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Abstract
Fe-doping Li3V2(PO4)3/C material was successfully synthesized from combustion synthesis precursors. The Li3V2(PO4)3 is
layered by amorphous carbon with a porous structure and doped with Fe, which can improve the Li+ transfer rate and conduc-
tivity. The 1% Fe-doped products used as cathode electrode for lithium-ion batteries exhibit enhanced electrochemical perfor-
mance. In 3.0~4.8 V, it has a specific discharge capacity of 180 mAh g−1 after 20 cycles at 0.1 C, 142.5 mAh g−1 after 500 cycles
at 1 C, and 132.5 mAh g−1 after 500 cycles at 10 C. Moreover, it shows stabilized specific discharge capacity of 65.9 mAh g−1

after 500 cycles at a rate of 20 C, and the capacity retention is 98%. Thus, it could infer the Fe-doping Li3V2(PO4)3/Cmaterial is a
permission candidated material for application in lithium-ion batteries with high performance.
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Introduction

Lithium-ion batteries (LIBs) employed in hybrid electric ve-
hicle energy storage device have been attracting great atten-
tion for their light weight, high safety, high energy, and long
cycle durability without a memory effect [1, 2]. To develop
desired electrode materials with high performance including
excellent rate capability, high reversible discharge capacity
and cycle stability are crucial for LIBs, especially for cathode
materials [2, 3]. In recent decades, in order to achieve the
increasing demand performance, various kinds of cathodema-
terials have been researched and developed, such as lithium
transition-metal phosphates. Due to the good structural stabil-
ity, high theoretical specific capacity, and operating voltage [4,
5], lithium transition-metal phosphates have attracted signifi-
cant attention in LIBs with high performance. Among the
transition-metal phosphate compounds, Li3V2(PO4)3
(monoclinic) is the most prospective material ascribed to its
acceptable ionic mobility, high theoretical specific capacity,

operating voltage, and thermodynamically stable structure
[6, 7]. However, the separated [VO6] octahedral arrangements
result in the poor electronic conductivity of Li3V2(PO4)3 (2.4–
10−7 S cm−1), which indeed limits its extensive application [8,
9]. Great efforts have been devoted to resolve those problems,
such as coating Li3V2(PO4)3 with a carbon layer [10, 11],
reducing its particle size [12, 13] and cation doping [14, 15].
Among them, cation doping is a facility and effective method
to enhance the electrochemical properties of Li3V2(PO4)3
[16]. Up to now, a great number of cations, such as Zr3+,
Mn2+, Al3+, Cu2+, Mg2+, Fe3+, Ge4+, and Cr3+ have been
employed as dopants for Li3V2(PO4)3 and achieved some
good results [14–20].

Previously, several methods have been adopted to synthe-
size cation doping Li3V2(PO4)3, which include hydrothermal
technique, spray pyrolysis method, solid-state strategy, and
sol-gel approach. For example, Park et al. [19] have prepared
Mn-doping Li3V2(PO4)3 by the spray pyrolysis method. The
electric conductivity of Li3V2(PO4)3 has been increased as-
cribed to the Mn doping, and the cathode electrode perfor-
mances have been improved. Liu et al. [20] used two methods
(the first step is the sol-gel method) to fabricate Fe-doping
Li3V2(PO4)3 with improvement of electrochemical perfor-
mance. However, these methods usually consist of redundant
steps, such as a long time for reaction, washing several times,
and calcination at various stages to prepare the final product.
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Thus, it is valuable to develop a facile synthesis route with low
cost and efficiency for practical application. Up to now, we
find no literature report on the preparation of Fe-doped LVP
by combustion synthesis. In this work, we offer a facile route
for the synthesis of Fe-doping Li3V2(PO4)3 using solution
combustion synthesis. Compared with conventional synthesis
methods, this method (solution combustion synthesis) is ef-
fective and economic due to time-saving processing and eco-
nomic and simple exper imenta l se t -up [21–23] .
Electrochemical measurement results imply the as-prepared
Fe-doping Li3V2(PO4)3 is a permission candidated cathode
material for application in lithium-ion batteries with high
performance.

Experimental

Synthesis

In detail, 0.03 mol lithium nitrate (LiNO3), 0.02 mol
ammonium metavanadate (NH4VO3), 0.02 mol

ammonium dihydrogen phosphate (NH4H2PO4,), ferric
nitrate (Fe (NO3)3·9H2O), 2 g glucose (C6H12O6·
H2O,), and 0.07 mol glycine (NH2CH2COOH) were
dissolved in 200 ml deionized water. All the chemicals
were analytical reagent grade (Shanghai Zhanyun
Chemical Co., Ltd.). The ratio between Fe and
Li3V2(PO4)3 (0.02 mol ammonium metavanadate could
prepare 0.01 mol Li3V2(PO4)3) was 0~2 (wt%). The
whole process for preparation precursors takes 15–
20 min. Then, the precursors prepared by combustion
synthesis were heated at 800 °C for 5 h with N2 at-
mosphere, and then Fe-doping Li3V2(PO4)3 could be
gotten.

Characterizations

The prepared samples were characterized with X-ray diffrac-
tion (XRD, MXP21VAHF) at room temperature, X-ray pho-
toelectron spectra (XPS, PerkinElmer), scanning electron mi-
croscopy (SEM), and transmission electron microscopy
(TEM).
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Fig.1 aXRD patterns of the Li3V2(PO4)3/C samples with the different Fe contents. b Survey XPS spectra of samples, high-resolution XPS analysis of c
V2p and d Fe2p for 0 wt% and 1 wt% samples
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Electrochemical measurements

The electrodes were fabricated by a mixture of Fe-
doping Li3V2(PO4)3 materials (80 wt%), acetylene black
(10 wt%), and poly (10 wt%). The compounds were
scattered in N-methyl-2-pyrrolidone (NMP) to form
sizing agent, depositing on an Al foil. All the fabricated
electrodes were stoved at 80 °C for 10 h in a vacuum
oven. The half cells (CR2032-type) were fabricated in
an Ar-filled glove box. The electrolyte was a non-
aqueous solution with 1 M LiPF6 dissolved in a mixture
of 1:1:1 of ethylene carbonate (EC)/dimethyl carbonate
(DMC)/ethylene methyl carbonate (EMC). The charge
and discharge properties of the cells with different cur-
rent densities were tested in 3.0–4.8 V. For the capacity
rate testing, the current gradually changed from 0.5 to
1, 2, 5, and 10 C and decreased to 0.5 C. Cyclic volt-
ammetry (CV) curves were studied with CHI710D

(Chenhua, Shanghai) electrochemical workstation at the
rate of 0.1 mV s−1.

Results and discussion

Figure 1a demonstrates the XRD results of the as-prepared
products. All diffraction peaks can be labeled as the crystalline
monoclinic Li3V2(PO4)3 (JCPDS 97-009-6962), and no other
peaks could be found. It indicated the Li3V2(PO4)3 has been
successfully prepared by reduction combustion synthesis pre-
cursors at a temperature of 800 °C for 5 h. Figure 1b shows the
chemical information of samples characterized by XPS.
According to Fig. 1b, the Li, P, C, V, O, N, and Fe elements
could be found. The ~ 55.7 eV band is due the contribution of
Li+ in Li3V2(PO4)3 [24]. The ~ 140 eV band is attributed to
2P3/2 in (PO4)3 [25]. The peak at 531.5 eV was the O1s
spectrum generated by (PO4)3 [26]. The peak located at

Fig. 2 SEM images of the
Li3V2(PO4)3/C samples with the
different Fe contents. a, b 0%. c, d
1%. e, f 2%
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285 eV is corresponding C1s in carbon [27]. The ~ 400 eV
peak confirms the N1s in samples [28]. In the high-resolution
XPS of V2p for 0 wt% and 1 wt% samples, as shown in
Fig.1c, the V2p with a binding energy of around 517 eV as-
cribed to V2p, which correspond to V3+ in Li3V2(PO4)3 [29].
Additionally, the high-resolution XPS of Fe2p for 0 wt% and
1 wt% samples are shown in Fig.1d. It can be found that new
peaks of Fe2p with a binding energy around 711 eV [30]
appeared in the Fe-doped sample and no characteristic peak
of Fe in 0% sample. The XPS results indicate the Fe-doped
Li3V2(PO4)3 has been successfully prepared.

Figure 2 illustrates the SEM characterizations of all
samples. As illustrated in Fig.2, the 0% sample and 2%
sample has a bulk structure and composed of irregular

Fig. 3 a Original SEM images of 1% Fe-doped Li3V2(PO4)3/C powders
and b Vand c Fe map distribution

Fig. 4 TEM images of the
Li3V2(PO4)3/C samples with the
different Fe contents. a 0%. b 1%.
c 2%. d–f HR-TEM of
Li3V2(PO4)3/C with Fe content of
1%
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particles. The 1% sample has a porous structure and com-
posed of a sheet structure, which is favorable for lithium
ion transmission [31]. By comparison, the Fe-doped
Li3V2(PO4)3 have less agglomerat ion than pure
Li3V2(PO4)3, particularly for the 1% sample. This is due
to the Fe source (ferric nitrate) which was added in the
sample. In this work, it used solution combustion method
(SCS) to synthesize precursors. For the SCS, ferric nitrate
is the oxidant in the system. When ferric nitrate was in-
duced in the system, the precursors were prepared by the
reaction, and the ratio of fuel and oxidant was increased. It
could affect the chemical energy and gases liberated in the
reaction process [32, 33]. Because of the dispersant effect
of more gases on the products [34], the 1% sample has a
porous structure. When the Fe content was added to the 2%
sample, the surpassing oxidation in the reaction system and
the surpassing energy generated in the system, and the
particles began to grow and agglomerated. So, the mor-
phology of the product has been changed. Figure 3 exhibits
the original images of 1% Fe-doped Li3V2(PO4)3/C pow-
ders and the map distribution of V and Fe elements. It is
visible in Fig. 3b that the powders have homogeneous dis-
tribution of V and Fe elements. Because all raw materials
were dissolved in water, all elements in the reaction system
uniformly mixed at a molecular or atomic level. And the
elements in the samples could distribute homogeneously.

To further observe the structure and morphology of the
products, TEM images of pure and Fe-doping Li3V2(PO4)3
products are displayed in Fig. 4. It is clear that pure
Li3V2(PO4)3 (Fig. 4a) and 2% Fe-doping Li3V2(PO4)3 (Fig.
4c) have a bulk structure, and the 1% Fe-doped Li3V2(PO4)3
(Fig. 4b) shows a highly porous structure with interconnected
macropores. High-resolution transmission electron micro-
scope (HRTEM) invest igat ions of 1% Fe-doped
Li3V2(PO4)3 (Fig. 4d–f) demonstrate the modified

Li3V2(PO4)3 are covered with amorphous carbon, which can
improve the electron conductivity of the products. To study
the crystalline nature of Li3V2(PO4)3, electron diffraction of
Li3V2(PO4)3 was performed. Figure 4f exhibits the selected
electron diffraction pattern, and the distinctive diffraction pat-
terns confirm the highly crystalline nature of the 1% Fe-doped
Li3V2(PO4)3. The clear diffraction spots further represent the
monoclinic crystal system of Li3V2(PO4)3 phase which is con-
sistent with the XRD results.

Figure 5 a exhibits the circulation performance of different
Fe content samples at 0.1 C in 3.0–4.8 V. It is clear that the
discharge capacity of neat Li3V2(PO4)3 after 20 cycles was
only 85 mAh g−1. The Fe-doped samples have a higher ca-
pacity than pure Li3V2(PO4)3 due to the incorporation of Fe

3+

which improved electrical conductivity and structural stabili-
ty. The 1% sample presents the highest discharge capacity of
180 mAh g−1 and the retention is 91.4%. In comparison with
the 1% sample, the 2% sample shows a lower capacity with
poor capacity retention. Due to too much Fe3+ substitution in
Li3M2(PO4)3 lattice, the closet bond lengths of Li1–O, Li2–O,
and Li3–O contacts are significantly reduced. The binding
interaction between O and Li gradually increases, reducing
the insertion/extraction mobility of lithium ions during
discharge/charging [35, 36]. Therefore, with the increase in
Fe amount, an excess of Fe3+ in the Li3V2(PO4)3 lattice de-
creases the electrochemical activities and contributes to the
lower electrochemical properties of the electrodes. Figure 5b
shows the rate performance of the samples at different rates
increasing from 0.5 to 10 C and then reducing to 0.5 C each 5
cycles. It obviously shows that the discharge capacity is de-
creased as the current rate increases which indicates the elec-
trochemical activities of Li3V2(PO4)3 is determined by ion
diffusion. And the 1% sample electrode possesses the capacity
of 145, 138, 125, 88, and 143 mAh g−1 at 0.5 C, 1 C, 2 C, 5 C,
10 C, and 0.5 C, respectively.
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Fig. 5 a The resulting cycling data versus capacity for the samples (at a rate of 0.1 C between 3.0–4.8 V). b Comparison of the cycling performances
versus C-rates
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EIS measurements can reveal diffusion process informa-
tion during charge/discharge process [37]. The kinetic proper-
ties of undoped and Fe-doped samples were studied by EIS.
Figure 6 presents the Nyquist plots of all the three
Li3V2(PO4)3 electrodes, and each plot composed of a small
intercept at high frequency (corresponding to the ohm resis-
tance of electrolyte (Re)), a depressed semicircle at medium
frequency (including the charge transfer resistance between
the electrode and electrolyte interface (Rct) and the double-
layer capacitance between electrolyte and electrode (Cdl)),
and a linear part at low frequency (associated with the
Warburg resistance Zw) [38, 39]. It is obvious that the 1%
Fe-doped sample shows the lowest Rct. The result is in good
agreement with the electrochemical performance obtained in
Fig. 5. The improvement is due to the appropriate Fe doped
into the Li3V2(PO4)3 crystal lattice which can increase the

degree of disorder in the lattice and enhance the electronic
transfer conductivity.

To further study the electrochemical reaction during cycles,
the CV curves of the 1% sample electrode in 3.0–4.8 V at a
scanning rate of 0.1 mV s−1 are presented in Fig.7. Because of
formation and structure rearrangement of the solid electrolyte
interface (SEI) film, the CV curves were tested after five
cycles[40-41]. The curves present four oxidation peaks and
three reduction peaks. The oxidation peaks located at ~ 3.63
(A1) and 3.72 V (A2) are corresponding to the first Li

+ extrac-
tion from Li3V2(PO4)3 in two steps ascribed to the ordered
phase at mixed V3+/V4+, and the third anodic peak (A3) about
4.13 V is attribute to the second Li+ extraction from
Li2V2(PO4)3 [42-44]. The first two Li+ extractions related to
the V3+/V4+ couple. The fourth oxidation peak (A4) at about
4.63 V generates by the removal of the third Li+

(LiV2(PO4)3→V2(PO4)3), which attributed to the V4+/V5+

couple [1]. The border shape with lower densities of peak
A4 is ascribed to the lower electronic/ionic conductivity of
V2(PO4)3, and, therefore, it has slower reaction kinetics and
lower electrochemical activity. Moreover, the peak around B3

is due to the insertion of two Li+ into V2(PO4)3 by a solid
solution process, which is ascribed to the V5+/V4+ couple.
The reduction peaks located at B2 and B1 are ascribed to a
two-step insertion of the first Li+ transform Li2V2(PO4)3 to
Li2.5V2(PO4)3 and then to Li3V2(PO4)3, and it corresponds
to the V4+/V3+ pairs. To study the high current rate and circu-
lation performance of the 1% sample, the electrodes in 3.0–
4.8 Vat different current densities for 500 cycles are shown in
Fig. 7b. At the current of 1 C, 10 C, and 20 C, the initial
special capacity is 175.7, 142.0, and 67.0 mAh g−1, respec-
tively, and the capacity was still 142.5, 132.5, and
65.9 mAh g−1 after 500 cycles, respectively. The results indi-
cate that the material has good circulation performance. The

Fig. 6 Nyquist plots of the two electrodes in the frequency range of
100 kHz to 10 mHz
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Fig. 7 a CV curves of 1% Fe-doped LVP/C electrodes in the potential range of 3.0–4.8 V (vs. Li+/Li) at a scan rate of 0.1 mV/s. b The resulting cycling
data for the samples at different rates
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capacity of the cathode decreases with current rate increasing.
Due to the low current density, the polarization of the elec-
trode is also small, and the charging and discharging time is
long enough for Li+ to be inserted/extracted, so the specific
capacity is higher. However, when the current density is too
high, the charging and discharging time is too short, which
leads to the incomplete insertion/extraction for Li+, so the
specific capacity will decrease accordingly. In general, the
circulation performance of Fe-doped Li2V2(PO4)3 has been
greatly improved.

Conclusions

Fe-doping Li3V2(PO4)3/C materials were successfully synthe-
sized from combustion synthesis precursors. Because appro-
priate Fe doped into the Li3V2(PO4)3 crystal lattice which
could increase the degree of disorder in lattice and enhance
the electronic transfer conductivity, the 1% Fe-doped compos-
ites as cathode electrode material for LIBs exhibit enhanced
electrochemical performance. In 3.0~4.8 V, it has a specific
discharge capacity of 180 mAh g−1 at the rate of 0.1 C after 20
cycles, 142.5 mAh g−1 at 1 C, and 132.5 mAh g−1 10 C after
500 cycles. Moreover, it shows stabilized specific discharge
capacity of 65.9 mAh g−1 after 500 cycles at the rate of 20 C,
and the capacity retention is 98%. Thus, it could infer the Fe-
doping Li3V2(PO4)3/C material is a potential cathode material
for application in LIBs with high performance. Furthermore,
this work provides a new insight into the construction of cat-
ion doped Li3M2(PO4)3 for improving electrochemical
performance.
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