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Abstract
In this work, two asymmetric NiO-BaZr0.1Ce0.7Y0.2O3-δ (NiO-BZCY) anode substrates were prepared via the phase-inversion
tape casting method for Ce0.8Sm0.2O2-δ (SDC)-based solid oxide fuel cells. The results showed that the anode support structure
significantly influenced the electrochemical properties of the cells. The cell supported on the anode substrate consisted of a
finger-like layer and a sponge-like layer outputs highest electrochemical performance with a maximum power density of
823 mW cm−2 at 650 °C and shows great superiority over the cell fabricated by a typical dry-pressing method. The excellent
performances demonstrate that the phase-inversion tape casting technique is a good strategy in fabricating anode supports for
SOFCs, and the anode structure with the relatively dense sponge-like layer as top surface is optimal to construct the complete cell.
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Introduction

Solid oxide fuel cell (SOFC), as an efficient and environmen-
tally friendly energy conversion system, has attracted more
and more attention in the past few decades [1–6]. With the
development of SOFC, lowing operating temperature has be-
come a central branch of research because it can resolve or
relieve the several problems that are caused by high operating
temperature including high fabrication and operating cost, and
inferior long-term stability. However, the electrochemical per-
formance of fuel cells will decrease significantly with decreas-
ing operating temperature due to the thermal activation nature
of the processes in these components. In order to obtain high
performance at reduced temperatures, developing and using
electrolyte materials with high ionic conductivity is critical [7,

8]. Therefore, doped ceria has absorbed wide concern and is
used frequently as electrolyte since it shows high ionic con-
ductivity in the middle-low temperatures [9].

Nevertheless, the Ce4+/Ce3+ redox reaction occurs in re-
ducing atmospheres under the fuel cell operating condition,
leading to obvious internal short behavior in doped ceria. Such
internal short circuit significantly decreases both the open-
circuit voltages (OCVs) and the working efficiency of
SOFCs [10–12], which severely limits their popularization
and application. Recently, Sun et al. [13] proposed a simple
and effective strategy to prevent doped ceria (DCO) from
reduction via substituting NiO-SDC with NiO-BZCY as the
anode. By this approach, an electron blocking layer was
formed at anode/electrolyte interface during the co-sintering
process of half cells where the Ba elements diffused from the
anode to react with SDC electrolyte. Although the OCVs im-
proved significantly, the power performance was still not sat-
isfactory as compared with traditional DCO-based fuel cells,
especially at low operating temperature [14, 15]. In addition,
the dry-press process is a small-scale technique unfitting for
mass production, and the fabricated anodes usually have a
tortuous and irregular pore microstructure, which will slow
the gas exchange between fuel gases and by-products.

Phase-inversion tape casting as a large-scale preparation
technique has been widely used in the manufacture of SOFC
anodes in the past several years [4, 16–18]. In this method,
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ceramic powder slurry in organic polymer solution is cast on a
temporary substrate and transferred into a water bath for cur-
ing. In the water bath, the organic polymer solution separates
into a polymer-lean and a polymer-rich phases by the ex-
change of organic solvent with water. Due to the occurrence
of the polymer-rich phases, the slurry is solidified into a green
tape. Since the phase separation rate decreases along the thick-
ness direction, the prepared anode is characterized by a three-
layered structure including a few micrometers thick relatively
dense skin layer at the top, a few hundred micrometers thick
highly porous finger-like layer in the middle, and a few ten
micrometers thick relatively dense sponge-like layer at the
bottom [19]. These unique structures are retained after firing
at elevated temperatures. The skin layer or sponge-like layer
can be eliminated at sintering process by using graphite sac-
rificial layer, leaving straight open pores in finger-like layer
exposed to the gas phase; this is advantageous to the fuel gas
and by-product transport and consequently decreasing the
concentration polarization [20]. Therefore, it can be expected
that NiO-BZCY anode-supported doped ceria-based SOFC
with high power density and high OCV can be achieved by
using improved phase-inversion tape casting.

In this work, two kinds of NiO-BZCY anode structures
were fabricated by adjusting the position of graphite sacrificial
layer. The SDC electrolyte and Sm0.5Sr0.5Co3-δ (SSC)-SDC
cathode layer were prepared by drop-coating and screen-
printing methods, respectively. The influence of the anode
structure on the electrochemical properties of the SOFC with
a configuration of NiO-BZCY anode substrate | NiO-BZCY
anode functional layer | SDC electrolyte membrane | SSC-
SDC cathode layer was evaluated.

Experimental

SDC, SSC, and NiO-BZCY powders with a weight ratio of
65:35 were all prepared by a citrate-nitrate gel combustion
method [6, 21]. Take the NiO-BZCY as an example. Firstly,
Ni(NO3)2·6H2O, Ba(NO3)2, Zr(NO3)4·5H2O, Ce(NO3)3·
6H2O, and Y(NO)3·6H2O metal nitrates with stoichiometric
ratio were dissolved in the deionized water. Then, citric acid
with a mole ratio of metal ions to citric acid at 1:1.5 was added
to the solution under stirring. Subsequently, NH3·H2O was

used to adjust the pH value of the solution to about 7. The
solution was heated until a sticky gel was formed, and the gel
was further heated to combustion by an electric furnace. The
as-prepared NiO-BZCY was calcined at 1000 °C for 3 h to
obtain a pure phase.

The phase-inversion tape casting was used to manufacture
the asymmetric NiO-BZCY anode support substrate, and the
details of the phase-inversion process were referred to in re-
cent reports [16, 22]. Two different anode structures were
obtained by adjusting the position of the graphite and the
NiO-BZCY. The thickness was controlled by adjusting the
blade clearance. The green tape was punched into pellets
about 16 mm in diameter and then pre-sintered at 1000 °C
for 2 h to eliminate the graphite layer. The SDC electrolyte
membrane and anode functional layer (AFL) were prepared
by the drop-coatingmethod on the anode substrate surface and
then co-fired at 1400 °C for 5 h [23, 24]. As a comparison,
NiO-BZCY (65:35 wt.%) anode substrates with 20 wt.%
starch as the pore-forming agent, NiO-BZCYAFL and SDC
electrolyte membrane were fabricated by the dry-pressing
method under 300 MPa. After that, the green cell was co-
fired at 1400 °C for 5 h. The SSC-SDC (6:4) powders were
added to the appropriate ethylcellulose-terpineol binder,
which were ground to form a cathode slurry. The cathode
slurry was then coated on the SDC electrolyte membrane with
the screen printing method, and a single cell was formed by
co-fired at 950 °C for 2 h.

To evaluate the gas permeability and porosity of the Ni-
BZCY anodes, the anodes were heat-treated under the same
conditions with as the assembling complete cells, and then
reduced at 800 °C for 5 h in the humidified H2 (~ 3% H2O)
to form Ni-BZCY anode substrates. The gas permeability of
the samples was measured using a homemade setup described
in [25, 26]. The porosities were measured using the
Archimedes method [27].

The microstructure and morphology of the single cells were
investigated by a scanning electron microscopy (SEM; JEOL
JSM-6700F). In the homemade test system, single cells were
tested with a flow rate of 40 mL min−1 humidified H2 (~ 3%
H2O) as the feed gas. The current–voltage curves weremeasured
by DC Electronic Load (IT8511). The electrochemical imped-
ance spectra (EIS) of the cells were measured by the impedance
analyzer (CHI604B) from 105 to 10−1 Hz under OCV.

Table 1 Fabrication method and
sintering temperature of cells I to
III

Cell Anode fabrication method Electrolyte
fabrication method

Cathode fabrication
method

Sintering
temperature

I Phase-inversion tape casting removed
the skin layer

Drop-coating Screen-printing 1400 °C

II Phase-inversion tape casting removed
the sponge-like layer

Drop-coating Screen-printing 1400 °C

III Dry-pressing Dry-pressing Screen-printing 1400 °C
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Result and discussion

It has been demonstrated that the electrochemical properties of
SOFC are closely related to the microstructure of anode

electrode [28, 29]. To evaluate the NiO-BZCYanode structure
on the performance of the SDC-based SOFC, three kinds of
fuel cells were prepared, corresponding to cell I, cell II, and
cell III, which have different anode microstructures. Table 1

Fig. 1 Cross-sectional morphology of a, g cell I, b, i cell II, and c, i cell III. The SEM images of the anode bottom surface of d cell I, e cell II, and f cell III

Fig. 2 Cross-sectional SEM images of a the interface between cathode and electrolyte and b the interface between electrolyte and AFL of the cell I
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summarizes the fabrication parameters of the cells. The SEM
images of the fuel cells with different anode support micro-
structure after testing are shown in Fig. 1 for (a, d, and g) cell I,

(b, e, and h) cell II, and (c, f, and i) cell III, respectively. One
can see that the anode supports of cells I and II fabricated by
the phase-inversion tape casting method contain typical large
finger-like pores (Fig. 1a, b). There is no doubt that this struc-
ture is benefit to transport fuels and by-products that formed
during operation of fuel cell. In contrast, the anode support of
cell III fabricated by a conventional dry-pressing method only
has small tortuous and irregular pore microstructure (Fig. 1c).
The total porosity of the reduced anode was measured by
Archimedes method. It was found that the anodes prepared
by phase-inversion tape casting method had higher porosity.
The total porosities were 69.7%, 72.4%, and 48.7% for the
cell I, cell II, and cell III anodes, respectively. It should be
noted that the anode support of cell I consists of an asymmet-
ric two-layered structure including thin, relatively dense
sponge-like layer and thick finger-like layer, while the anode
support of cell II consists of thin, relatively dense skin layer
and thick finger-like layer. Compared with the skin layer, rel-
atively dense sponge-like layer in the anode support of cell I
possessed smaller and uniform pores, which will enlarge
three-phase boundaries (TPBs) and provide more sufficient

Fig. 3 The anode gas permeability of cells I to III
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Fig. 4 I-Vand I-P curves of a cell I, b cell II, c cell III, and d the cells with different anode structure at 600 °Cmeasured in a wet hydrogen atmosphere at
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catalytic activity sites for electrochemical reactions.
Figure 1d–f shows the bottom surface SEM micrographs of
the anode supports. One can see that the pores with a few ten
micrometers in diameter in finger-like layer of cells I and II
were completely open to air. Besides, all the electrolyte mem-
branes of the fuel cells with different anode microstructure are
fully dense, crack-free and well contacted with electrodes,
which can be observed from Fig. 1g–i.

It has been reported that macropores at the electrolyte/anode
substrate interface decreased the contact between the electro-
lyte and the anode substrate, reducing the TPB length, conse-
quently, impairing the fuel cell performance. In contrast, the
anode functional layers with low porosity have more uniform
and smaller pores, which can optimize the microstructure and
provide more catalytic active sites for electrochemical reaction
[30, 31]. Therefore, an anode functional layer was fabricated to
optimize the cell’s performance. Figure 2a, b is an enlarged

view of the electrolyte/electrode interface for the cell I, which
can further prove the firm combination of the layers.

To achieve high-performance anode-supported SOFCs, the
anode substrates should have high porosity for fast mass trans-
port [26, 32]. The gas permeability of the reduced anodes was
determined and summarized in Fig. 3. It was found that the
anode substrates of cell I and cell II prepared by the phase-
inversion tape casting method showed excellent gas permeabil-
ity. The calculated N2 permeability was 34.5, 26.9, and 2.3 ×
105 Lm−2h−1bar−1 for cell I, cell II, and cell III anodes, respec-
tively. One can see that the gas permeability of cell I and cell II
anode were one order of magnitude higher than the cell III. In
addition, the gas permeability of cell I is superior to that of cell
II. Therefore, it is expected that there should be little resistance
to gas transfer during the operation for cell I, and correspond-
ingly enhancing the electrochemical performance. Besides, the
anode of cell I with sponge layer has small and uniform pores,
which will expand TPBs and provide more sufficient catalytic
activity sites for electrochemical reactions [33]. Therefore, the
anode structure with the relatively dense sponge-like layer as
top surface may be optimal to construct the complete cell.

The I-Vand I-P curves of different anode-supported structures
fuel cells are presented in Fig. 4a–c for cells I, II, and III. The I-V
and I-P curves of the cells I, II, and III tested at 600 °C are plotted
in Fig. 4d for comparison. The maximum power densities
(MPDs) of the cells I, II, and III are 632, 491, and
445 mW cm−2 at 600 °C, respectively. As can be seen, the
performances of both cells I and II with anode supports prepared
by the phase-inversion tape casting are superior to that of the cell
III with anode support prepared by dry-pressing, demonstrating
that the phase-inversion tape casting technique is a good method
in fabricating anode supports for SOFCs. Besides, the cell I with
the relatively dense sponge-like layer as the top surface outputs
highest power densities, and the MPDs are 823 mW cm−2 at
650 °C, 632 mW cm−2 at 600 °C, 451 mW cm−2 at 550 °C,

Fig. 5 SEM-EDS analysis of the interface between SDC electrolyte
membrane and AFL of the cell I sintered at 1400 °C for 5 h after testing

Fig. 6 EIS of the cells I, II, and III measured at 600 °C under open-circuit conditions
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and 291 mW cm−2 at 500 °C. As a comparison, the cell II with
relatively dense skin layer as the top surface only achieved
692 mW cm−2 at 650 °C, 491 mW cm−2 at 600 °C,
344 mW cm−2 at 550 °C, and 198 mW cm−2 at 500 °C. The
results indicated that sponge-like layer should be more suitable
for the top surface to construct the single cell. The discrepancy of
performance may attribute to different microstructure between
the sponge-like layer and skin layer shown in Fig. 1.

It is important to note that the corresponding OCVs of the
cell I reached 1.01 Vat 650 °C, 1.036 Vat 600 °C, 1.043 Vat
550 °C, and 1.052Vat 500 °C, which are obviously higher than
those of the typical DCO-based SOFCs [2, 34]. The improved
OCVs indicate that the electronic current is effectively blocked
through the SDC electrolyte. The electron blocking layer is
formed in situ via the reaction between diffused Ba elements,
and SDC electrolyte was supposed to the reason of the im-
proved OCV [12, 35]. To confirm the electron blocking layer,
the AFL/electrolyte interface was measured by the SEM-EDS
analysis and shown in Fig. 5. It can be seen that there is an
obvious diffusion layer of Ba element about 2 μm in thickness.
The results match well with previous reports [13].

Figure 6 shows the typical EIS of the cellsmeasured at 600 °C
under open-circuit conditions. Both polarization resistance (Rp)
and ohmic resistance (Ro) can be obtained fromEIS [36, 37]. The
Ro of the cells I, II, and III is calculated to be 0.26, 0.26, and
0.31 Ωcm2, while Rp is 0.28, 0.46, and 0.64 Ωcm2 at 600 °C,
respectively. The Ro andRp of the cells I, II, and III at other tested
temperatures are shown in Table 2. It can be found that the cell I
shows the lowest Rp, which is well accorded with the cell per-
formance. Given all the cells have the same anode, electrolyte,
and cathode materials, the different Rp should be ascribed to the
different anode microstructure, which sensitively affects the
amount of TPBs as well as the fuel gas and by-product transport
[28]. The EIS results further demonstrated that the anode struc-
ture with the relatively dense sponge-like layer as top surface
derived from phase inversion is favorable for the SOFCs.

Conclusions

The finger-like porous layer formed by phase-inversion tape
casting method can allow for rapid gas phase transportation

and thus greatly reduce the concentration polarization. This
work compared the effect of the anode support structures pre-
pared by removing the skin layer or sponge-like layer on the
cell performance. The cell supported by an anode substrate
consisting of the sponge-like layer and finger-like layer ex-
hibits better electrochemical performance, which is due to the
finger-like porous structure and the microstructure of sponge-
like layer with small and uniform pores by reducing the con-
centration polarization and enlarging TPBs. The MPDs of the
cell achieved 823 mW cm−2 at 650 °C, 632 mW cm−2 at
600 °C, 451 mW cm−2 at 550 °C, and 291 mW cm−2 at
500 °C. These results reveal that the anode support fabricated
by the modified phase-inversion tape casting technique is a
good alternative for SOFCs.
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