. One molar
LiPF6 in ethylene carbonate (EC)/dimethyl carbonate (DMC)/
diethyl carbonate (DEC) (EC/DMC/DEC = 2:2:1 in volume)
was used as electrolyte. The cycling performance was tested
by the NEWARE CT-3008 5V 10 mA-164 Battery Testing
System (BTS). Both the electrochemical impedance spectros-
copy (EIS) and the cyclic voltammetry (CV) were tested
through a CHI 860D electrochemical workstation, and the
CV measurement was performed in the potential range from
1.5 to 4.0 V at a scan rate of 0.1 mV s−1.

Results and discussion

The XRD pattern of the pristine V6O13 and pre-lithiated
V6O13 are showed in Fig. 1a. For the pristine sample,
all the diffraction peaks are in accordance with the stan-
dard diffraction peaks of the monoclinic phase of V6O13

(JCPDS card no. 71-2235, space group: C2/m) [15]. No
impurities are detected from the XRD pattern, indicating
high purity of V6O13. After lithiation, the structure of
the main crystal is well remained, but the peak positions
slightly shift. Figure 1b shows the enlarged XRD pat-
tern at 2θ ranging from 24.5 to 26°, obviously the (110)
peak shifts to low angle after lithiation. The shift of the
diffraction peaks indicated that Li+ had pre-intercalated
into the lattice of V6O13. The lattice parameter values of
the two samples were calculated and listed in Table 1. It
can be seen that pre-lithiation cause cell volume expan-
sion of V6O13.

The FESEM and HRTEM images of the pristine V6O13

and pre-lithiated V6O13 samples are shown in Fig. 2. As
shown in Fig. 2a and d, both samples have a 3D flower-
like structure. By comparison, the pristine V6O13 exhibits
more or less agglomeration, and each unit is adhered
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Fig. 1 a The XRD patterns of the non-lithiated and pre-lithiated V6O13 and b enlarged peaks at 2θ ranging from 24.5 to 26°

Table 1 The lattice parameters and unit cell volume of pristine V6O13

and pre-lithiated V6O13

Sample designation a (Å) b (Å) c (Å) Volume (Å3)

Pristine V6O13 11.93209 3.69277 10.13805 438.72

Pre-lithiated V6O13 11.89303 3.69003 11.0420 479.38
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together in an irregular arrangement. Pre-lithiated V6O13

has less agglomeration, and the flower-like structure of
each unit is obvious. In partial magnification of the sam-
ples (Fig. 2b, c, e, f), it is seen that the nanoflowers of
both samples are composed of very thin 2D nanosheets
with smooth surface. After pre-lithiation, the sample “pet-
al” becomes slender, and the nanosheets are looser than
the pristine V6O13. The ample space between each sheet
would allow easy penetration of electrolyte [16].
Figure 2g is the HRTEM image of pre-lithiated V6O13.
The lattice fringes are sharp-edged, which means that
the pre-lithiated V6O13 has good crystallinity. The
0.351-nm and 0.585-nm lattice fringes correspond to the
(110) and (200) lattice planes in the V6O13 structure,
respectively.

The composition and the valence state of pre-lithiated
V6O13 were investigated by XPS measurement. Figure 3a
is XPS survey spectra of the pristine V6O13 and pre-
lithiated V6O13. Due to relatively low content, the char-
acteristic peak of Li is not apparent in the XPS survey
spectra. For further verification, the narrow-scan spectra
of the pre-lithiated sample were tested (Fig. 3b). After
fitting, a distinct characteristic peak at 54.5 eV was ob-
served, corresponding to the Li 1s characteristic peak
[17], which provide further evidence for the intercalation
of Li into the host lattice. Figure 3c and d are V 2p3/2 and
V 2p1/2 XPS spectra of the pristine V6O13 and pre-

lithiated V6O13, respectively. It can be seen that the + 4
and + 5 valence states of vanadium are present in both
samples. The binding energy appeared at 522.20, 515.27,
523.69, and 516.29 eV in the sample of pristine V6O13

could be assigned to V4+ 2p 1/2, V4+ 2p 3/2, V5+ 2p 1/2,
and V5+ 2p 3/2 peaks, respectively [18, 19]. After pre-
lithiation, the peak positions of V4+ 2p 1/2, V4+ 2p 3/2,
V5+ 2p 1/2, and V5+ 2p 3/2 were originated from 522.53,
515.74, 524.01, and 516.67 eV (Table 2). The increase in
binding energy of V4+ and V5+ at the V 2p3/2 peak after
pre-lithiation indicates that the lithiating agent leads to an
enhanced interaction between vanadium and oxygen
atoms [20]. The molar ratios of V4+ and V5+ of the pris-
tine V6O13 and pre-lithiated V6O13 under the V 2p 3/2
peak are 62.96% and 37.04% (1.7:1) and 65.52% and
34.48% (1.9:1), respectively. It was found that the propor-
tion of V4+ increases after pre-lithiation. The increasing
fraction of relatively low valence states indicates the re-
duction of the sample resistance [21].

Figure 4 shows the first three consecutive CV curves of
the two samples, at a scan rate of 0.1 mV s−1 over a range
of 1.5 to 4.0 V (vs. Li/Li+). For the pristine V6O13, two
oxidation peaks appeared at about 2.60 and 3.25 V, indi-
cating that Li was sequentially deintercalated from the
non-equivalent sites in the V6O13 structure. The reduction
peaks appeared at about 2.20 V and 2.70 V, corresponding
to the intercalation of Li into the monoclinic system

Fig. 2 SEM images of a–c the pristine V6O13 and d–f pre-lithiated V6O13. g HRTEM image of the pre-lithiated V6O13
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V6O13 [22]. The positions of the oxidation peaks and the
reduction peaks became narrower after lithiation. The ox-
idation peaks appeared at about 2.38 V and 2.75 V, and
the reduction peaks at about 2.40 V and 2.90 V. The peaks
at about 2.75 V and 2.40 V are much higher than those of
the pristine V6O13. An increase in the peak indicates an
increase in current, which means that the electron trans-
port of pre-lithiated V6O13 is greatly enhanced [17, 23].
Furthermore, the distinction between the CV curve for the
second and third cycles after lithiation and the CV curve
for the first cycle is much smaller than for the pristine
V6O13, indicating that the structure is more stable during
repeated Li insertion/extraction cycles. The separation

between the oxidation peak and the reduction peak after
lithiation is minimal, indicating that the reversibility,
cyclability, and cycle efficiency of Li+ insertion/
extraction on the electrode are higher [24].

Figure 5a presents the EIS plots (Z′ vs. -Z″) of the
pristine V6O13 and pre-lithiated V6O13 after three cycles.
The curves show the depressed semicircles in the high-
frequency region and the sloped lines in the low-
frequency region, which reflect the charge transfer pro-
cess and the lithium ion diffusion in the bulk electrode,
respectively [25]. The charge transfer resistance of the
pristine V6O13 and pre-lithiated V6O13 after 3 cycles
was 527.5 Ω and 369.4 Ω, respectively. The charge trans-
fer resistance of lithiation V6O13 is smaller than that of
pristine V6O13, which means that the lithiation V6O13 has
higher electrochemical reaction kinetics, which may be
because the interlayer spacing of V6O13 increases after
pre-lithiation, which facilitates Li+ insertion/extraction.
The diffusion coefficient value (DLi) is calculated using
Eqs. (1) and (2) [26].

Z 0 ¼ Rct þ RE þ σω−1=2 ð1Þ
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Fig. 3 a Overall XPS spectra of the pristine V6O13 and pre-lithiated V6O13. b Li 1s XPS spectra of the pre-lithiated V6O13. V 2p3/2 and V 2p1/2 XPS
spectra of the c pristine V6O13 and d pre-lithiated V6O13

Table 2 The binding energy of V4+ and V5+ of pristine V6O13 and pre-
lithiated V6O13

Sample Binding energy (eV)

V4+ 2p 1/2 V4+ 2p 3/2 V5+ 2p 1/2 V5+ 2p 3/2

Pristine V6O13 522.20 515.27 523.69 516.29

Pre-lithiated V6O13 522.53 515.74 524.01 516.67

Ionics (2020) 26:1181–11871184



DLi ¼ 1

2
� Vm

FSσw

� �
dE
dx

� �2
ð2Þ

In Eq. (1), ω is the angular frequency in the low-frequency
region, and both Rct and RE are kinetics parameters indepen-
dent of frequency. Then, the Warburg coefficient (σ) can be
obtained from the slope of the fitting line (Fig. 5b). In Eq. (2),
Vm is the molar volume of cathode material (52 cm3/mol),F is
the Faraday constant (96,485 C/mol), S is the relative area of
electrode materials (2 cm2), σw is theWarburg impedance, and
dE/dx is the value between electromotive force and compo-
nent. In order to facilitate understanding, the DLi of pristine

V6O13 and pre-lithiated V6O13 are 2.72 × 10−15 cm2 s−1 and
2.15 × 10−14 cm2 s−1, respectively. The DLi is improved by
almost one order of magnitude after pre-lithiation, indicating
the faster Li+ diffusion ability of pre-lithiated V6O13, which
may result from the increased conductivity due to an increase
in charge carrier concentration [27, 28]. Table 3 shows the RCT
and DLi values of pristine V6O13 and pre-lithiated V6O13.

Figure 6a and b present selected charge-discharge curves of
the pristine V6O13 and pre-lithiated V6O13 at 0.1 C rate in the
voltage range of 1.5–4.0 V at room temperature (1 C = 420
mAh/g). The charge and discharge curve of the pristine V6O13

has two obvious discharge plateaus at around 2.0 Vand 2.6 V.
After lithiation, the discharge voltage increases, and the two
plateaus become one plateau (2.7 V), indicating that the po-
larization of the electrode deceases; moreover, the phase tran-
sition numbers are impeded. The decreased phase transition
number would be benefit to the improvement of the structural
stability of V6O13. Figure 6c shows the cycling performances
of the pristine V6O13 and pre-lithiated V6O13 up to 50 cycles
at a current density of 42 mA−1 (0.1 C) between 4.0 and 1.5 V.
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Fig. 4 Cyclic voltammetry curves of a pristine V6O13 and b pre-lithiated V6O13 with a scanning rate of 0.1 mV s−1 in the voltage range of 1.5–4.0 V

Table 3 RCT and DLi values of the pristine V6O13 and pre-lithiated
V6O13

Sample designation RCT (Ω) DLi (cm
2 s−1)

Pristine V6O13 527.5 2.72 × 10−15

Pre-lithiated V6O13 369.4 2.15 × 10−14
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The initial discharge capacity decay may be caused by the pre-
lithiation process, which occupies a large number of Li+ sites
in V6O13 host. Although pre-lithiated V6O13 delivers a lower
initial discharge capacity, it exhibits a better cycling perfor-
mance. The capacity retentions of the pristine V6O13 and pre-
lithiated V6O13 after 50 cycles are 57% and 97%, respectively.
The improvement of the cycling performance of the pre-
lithiated V6O13 is attributed to its superior structural revers-
ibility, lease number of phase transitions during the discharge/
charge process, and improved electrical conductivity.

Conclusion

The pre-lithiated V6O13 has been fabricated via a facile
solvothermal method. The pre-lithiated V6O13 has a 3D
flower-like structure. Electrochemical tests demonstrated
that the pre-lithiated V6O13 has a superior electrochem-
ical performance especially the cycling properties. When
the mole ratio of Li to V is 0.06, the capacity retention
of the sample is 97% after 50 cycles. The improvement
of the cycle performance of pre-lithiated V6O13 is attrib-
uted to the following reasons: (i) the Li+ pre-inserted
into the lattice structure expand the crystal lattice, which
reduces the stress of Li+ insertion/extraction during
charge/discharge; (ii) the fewer number of phase transi-
tions during discharge/charge process therefore led to
better cycling stability; (iii) the pre-lithiation process
increases the charge carrier concentration, resulting in
an increase in conductivity.
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