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In-situ grown ultrathin MoS2 nanosheets on MoO2 hollow nanospheres
to synthesize hierarchical nanostructures and its application
in lithium-ion batteries
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Abstract
A unique hierarchical hollow-nanostructure consists of ultrathin MoS2 nanosheets and hollow MoO2 nanospheres has been de-
signed as anode material for lithium batteries. And a simple process for producing ultrathin MoS2 nanosheets in-situ grown on
hollowMoO2 nanospheres is reported. Such a hierarchical nanostructure has four advantages: Firstly, the high electric conductivity
of the MoO2 core can effectively increase the performance of the composite. Secondly, the shell of MoS2 nanosheets with highly
exposed active sites can improve the electrochemical reaction activity of this heterostructure. Thirdly, the reciprocal hybridization
between theMoO2 core andMoS2 shell can availably prevent the aggregation ofMoS2 nanosheets. Owing to the unique hierarchical
MoO2@MoS2 hollow-nanostructure, it exhibits great electrochemical performance and can deliver reversible capacity as high as
820.7 mA h g−1 at a current density of 0.5 A g−1 after 100 cycles, while it is used as a new anode material for lithium-ion batteries.
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Introduction

Rechargeable lithium-ion batteries have been applied widely
in portable electronics and electric vehicles for their

advantages of high energy density, high voltage, and environ-
mental friendliness. Whereas, graphite used as commercial
lithium-ion batteries, anode material has only a theoretical
capacity of 372 mA h g−1 and cannot meet people’s ever-
increasing demanding of higher energy-density and power-
density energy storage system [1–4]. Compared to graphite,
transitional metal oxides and chalcogenides have advantages
of low-cost facile fabrication and much higher specific capac-
ity [5–9]. Among them, MoO2 has a theoretical capacity of
838 mA h g−1 and high electric conductivity near to metal, but
on account of internal sluggish kinetics reaction rates and
accumulated volume variation in bulk MoO2, it needs a rela-
tively long period to activate MoO2 and results in reversible
capacity decay in a short time [10–13]. MoS2 has a two-
dimension structure like graphene with high reactivity and
delivers a capacity of 800–1100 mA h g−1 but fades rapidly
due to volume expansion and lamella staking produced in the
process of charge/discharge [14–17].

To overcome the above obstacles of MoS2 and MoO2,
many strategies have been reported. One effective strategy is
to assemble MoS2 nanosheets into the three-dimensional hier-
archical structure to maintain high contact areas [18–20]. The
nanosheet subunits could provide plenty of active edge sites,
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and the primary structure could avoid the aggregation of
MoS2 nanosheets [21, 22]. Another is to synthesize MoS2/C
composite to reduce aggregation and pulverization of MoS2
and improve its electric conductivity [23, 24].

MoO2 has high electric conductivity and high volumetric
capacity density (6.4 g cm−3) compared with that of carbon.
As a result, MoO2@MoS2 composite also has been consid-
ered as an ideal composite for Li storage. Recently, a few
studies demonstrated that the MoO2/MoS2 composites could
deliver higher specific capacity and better cycle performance
compared with that of pure MoO2 or MoS2. Such as, Deng
and co-worker synthesized ultrafine MoO2 particles with few-
layer MoS2 delivering a high specific capacity of
787 mA h g−1 at 0.8 A g−1 [25]. Xu and co-worker fabricated
MoO2@MoS2 nanoarchitectures by growing MoS2 nano-
sheets vertically on the surface of MoO2 particle. And its
specific capacity remained 1019 mA h g−1 at 0.1 A g−1 after
200 cycles [26]. Nanocarved MoS2-MoO2 nanobelt hybrid
was synthesized by Xiao and co-worker exhibiting impressive
electrochemical performance [27]. However, the electrochem-
ical performance of the MoO2/MoS2 composites in these re-
ports has not yet gelled into a satisfying result, so additional
improvement is still needed. It is highly expected that the
rational design of MoO2/MoS2 nanostructure can effectively
integrate the advantages of MoO2 and MoS2. Considering
that, both MoO2 and MoS2 would have volume variation dur-
ing charge/discharge process [13, 28], leading to pulverization
and poor cyclability. So, the employment of hollow nanostruc-
ture would provide interior space to alleviate the strain and
accommodate the volume change [29–33]. In addition, the
permeable shell could also shorten the diffusion distance
[19]. Therefore, synthesizing MoO2/MoS2 heterostructure by
assembling MoS2 subunits into three-dimensional hollow
MoO2 would be an effective way to enhance the electrochem-
ical performance of the MoO2/MoS2 composites.

In this work, a unique hierarchical MoO2@MoS2 nano-
structure consisting ultrathin MoS2 nanosheets assembled
on hollow MoO2 nanospheres was prepared as an anode
material for Li storage. Moreover, the MoO2@MoS2

heterostructure is synthesized via the reaction between
thiourea and a solid MoO2 nanospheres. In the reaction
process, thiourea decomposes to sulfuretted hydrogen and
reacts with the MoO2 forming MoS2 nanosheets on the
surface simultaneously. Thereafter, due to the Ostwald rip-
ening mechanism, MoO2 core gradually dissolved and
MoS2 shell recrystallized, which finally gives rise to a hol-
low hierarchical MoO2@MoS2 nanostructure [34–36]. In
this strategy, the ultrathin MoS2 nanosheets are in-situ
grown on hollow MoO2 nanospheres. In consideration of
the unique structure and the reciprocal hybridization be-
tween MoO2 and MoS2, it is rational to expect that
MoO2@MoS2 heterostructure would show excellent elec-
trochemical performance in lithium-ion batteries.

Experimental section

Material preparation

Synthesis of MoO2: uniform MoO2 nanospheres was firstly
obtained according to our previous literature method [37]. In a
typical procedure, 0.2 g MoO3 was firstly dispersed in the
mixed solution of 15 ml ethanol and 15 ml ethylene glycol,
followed with stirring around 6 h. Subsequently, the milk-
white solution was put into a 50-ml Teflon-lined autoclave
and heated to 200 °C for 6 h. After cooling down to room
temperature, the brown products were obtained by centrifuga-
tion and washed several times alternatively with distilled wa-
ter and absolute ethyl alcohol then dried for 24 h at 60 °C. The
dried precursors were loaded in the heating zone of quartz
tube in the furnace and were calcined at 600 °C for 5 h in
the atmosphere of Ar with the heating rate of 5 °C min−1.
After cooling down to ambient temperature, the samples were
passivated in the atmosphere of 1% O2/Ar(v/v) for 4 h.

Synthesis of MoO2@MoS2: the above obtained
0.16 g MoO2 products were dispersed in 30 ml distilled water
by ultrasonication for 15 min. After that, 0.32 g thiourea was
added into the solution and stirred for 20 min. Then the solu-
tion was transferred into a 50-ml Teflon-lined autoclave and
kept in an oven at 200 °C for 24 h. After the autoclave cooling
down to ambient temperature in the oven, the black products
were collected and washed with distilled water and absolute
ethanol via centrifugation and dried at 60 °C for 24 h.

Material characterization

X-ray powder diffraction (XRD) to analyze the crystal struc-
ture was performed on a Rigaku D/max 2500 XRD diffrac-
tometer (Cu-Kα radiation, l 1/4 1.54178 Å). The morphology
and microstructure of the products were characterized by field
emission scanning electron microscope (FESEM, FEI Nova
NanoSEM 230) and field emission transmission electron mi-
croscope (FETEM, Tecnai G2 F20 S-TWIN TMP). The
chemical composition was evaluated by energy dispersive
X-ray spectroscope (EDX). N2 adsorption/desorption mea-
surement was performed on Micromeritics ASPA 2460
Surface Area and Porosity Analyzer. The specific area was
calculated by Brunauer-Emmett-Teller (BET) method.

Electrochemical characterization

To prepare the testing electrode, the active materials, a con-
ductive agent (super P) and binder (polyacrylic acid) were
mixed with a weight ratio of 7:2:1. Then, the mixture was
dissolved in an appropriate amount of N-methyl-2-
pyrrolidinone (NMP) and stirred for 24 h to obtain a homoge-
neous slurry. Afterward, the resulting slurry was coated on Cu
foil and dried at 100 °C for 12 h under vacuum. The mass
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loading of each electrode is about 1.4–1.7 mg (equals to 1.24–
1.51 mg cm−2). The 2016-type coin cells were then assembled
in an argon-filled glove box by using lithium disc as a counter
electrode, 1 M LiPF6 in ethylene carbonate/dimethyl carbon-
ate with fluoroethylene carbonate (EC/DMC, 1:1 v/v +
2%FEC) as an electrolyte, and polyethylene membrane as a
separator. Galvanostatically charge/discharge (GCD) mea-
surement was performed on a Land Battery Tester (Land CT
2001A, Wuhan, China). The cyclic voltammetry (CV) was
carried on a Chi604e electrochemical workstation at a scan
rate of 0.1 mV s−1 in the voltage range of 0.01–3 V.

Results and discussion

The crystal structure of the MoO2@MoS2 was characterized
by XRD measurement. The pattern of MoO2 with three major
diffractions peaking at 26.2°, 36.8°, 53.7° shown in Fig. 1a
could be assigned to the (-111), (-211), (-312) facet of typical
monoclinic MoO2 (JCPDS card 32-0671). It should be men-
tioned that the three obvious broaden peaks indicate theMoO2

would have very small subgrain. Fig. 1b presents the XRD
pattern of as-obtained MoO2@MoS2. It can be seen that the
main three peaks were remained indicating the presence of
MoO2.

Besides, the three other pronounced peaks located at 14.4°,
32.3°, and 59.5° can be predominantly indexed to the (002),
(100), and (110) planes of hexagonal 2H-MoS2 (37-1492).
The representative (002) peak of MoS2 can also be used to
calculate the interlamellar distance of the two-dimensional
structure. According to the Bragg equation, the interlayer
spacing is 6.2 Å. No diffraction peaks of other phase or im-
purities have been found proving the high-purity of the
MoO2@MoS2.

FESEM was used to observe the morphology of the mate-
rials and the results were shown in Fig. 2.

As shown in Fig. 2a, MoO2 has homogeneous spheres with
uniform size [37]. Magnified image of MoO2 was shown in
Fig. 2b. It can be clearly observed that the surface of the
spheres is relatively smooth and the size of as-formed spheres
was about 500 nm. Figure 2c–d show the morphology of
MoO2@MoS2; uniform spheres can also be found in Fig. 2c
of low-magnified FESEM image. In contrast toMoO2, it has a
larger sphere size than MoO2. Magnified FESEM image re-
vealed that the size of MoO2@MoS2 is approximate 700–
800 nm. Unlike the relatively smooth surface of MoO2,
MoO2@MoS2 has a rough surface. More specifically, the sur-
face consists of randomly assembled ultrathin nanosheets. In
our work, thiourea as the sulfur source will release sulfuretted
hydrogen in the process of reaction and will react with MoO2.
The resultant is on the basis of MoO2 spheres with MoS2
formed and in-situ grown on MoO2. Thus, the surface of as-
formedMoO2@MoS2 consists ofMoS2 nanosheets and forms
the hierarchical structure. Meanwhile, it can be clearly seen,
there are relatively large interspaces between the MoS2 sub-
units supplying extra spaces for the volume expansion in the
cycling process [26]. Compared to the relatively smooth sur-
face of as-obtained MoO2, such secondary structure can fully
utilize the two-dimension structure of MoS2, to increase the
contact areas with the electrolyte. It can boost the electro-
chemical reaction rates and shorten the distance, the diffusion
of the ions, and electrons thus improve the electrochemical
performance of the materials [38–41]. To determine the com-
position of MoO2@MoS2, EDX was carried out and the result
was shown in Fig. S1. The molar ration of MoO2 and MoS2 is
0.31:0.69. The specific surface area was calculated by using
BET method. N2 adsorption/desorption was performed as
shown in Fig. S2. The measured specific area is about
28.64 m2 g−1. Besides, it indicates a type IV curve with H3
type hysteresis. The behavior is related to the secondary cap-
illary condensation [42, 43].

To further reveal the microstructure and morphology of the
materials, TEM was applied to observe MoO2 and
MoO2@MoS2 and the results were shown in Fig. 3.

From the TEM image of MoO2 in Fig. 3a, it can be ob-
served thatMoO2 sphere is a solid structure in nature. Besides,
its surface is not fully smooth and there are some small parti-
cles around the surface. In the high-resolution TEM shown in
the inset of Fig. 3a, it revealed that MoO2 is made up of small
particles with the size of 20–30 nm. Such secondary structures
are corresponding to the broader peaks in the XRD pattern of
MoO2. TEM image of MoO2@MoS2 was shown in Fig. 3b
demonstrating the hollow sphere structure of as-formed
MoO2@MoS2. Magnified images of MoO2@MoS2 illustrate
the shell of the spheres which are composed of MoS2 nano-
sheets in agreement with the SEM images, and the thickness
of the shell is around 180–200 nm. High-resolution TEMFig. 1 XRD pattern of MoO2 and MoO2@MoS2
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image shown in Fig. 3d provides further insights into the
MoS2 nanosheets of the shell. The thickness of the nanosheets
is about 4–10 nm consisting of dozens of lattice planes. The
lattice spacing with a distance of around 0.62 nm is consistent
with the (002) facets distance value calculated from the XRD.
To better understand the composition of the MoO2@MoS2,
the scanning transmission electron microscopy and the ele-
ment mapping images of MoO2@MoS2 are provided as
shown in Fig. 3e–h. The presence of Mo, O, and S element
demonstrates their uniform distribution. The intense of O is
weaker because MoO2 was in the inner shell and was coated
by MoS2. Such hollow structure could increase the contact
area between electrode and electrolyte, in favor of maintaining
its structure by the mean time [44, 45]. On the one side, MoO2

in the shell can utilize the high conductivity of MoO2 to over-
come the poor conductivity ofMoS2, and the synergistic effect
could also promote the reactivity of MoO2@MoS2 [29, 46].
On the other side, MoS2 nanosheets with dozens of layers
randomly assembled hollow sphere can improve kinetic rates
of the materials and shorten the distance of ions and electrons
during charging/discharging. Besides, hierarchical structure
with relatively large space between nanosheets would provide
extra space during charge/discharge and promote cycling
stability.

To investigate the charge/discharge process of as-obtained
materials, CVand GCD tests at a current density of 100mA g−1

were performed as shown in Fig. 4a–b. In the first cathodic
sweep, the very pronounced peak at 0.4 V can be attributed to
the SEI formation and the conversion reaction of LixMoS2 to
Mo and Li2S [47, 48]. It disappeared in the subsequent sweep,
which indicates that it is an irreversible reaction. Except for the
first discharge curve, the other curves of later charge/discharge
overlap well. Strong oxidation peak at 2.25 V and reduction
peak at 1.85 V are derived from the reversible reaction of
Li2S and S2−8 [49, 50]. The other peaks at 1.74, 1.5, and
1.47 Vare corresponding to a four-step monoclinic-orthorhom-
bic phase transformation of LixMoO2 and MoO2 during the
charge/discharge process [51, 52]. In the first discharge process
shown in Fig. 4b, a potential plateau around 0.5 V correspond-
ing to the conversion reaction in agreement with the first CV
cathodic scan which indicates LixMoS2 converts to Mo and
Li2S. Similar to the CV curve, other curves which overlap well
indicate high reversibility except for the first discharge curve.
Besides, the first discharge, specific capacity is 1122 mA h g−1

with the coulombic efficiency of 75% which mainly due to the
irreversible reaction and formation of SEI [53, 54].

GCD under a current density of 200 mA g−1 was applied to
investigate the electrochemical performances of materials as
shown in Fig. 4c. The first discharge capacity of
MoO2@MoS2 is 953 mA h g−1, and then, the capacity fades
to 902 mA h g−1 that lost about 5.35% which mostly originat-
ed from SEI formation and irreversible reaction. The

Fig. 2 FESEM images of MoO2

spheres (a, b), and hierarchical
MoO2@MoS2 spheres (c, d)
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coulomnbic efficiency in the first cycle was 85% and then
maintain at around 100% showing excellent charge/
discharge performances. Along with the cycling test, the ca-
pacity will slightly increase which was ascribed to the activa-
tion process ofMoO2 during the charge/discharge. It is mainly
because only a certain amount of MoO2 undergoes the con-
version reaction due to the poor kinetics of LixMoO2 at the
beginning. But the reaction leads to partially crystallinity deg-
radation of the MoO2 or convert it into amorphous structures.
Thus, it boosts the ion diffusion kinetics and causes more
MoO2 to undergo the reaction [55, 56]. After 50 cycles, the
capacity of 917 mA h g−1 still can be remained with high
capacity retention of 96.2% and only 3.8% decay on the basis
of the first discharge capacity. In addition, rate performance is

exhibited in Fig. 4d at the current density of 0.1, 0.2, 0.3, 0.5,
1.0 A g−1. The first discharge capacity is 1150, 950, 890, 830,
and 700 mA h g−1. After current density back to 0.1 A g−1, its
capacity could gradually restore to about 1000 mA h g−1 dem-
onstrating good capacity restore performances.

In order to compare the electrochemical performance of
MoO2 and MoO2@MoS2, the charge/discharge cycling test
was evaluated at a current density of 500 mA g−1 in the volt-
age range of 0.01–3 V and the result is shown in Fig. 5.

The specific discharge capacity of MoO2@MoS2 in the
first cycle was 929.7 mA h g−1. A fade occurs in the second
and the third cycle mainly because of the irreversible reaction.
From the third cycle onwards, the capacity starts to increase
due to the activation process of MoO2. After 100 cycles, its

Fig. 3 TEM images of MoO2

spheres (a), hierarchical
MoO2@MoS2 spheres (b, c, d)
and element mapping images of
hierarchical MoO2@MoS2 (e–h)
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capacity still remains as 820.7 mA h g−1, showing excellent
cycle performance. In addition, SEM was carried out to

investigate the MoO2@MoS2 electrode after 40 cycles as
shown in Fig. S3. It can be observed that the sphere morphol-
ogy could be maintained after charge/discharge process. As a
contrast, the first discharge capacity of MoO2 was
622.3 mA h g−1. After that, MoO2 underwent an activating
stage, and the capacity began to rise up to the 21 cycles; the
capacity reaches its peak of 752.7 mA h g−1. After 100 cycles,
the capacity of MoO2 faded to 557.3 mA h g−1. In contrast to
MoO2, MoO2@MoS2 delivers higher capacity accompanying
with less fade and displayed better cycling stability and energy
storage performance.

Conclusions

In summary, we successfully synthesized hierarchical
MoO2@MoS2 hollow-nanostructure consisting of ultrathin
MoS2 nanosheets and a hollowMoO2 nanospheres. This strat-
egy only involves a facile method via thiourea reaction with

Fig. 4 a CV curves of first 3 cycles, b charge/discharge potential profile of MoO2@MoS2, c cycle performances of MoO2@MoS2 under a current
density of 200 mA g−1, and d rate performances of MoO2@MoS2

Fig. 5 Cycle performances of MoO2 and MoO2@MoS2 at the current
density of 0.5 A g−1
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uniform solid MoO2 nanospheres, which leads ultrathin MoS2
nanosheets in-situ grown on hollow MoO2 nanospheres. The
obtained hierarchical MoO2@MoS2 hollow-nanostructure in-
tegrated the advantages of the high conductivity of MoO2 and
the two-dimensional structure of MoS2 to improve the elec-
trochemical reaction activity. When evaluated as anode mate-
rials of lithium batteries, it delivers the specific capacity of
1150 mA h g−1 in the first cycle at the current density of
100 mA g−1 and still remains the specific capacity of
820.7 mA h g−1 after charge/discharge for 100 cycles at a
current density of 500 mA g−1. Compared toMoO2, it exhibits
better energy storage performances owing to the advantages of
unique secondary hierarchical hollow structures.
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